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8 SUPPLEMENTARY MATERIAL

8.1 IMPLEMENTATION AND DATA

Data and implementation can be found at https://anonymous.4open.science/r/vcr.

8.2 ADDITIONAL RELATED WORK

Adversarial Robustness. Adversarial robustness measures the worst-case performance on images
with added ‘small’ distortions or perturbations tailored to confuse a classifier (Hendrycks & Dietterich,
2019). However, changes that can be encountered in the real-world situations are often of a much
bigger range (Kar et al., 2022). Thus, in this paper, we focus on average-case performance over a
realistic range of changes.

Robustness Benchmarks. Several robustness benchmarks have been developed. Hendrycks et al.
built the IMAGENET-C and -P benchmarks for checking NN model classification robustness against
common corruptions and perturbations on IMAGENET images (Hendrycks & Dietterich, 2019). They
have inspired other benchmarks for different corruption functions, datasets, and tasks (Kar et al., 2022;
Chattopadhyay et al., 2021; Kamann & Rother, 2021; Michaelis et al., 2019; Mintun et al., 2021; Sun
et al., 2022; Yi et al., 2021). However, these benchmarks generate images by applying corruption
functions with only five pre-selected values per parameter. IMAGENET-CCC (Press et al., 2023)
is the only prior work targeting a more continuous range of corruptions, by using 20 pre-selected
values per parameter. It does not check the coverage in terms of the effects on the images, however,
which we do using a visual quality assessment (VQA) metric (VIF). Further, this work focuses on
continuous changes over time for benchmarking test-time adaptation, which is very different from a
general robustness benchmark, and the dataset has not been released as of writing. In contrast to all
these previous works, our method randomly and uniformly samples parameter values to cover the
full range of visual change that a corruption function can achieve, which is modeled and assessed for
coverage using a VQA metric. Finally, our work compares robustness of NNs with humans.

Improving Robustness. Numerous methods for improving model robustness have been proposed,
e.g., data augmentation with corrupted data (Geirhos et al., 2020; Lopes et al., 2019; Madry et al.,
2018; Rusak et al., 2020), texture changes (Geirhos et al., 2019b; Hendrycks et al., 2021a), image
compositions (Yun et al., 2019; Zhang et al., 2018a) and corruption functions (Yin et al., 2019;
Hendrycks et al., 2020). All of these have different abilities to generalize to unseen data (Kar et al.,
2022). Although improving robustness is not the focus of this paper, we show that NN robustness
relative to humans can be improved through data augmentation and fine-tuning with images generated
by VCR-Bench (see Sec. 8.10).

8.3 OVERVIEW OF VCR-BENCH

Figure 6: Our proposed method VCR-Bench for benchmarking ML robustness with humans.

Our method for benchmarking VCR (VCR-Bench) is outlined in Fig. 6. Step I generates a vali-
dation set that covers the full continuous range of visual changes. This is achieved by uniformly
sampling from the entire domain of corruption function parameters. Step II obtains human robustness
performance data needed to compute our two newly-proposed human-aware evaluation metrics:
Human-Relative Model Robustness Index (HMRI) and Model Robustness Superiority Index (MRSI),
which quantify the extent to which a NN can replicate or surpasses human performance, respectively.
Since measuring human performance for every single image corruption function is expensive and

14



Under review as a conference paper at ICLR 2024

impractical, we propose a method to reduce the cost by generalizing existing human performance
data obtained for one corruption function to a class of corruption functions with similar visual effects.
For example, images transformed with Gaussian Blur and Glass Blur have very similar visual effects
on humans, unlike Motion Blur and Brightness. Thus, Gaussian Blur and Glass Blur, but not with
Motion Blur and Brightness, thus they belong to the same class of similar corruption functions, and
human performance data for one can be transferred to the other. Step III of VCR-Bench evaluates
the model using the validation dataset and our human-aware metrics. Then it retrains the model to
improve its robustness.

8.4 A VISUAL SUMMARY OF VCR METRICS AND THEIR ESTIMATION

Visually-Continuous Corruption Robustness (VCR)Rγ

of a model f(x) wrt. a property γ:

Rγ = Ev∼Uniform(0,1)(Px,x′∼P (x,x′|v)(γ))

Choice of property γ

VCR wrt. accuracyRa:

Ra = Ev∼Uniform(0,1)(av)

i.e., average accuracy over the full and
continuous range of change v

Prediction accuracy av
on transformed images x′ = TX(x, c)

with visual change v = ∆v(x, x
′):

av = Px,x′∼P (x,x′|v)(f(x
′) = f∗(x))

Defined
using

f(x′) = f∗(x)

VCR wrt. consistencyRp:

Rp = Ev∼Uniform(0,1)(pv)

i.e., average consistency over the full and
continuous range of change v

Prediction consistency pv
on transformed images x′ = TX(x, c)

with visual change v = ∆v(x, x
′):

pv = Px,x′∼P (x,x′|v)(f(x
′) = f(x))

Defined
using

f(x′) = f(x)

Figure 7: Summary of VCR definitions wrt. accuracy and consistency

Summary of VCR Definitions. Figure 7 gives a visual summary of the VCR metrics, starting with
the general definitionRγ at the top, and instantiating it for accuracy asRa and consistency asRp.
Each of them is simply the average accuracy or consistency, respectively, over the full and continuous
range of visual change.

VCR Estimation Algorithm. Algorithm 1 gives the pseudo-code of the VCR estimation procedure
described under “Testing VCR” in the main body of the paper. The algorithm takes a model f(x);
a transformation TX with its parameter domain C; an input dataset; the size N of the dataset
of transformed images to be generated; the visual change resolution M , over which the model
performance will be estimated; and the minimum size L of a bin to be used to estimate the performance
for that bin. The input dataset consist of images xk ∼ PX for estimating VCR wrt. consistency, or
images and their labels for estimating VCR wrt. accuracy. We use M = 40 in our experiments, which
is a standard choice for calculating average precision in object detection; for example, it is used in
the current version of the KITTI benchmark Geiger et al. (2013).

Our algorithm first initializes two histogram arrays to keep the counts of the tested data points and
their consistent or accurate predictions, respectively, and an array to keep the performance data, with
each of the three arrays having size M . In each iteration, the first for-loop samples an image x and
transformation parameter c, and produces a transformed image x′. It then computes the visual change
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Algorithm 1: VCR Estimation

Input:



model f(x)
transformation TX ,with parameter domain C

input dataset {xk} for consistency [or {(xk, yk)} for accuracy]
generated test set size N

visual change resolution M

minimum number of points per bin L

Output: estimated VCR R̂p [or R̂a]

Initialize histograms countj and correctj with empty counts, for all j ∈ [0..M − 1]
Initialize performance data array Pj with −1, denoting missing data points for j, for all
j ∈ [0..M − 1]

for i← 0 to N − 1 do
draw random x from {xk} [or (x, y) from {(xk, yk)}]
c ∼ Uniform(C)
x′ ← TX(x, c)
v ← ∆v(x, x

′)
j ← ⌊v(M − 1)⌋
countj ← countj + 1
if f(x′) = f(x) [or f(x′) = y] then

correctj ← correctj + 1

for j ← 0 to M − 1 do
if countj ≥ L then

Pj ← correctj
countj

s← FitMonotonicSpline(P )

R̂ ←
∫ 1

0
s(v)dv

return R̂

value v and records the result of testing f(x′) in the histograms. The second for-loop computes the
performance data as a relative frequency of correct predictions. A monotonic smoothing spline is fit
into the performance data, and the VCR is computed as the area under the spline.

Note that this algorithm samples c uniformly, which will lead to a varying number of performance
samples per point in the performance data array P . As already discussed, the number of performance
samples impacts the performance estimate uncertainty at this point, and in an extreme case some of
the ∆v bins in Pi may be even empty (i.e., have value -1). These missing points are mitigated by
fitting the spline over the entire ∆v range, while anchoring it with known values for the first and last
bins. In particular, the accuracy spline sa always starts at the left with the accuracy for clean images,
and the consistency spline sp starts with 1 for models (assuming deterministic NNs).

A possible approach to obtain a sample set with a more uniform coverage of ∆v would be to (1)
fit a strictly monotonic spline into (c,∆v) values obtained from c ∼ Uniform(C) as in Alg. 1, (2)
take a set of samples ∆v ∼ Uniform(0, 1), (3) map the latter to a new sample from C using the
inverted spline, and repeat these steps now using the new sample from C. These steps would need to
be run iteratively until a sufficient coverage is obtained. Such an algorithm would be computationally
expensive, however.

Auxiliary VCR metrics to compute HMRI and MSRI. In order to compare model and human
performance, VCR wrt. consistency or accuracy is estimated using Alg. 1 for model and human
performance data, as illustrated by the yellow (Ah) and blue (Am) areas Fig. 8, respectively, where
both blue and orange area also include the green area representing their overlap. Additionally, the
VCR lead of humans over a model Ah>m, the girded area in Fig. 8, and the VCR lead of a model
over humans Am>h, the striped area in Fig. 8, are estimated. The definitions of the four auxiliary
metrics are summarized in Tab. 2
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Figure 8: Visualization of auxiliary metrics for model vs. human performance

Auxiliary metric (cf. Fig. 8) Definition
VCR of humans wrt. a property γ,
estimated as an area under performance curve Ah

γ

R̂h
γ = Ah

γ =
∫ 1

0
shγ(v)dv

VCR of a model f(x) wrt. a property γ,
estimated as an area under performance curve Am

γ

R̂m
γ = Am

γ =
∫ 1

0
smγ (v)dv

VCR lead of humans over a model f(x) wrt. a
property γ,
estimated as a difference area Ah>m

γ

R̂h>m
γ = Ah>m

γ

=
∫ 1

0
max(0, shγ(v)− smγ (v))dv

VCR lead of a model f(x) over humans wrt. a
property γ,
estimated as a difference area Am>h

γ

R̂m>h
γ = Am>h

γ

=
∫ 1

0
max(0, smγ (v)− shγ(v))dv

Table 2: Summary of auxiliary metrics for defining HMRI and MRSI

HMRI and MSRI Definitions. Finally, the auxiliary metrics are used to define: (i) Human-Relative
Model Robustness Index (HMRI), which characterizes the human lead in VCR over the model; and
(ii) Model Robustness Superiority Index (MRSI), which characterizes the model lead in VCR over
humans. Their definitions are summarized in Tab. 3.

Human-model comparison metric Definition

Human-Relative Model Robustness Index
(HMRI)
of a model f(x) wrt. a property γ

HMRIγ =
Ah

γ−Ah>m
γ

Ah
γ

= 1− Ah>m
γ

Ah
γ

Model Robustness Superiority Index (MRSI)
of a model f(x) wrt. a property γ

MRSIγ =
Am>h

γ

Am
γ

Table 3: HMRI and MRSI definitions (using auxiliary metrics from Tab. 2)
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8.5 VISUAL CHANGE IN MORE DETAILS

Background: Image Quality Assessment (IQA). IQA metrics serve as quantitative measures
of human objective image quality (Wang et al., 2004). By comparing the original image and the
transformed image, IQA metrics automatically estimate the perceived image quality by evaluating
the perceptual “distance” between the two images (Sheikh & Bovik, 2006). This “distance” differs
from simple pixel distance and varies depending on the specific IQA metric used.

One such metric is VIF (Visual Information Fidelity) (Sheikh & Bovik, 2006), which evaluates the
fidelity of information by analyzing the statistical properties of natural scenes within the images. VIF
returns a value between 0 and 1 if the changes degrade perceived image quality, with 1 indicating the
perfect quality compared to the original image; and it returns a value > 1 if the changes enhances
image quality (Sheikh & Bovik, 2006). More precisely, VIF defines the visual quality of a distorted
image as a ratio of the amount of information a human can extract from the distorted image versus
the original reference image. The method models statistically (i) images in the wavelet domain with
coefficients drawn from a Gaussian scale mixture, (ii) distortions as attenuation and additive Gaussian
noise in the wavelet domain, and (iii) the human visual system (HVS) as additive white Gaussian
noise in each sub-band of the wavelet decomposition. The amount of information that a human can
extract from the distorted image is measured as the mutual information between the distorted image
and the output of the HVS model for that image. Similarly, the amount of information that a human
can extract from the reference image is measured as the mutual information between the reference
image and the output of the HVS model for that image. Empirical studies have shown that VIF aligns
closely with human opinions when compared to other IQA metrics (Sheikh et al., 2006).

We choose VIF, since it is well-established, computationally efficient, applicable to our transfor-
mations, and still performing competitively compared to newer metrics. More recent research has
explored the use of feature spaces computed by deep NNs as a basis to define IQA metrics (e.g.,
LPIPS (Zhang et al., 2018b) and DISTS (Ding et al., 2022)). Even though these metrics may be
applicable to a wider class of transformations than VIF, including those that affect both structure
and textures, their scope may depend on the training datasets in potentially unpredictable ways.
On the other hand, the scope of VIF is well-defined based on the metric’s mathematical definition.
In particular, VIF is suitable for evaluating corruption functions that can be locally described as
a combination of signal attenuation and additive Gaussian noise in the sub-bands of the wavelet
domain (Sheikh & Bovik, 2006). The transformations in our experiments are local corruptions that
are well within this scope. Moreover, VIF performs still competitively when compared to even the
newer DNN-based metrics across multiple datasets (e.g., see Table 1 in (Ding et al., 2022)). However,
future work should explore VCR using other IQA metrics.

Visual Change (∆v). The metric (∆v) defined using the IQA metric VIF, as shown in Def. 3, is
proposed by Hu et al. (Hu et al., 2022) to quantitatively measure the amount of visual changes in the
images perceived by human observers.

Definition 3. Let an image x, an applicable corruption function TX with a parameter domain C and
a parameter c ∈ C, s.t. x′ = TX(x, c) be given. Visual change ∆v(x, x

′) is a function defined as
follows: {

0 If VIF(x, x′) > 1

1−VIF(x, x′) Otherwise

∆v returns a value between 0 and 1, with 0 indicating no degradation to visual quality and 1 indicating
all visual information in the original image has been changed. The first case of ∆v corresponds to
changes that enhance the visual quality (when VIF(x, x′) > 1), indicating changes do not impact
human recognition of the images negatively, hence ∆v = 0. The other case deals with visible changes
that degrade visual quality. Since VIF returns 1 for perfect quality compared to the original image,
the degradation is one minus the image quality score.

Example: In Fig. 9, the visual change of the original image Fig. 9a is 0, since no changes are applied;
and Fig. 9b has minimal frost added, which caused minimal change in visual quality so ∆v = 0.005;
and Fig. 9c and Fig. 9d have more frost and thus higher ∆v values 0.71 and 0.96, respectively.
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(a) original image,
∆v = 0

(b) ∆v = 0.005 (c) ∆v = 0.71 (d) ∆v = 0.96

Figure 9: Examples of images from Imagenet (Russakovsky et al., 2015) with different levels of added frost.

8.6 CORRUPTION FUNCTIONS INCLUDED IN OUR STUDY

The 14 image corruption functions discussed in the paper are shown in Fig. 10. All corruption
functions are demonstrated with the same original image.

no
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(a) Impulse Noise
(IMAGENET-C)

(b) Shot Noise
(IMAGENET-C)

(c) Gaussian Noise
(IMAGENET-C)

(d) Uniform Noise
(Geirhos et al. (2019a))

bl
ur

(e) Blur
(Albumentation)

(f) Median Blur
(Albumentation)

(g) Glass Blur
(IMAGENET-C)

(h) Gaussian Blur
(IMAGENET-C)

(i) Defocus Blur
(IMAGENET-C)
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(j) Motion Blur
(IMAGENET-C)

(k) Hue Saturation Value
(Albumentation)

(l) Color Jitter
(Albumentation)

(m) Brightness
(IMAGENET-C)

(n) Frost
(IMAGENET-C)

Figure 10: Image corruption functions discussed in the paper grouped by classes of similar corruption
functions.

8.7 COMPARISON OF ∆v DISTRIBUTION

In Fig. 11 below we compare the ∆v distribution of validation images from IMAGENET-C and those
generated by our benchmark. We include all 9 corruption functions shared between IMAGENET-C
and our benchmark. Note that all of our images are generated by sampling uniformly in the parameter
domain, while IMAGENET-C images are generated with 5 pre-selected parameter values. We can
observe two major differences in the distributions. First we can see that because of difference in
the parameter values used, the ∆v distributions between IMAGENET-C and our benchmark peak at
different values. For example, for Brightness in Fig. 11a and Fig. 11b, most IMAGENET-C images
have ∆v values between 0.4 to 0.8, while most VCR-Bench images are between 0.6 and 0.9; a
similar observation holds for Defocus Blur and Gaussian Blur. Second, we notice that IMAGENET-C
images cannot cover all ∆v values. Specifically, Fig. 11c for Defocus Blur shows that IMAGENET-C
validation set does not contain images with ∆v greater than 0.8 and less than 0.2. The same can be
observed for all corruption functions shown in Fig. 11. These two differences indicate that, when
considering the full range of visual changes that a corruption function can incur, using IMAGENET-C
can lead to biased results.
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Brightness Defocus Blur Gaussian Noise

(a) IMAGENET-C (b) VCR-Bench (c) IMAGENET-C (d) VCR-Bench (e) IMAGENET-C (f) VCR-Bench

Glass Blur Impulse Noise Shot Noise

(g) IMAGENET-C (h) VCR-Bench (i) IMAGENET-C (j) VCR-Bench (k) IMAGENET-C (l) VCR-Bench

Frost Gaussian Blur Motion Blur

(m) IMAGENET-C (n) VCR-Bench (o) IMAGENET-C (p) VCR-Bench (q) IMAGENET-C (r) VCR-Bench

Figure 11: Comparison of ∆v distribution between IMAGENET-C and VCR-Bench. The figures are histograms,
where x-axis is ∆v , y-axis is image count.

8.8 MODELS INCLUDED IN OUR STUDY

Table 4 summarizes the models included in our study. We have selected a wide range of architectures
(different CNN and transformer architectures) and training methods (supervised, adversarial, semi-
weakly, and self-supervised), including dinov2 giant (Oquab et al., 2023), which is on the top of the
IMAGENET-C leader board as of writing.

Model Architecture Training Method Source
NoisyMix ResNet-50 Supervised (Erichson et al., 2022)
NoisyMix new ResNet-50 Supervised (Erichson et al., 2022)
SIN ResNet-50 Supervised (Geirhos et al., 2019b)
SIN IN ResNet-50 Supervised (Geirhos et al., 2019b)
SIN IN IN ResNet-50 Supervised (Geirhos et al., 2019b)
HMany ResNet-50 Supervised (Hendrycks et al., 2021a)
HAugMix ResNet-50 Supervised (Hendrycks et al., 2020)
Standard R50 ResNet-50 Supervised (He et al., 2016)
AlexNet AlexNet Supervised (Krizhevsky et al., 2012)
Tian DeiT-S DeiT Small Supervised (Tian et al., 2022)
Tian DeiT-B DeiT Base Supervised (Tian et al., 2022)
Do 50 2 Linf WideResNet-50-2 Adversarial (Salman et al., 2020)
Liu Swin-L Swin-L Adversarial (Liu et al., 2023)
Liu ConvNeXt-L ConvNeXt-L Adversarial (Singh et al., 2023)
Singh ConvNeXt-L-ConvStem ConvNeXt-L + ConvStem Adversarial (Singh et al., 2023)
swsl resnet18 ResNet-18 Semi-weakly sup. (Yalniz et al., 2019)
swsl resnext101 32x16d ResNext-101 Semi-weakly sup. (Yalniz et al., 2019)
clip Clip Supervised (Radford et al., 2021)
dinov2 giant ViT Self-supervised (Oquab et al., 2023)

Table 4: Summary of the models included in our study

8.9 EXTRA EVALUATION RESULTS

8.9.1 PREDICTION SIMILARITY OF VISUALLY SIMILAR CORRUPTION FUNCTIONS

In the paper, to check that human robustness data is transferable between two similar corruption
functions, we checked whether the 83% confidence interval of the spine curves sha and shp for similar
corruption functions overlap. The results for sha in Fig. 5. We also include results for shp in Fig. 12.
We can observe that, similar to sha , shp for similar corruption functions are similar, thus human data is
transferable.
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(a) Blur corruption functions (b) Noise corruption functions (c) Dissimilar corruption functions

Figure 12: Comparing human performance spline curves shp for similar and dissimilar corruption functions.
For each curve, the coloured region around the curve is the 83% confidence interval used for comparison of
similarity (Koenker et al., 1994).

8.9.2 CO2 EMISSION

CO2 Emission is calculated as CO2 emissions (kg) = (Power consumption in
kilowatts) x (Daily usage time in hours) x (Emissions factor in
kgCO2/kWh)

Our carbon intensity is around 25 g/kWh. During benchmark dataset generation, there is no GPU
usage, and the CPU usage is 200 W. Each corruption function takes around 1.5 hour to generate a
dataset with 50,000 images. During evaluation, the CPU power usage is around 160 W; and GPU
power usage ranges between 50-170 W depending on the model. Each evaluation takes 30-60 minutes,
depending on the corruption function type. Let’s assume the power usage of other components is
50 W in total. If we assume the total power usage is ((200+50)× 1.5+ (170+160+50))/1,000 =
0.755 kWh for each experiment, the CO2 emission is 0.755 × 25 = 18.875 g for each experiment
(corruption function type).

8.10 TRAINING WITH DATA AUGMENTATION

We show a small retraining example for demonstrating the usefulness of our benchmark in improving
VCR. The retraining process was carried out by fine-tuning all parameters of the image classification
model. The training dataset was generated from a subset sampled from the IMAGENET (Russakovsky
et al., 2015) training set with a size of around 12,000. For optimization, we leveraged the most basic
stochastic gradient descent with learning rate=0.001 and momentum=0.9. We utilized Cross-Entropy
Loss as the loss function, given its effectiveness in classification tasks. The number of epochs depends
on the model. 5 epochs is usually enough to show some progress. The training details can also be
found in the codebase: https://anonymous.4open.science/r/vcr.

The state-of-the-art NNs are already optimized for the corruption functions included in IMAGENET-C;
however, as shown in Tbl. 1, for certain corruption functions, such as Motion Blur, Frost and Glass
Blur, IMAGENET-C images do not cover a wide range of visual changes, leaving room for robustness
improvement. In Tbl. 5 and Tbl. 6, we demonstrate results for NNs SIN (Geirhos et al., 2019b)
and Standard R50 (Croce et al., 2021) for these corruption functions, the rest can be found in the
codebase.

Before Retraining After Retraining
Accuracy Prediction similarity Accuracy Prediction similaritycorruption function

R̂a HMRI MRSI R̂p HMRI MRSI R̂a HMRI MRSI R̂p HMRI MRSI
Median Blur 0.532 0.635 0.000 0.573 0.673 0.000 0.694 0.828 0.003 0.728 0.854 0.001

Frost 0.429 0.521 0.011 0.473 0.572 0.012 0.575 0.690 0.025 0.678 0.804 0.031
Glass Blur 0.468 0.569 0.003 0.502 0.603 0.003 0.647 0.770 0.024 0.744 0.866 0.034

Note: all numbers are rounded.

Table 5: VCR comparison before and after retraining for Standard R50 (Croce et al., 2021). Red
indicates improvement.
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Before Retraining After Retraining
Accuracy Prediction similarity Accuracy Prediction similaritycorruption function

R̂a HMRI MRSI R̂p HMRI MRSI R̂a HMRI MRSI R̂p HMRI MRSI
Median Blur 0.522 0.624 0.00 0.605 0.710 0.00 0.650 0.774 0.004 0.729 0.852 0.004

Frost 0.423 0.512 0.015 0.513 0.618 0.016 0.517 0.625 0.016 0.647 0.768 0.031
Glass Blur 0.334 0.407 0.000 0.397 0.478 0.000 0.572 0.687 0.016 0.684 0.809 0.018

Note: all numbers are rounded.

Table 6: VCR comparison before and after retraining for SIN (Geirhos et al., 2019b). Red indicates
improvement.

8.10.1 VCR EVALUATION

In the main body of the paper, we have compared VCR robustness results with IMAGENET-C on
Gaussian Noise, and we presented the assessing VCR in relation to human performance with our
human-aware metrics HMRI and MRSI for Gaussian Noise and Shot Noise. Below, we first include
the comparison between VCR and IMAGENET-C for all IMAGENET-C 9 corruption functions we
studied. Then, include detailed evaluation results with our human-aware metrics for all 12 other
corruption functions we studied.
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(a) IMAGENET-C Gaussian Noise Accuracy (b) Gaussian Noise R̂a (c) Gaussian Noise R̂p

Figure 13: Comparison between IMAGENET-C and VCR with Gaussian Noise.

(a) IMAGENET-C Glass Blur Accuracy (b) Glass Blur R̂a (c) Glass Blur R̂p

Figure 14: Comparison between IMAGENET-C and VCR with Glass Blur.

(a) IMAGENET-C Brightness Accuracy (b) Brightness R̂a (c) Brightness R̂p

Figure 15: Comparison between IMAGENET-C and VCR with Brightness.

(a) IMAGENET-C Defocus Blur Accuracy (b) Defocus Blur R̂a (c) Defocus Blur R̂p

Figure 16: Comparison between IMAGENET-C and VCR with Defocus Blur.
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(a) IMAGENET-C Gaussian Blur Accuracy (b) Gaussian Blur R̂a (c) Gaussian Blur R̂p

Figure 17: Comparison between IMAGENET-C and VCR with Gaussian Blur.

(a) IMAGENET-C Shot Noise Accuracy (b) Shot Noise R̂a (c) Shot Noise R̂p

Figure 18: Comparison between IMAGENET-C and VCR with Shot Noise.

(a) IMAGENET-C Motion Blur Accuracy (b) Motion Blur R̂a (c) Motion Blur R̂p

Figure 19: Comparison between IMAGENET-C and VCR with Motion Blur.

(a) IMAGENET-C Frost Accuracy (b) Frost R̂a (c) Frost R̂p

Figure 20: Comparison between IMAGENET-C and VCR with Frost.
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(a) IMAGENET-C Impulse Noise Accuracy (b) Impulse Noise R̂a (c) Impulse Noise R̂p

Figure 21: Comparison between IMAGENET-C and VCR with Impulse Noise.

(a) HMRI for Ra (b) MRSI for Ra (c) Estimated curves sa

(d) HMRI for Rp (e) MRSI for Rp (f) Estimated curves sp

Figure 22: VCR evaluation results for Impulse Noise.

(a) HMRI for Ra (b) MRSI for Ra (c) Estimated curves sa

(d) HMRI for Rp (e) MRSI for Rp (f) Estimated curves sp

Figure 23: VCR evaluation results for Shot Noise.
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(a) HMRI for Ra (b) MRSI for Ra (c) Estimated curves sa

(d) HMRI for Rp (e) MRSI for Rp (f) Estimated curves sp

Figure 24: VCR evaluation results for Blur.

(a) HMRI for Ra (b) MRSI for Ra (c) Estimated curves sa

(d) HMRI for Rp (e) MRSI for Rp (f) Estimated curves sp

Figure 25: VCR evaluation results for Median Blur.
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Figure 26: VCR evaluation results for Glass Blur.

(a) HMRI for Ra (b) MRSI for Ra (c) Estimated curves sa

(d) HMRI for Rp (e) MRSI for Rp (f) Estimated curves sp

Figure 27: VCR evaluation results for Gaussian Blur.
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Figure 28: VCR evaluation results for Defocus Blur.

(a) HMRI for Ra (b) MRSI for Ra (c) Estimated curves sa

(d) HMRI for Rp (e) MRSI for Rp (f) Estimated curves sp

Figure 29: VCR evaluation results for Motion Blur.
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Figure 30: VCR evaluation results for Hue Saturation Value.

(a) HMRI for Ra (b) MRSI for Ra (c) Estimated curves sa

(d) HMRI for Rp (e) MRSI for Rp (f) Estimated curves sp

Figure 31: VCR evaluation results for Color Jitter.
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Figure 32: VCR evaluation results for Brightness.

(a) HMRI for Ra (b) MRSI for Ra (c) Estimated curves sa

(d) HMRI for Rp (e) MRSI for Rp (f) Estimated curves sp

Figure 33: VCR evaluation results for Frost.
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