
8th ICML Workshop on Automated Machine Learning (2021)

Incorporating domain knowledge into neural-guided search
via in situ priors and constraints

Anonymous authors

Abstract

Many AutoML problems involve optimizing discrete objects under a black-box reward.
Neural-guided search provides a flexible means of searching these combinatorial spaces using
an autoregressive recurrent neural network. A major benefit of this approach is that builds
up objects sequentially—this provides an opportunity to incorporate domain knowledge
into the search by directly modifying the logits emitted during sampling. In this work, we
formalize a framework for incorporating such in situ priors and constraints into neural-
guided search, and provide sufficient conditions for enforcing constraints. We integrate
several priors and constraints from existing works into this framework, propose several new
ones, and demonstrate their efficacy in informing the task of symbolic regression.

1. Introduction

“Any practical algorithm must avoid exploring all but a tiny fraction
of the state space.”

— Artificial Intelligence: A Modern Approach
Russell and Norvig (2002)

Many problems in automated machine learning (AutoML) fall into the category of sym-
bolic optimization (SO). We consider the following discrete optimization problem:

arg max
n∈N,τ1,...,τn

[R(τ1, . . . , τn)] with τi ∈ L = {α, β, . . . , ζ}

In this formulation, τ = [τ1, . . . , τn] is a discrete object represented by a variable-length se-
quence of discrete symbols or “tokens” τi selected from a library L, and R is a black-box (i.e.
non-differentiable) reward function. A popular SO problem is neural architecture search

RNN

A
pp

ly
 c

on
st

ra
in

ts

softmax
Sample

A
pp

ly
 p

rio
rs

⌧i

⌧i�1

Before applying constraints After applying constraints

Figure 1: Overview: Pruning the search tree in neural-
guided search via in situ constraints.

(NAS), in which tokens represent ar-
chitectural hyperparameters, the se-
quence represents a specification of
a neural network architecture, and
the reward is the validation accu-
racy when instantiating the spec-
ified network and training it on
some downstream task (Zoph and
Le, 2016). Other examples include
program synthesis (Abolafia et al.,
2018), symbolic regression (Petersen
et al., 2021), de novo molecular de-
sign (Popova et al., 2019), auto-

©2021 Anonymous authors.

Anonymous authors

mated theorem proving (Bibel, 2013), and many traditional combinatorial optimization
problems (e.g. traveling salesman problem) (Bello et al., 2016).

For many SO problems, the object is not traditionally represented as a sequence; how-
ever, these can be reduced to SO by establishing a sequential representation of the object.
For example, small molecules can be represented by SMILES strings (Weininger, 1988), and
mathematical expressions can be represented by their pre-order traversals.

SO is challenging due to its combinatorial nature, as the size of the search space grows
exponentially with the length of the sequence. Because of this, it is commonly solved using
evolutionary approaches (e.g. genetic programming), which are easily scalable and broadly
applicable (Banzhaf et al., 1998). More recently, neural-guided search has proven to be
a successful alternative (Zoph and Le, 2016; Bello et al., 2016). In this framework, an
autoregressive recurrent neural network (RNN) generates objects sequentially. Specifically,
the RNN emits a vector of logits ` that defines a categorical distribution over tokens in the
library L, conditioned on the previously sampled tokens via the RNN state. A token is then
sampled: τi ∼ p(τi|τ1:(i−1); θ) = Categorical(Softmax(`)), where θ are the RNN parameters.
The RNN is trained using reinforcement learning or other heuristic methods (Abolafia et al.,
2018) aimed at increasing the likelihood of high-reward objects.

A key methodological aspect of autoregressive approaches is that they generate objects
sequentially, i.e. one token at a time. In contrast, evolutionary approaches generate new
objects by making edits (via mutations and crossovers) to existing objects. A benefit of
sequential object generation is that it affords an opportunity to incorporate prior knowledge
into the search phase during each step of the generative process. More specifically, one can
incorporate knowledge in situ (i.e. during the autoregressive generative process) by directly
modifying the emitted logits ` before sampling each token. In contrast, non-sequential
approaches resort to post hoc methods such as rejection sampling, which is inefficient and
can lead to intractable likelihoods.

As a simple example, consider expert knowledge that the current token should not be
the same as the previous token, i.e. we want to impose the constraint τi 6= τi−1. This
particular constraint can be incorporated by simply adding negative infinity to the logit
corresponding to τi−1 each step of autoregressive sampling.

While several individual works incorporate priors and/or constraints into their search,
to our knowledge there is no existing work that formalizes this approach. Thus, we make
the following contributions: (1) defining a simple yet flexible framework for imposing in
situ priors and constraints for autoregressive neural-guided search, (2) formalizing sufficient
conditions for imposing in situ constraints, (3) providing a centralized list of previously
proposed priors and constraints, (4) proposing several new priors and constraints, and (5)
empirically demonstrate their efficacy in the task of symbolic regression.

Our overarching goal is to provide a set of priors and constraints that is sufficiently broad
to spark new ideas and encourage readers to design their own novel priors and constraints
suited to their particular AutoML tasks.

2. Related Work

In many areas of AI, the idea of pruning, or eliminating possibilities from consideration
without having to examine them, is critically important (Russell and Norvig, 2002). In

2

Incorporating domain knowledge into neural-guided search

adversarial search for games, where branching factors are high and exploring all possible
moves is infeasible, alpha-beta pruning (Edwards and Hart, 1961) can be used to eliminate
branches of the game tree that have no effect on the final evaluation and would be otherwise
futilely evaluated by the standard minimax algorithm. Other approaches, like forward
pruning (Greenblatt et al., 1967) or futility pruning (Heinz, 1998), reduce the space by
eliminating moves that appear to be poor moves based on heuristic evaluation functions.
The recent achievements in the game of Go (Silver et al., 2016) are also largely attributed to
using policy and value networks (trained over millions of games) to guide Monte Carlo Tree
Search (MCTS) rollouts, thereby avoiding exploring paths that would result in sub-optimal
moves while focusing computational resources in exploring the most promising paths.

In the field of SO, Popova et al. (2019) use valency constraints to follow rules of organic
chemistry to optimize molecular structures. Li et al. (2019) use a neural-guided approach
to identify asymptotic constraints of leading polynomial powers and use those constraints
to guide MCTS for the problem of symbolic regression. Kim et al. (2021b) employ several
expression-based constraints to inform the search for symbolic control policies in reinforce-
ment learning.

3. A Framework for in situ Priors and Constraints

In this work, we define a prior as a logit adjustment vector, denoted `◦, that is added to the
emitted RNN logits ` during autoregressive sampling: τi ∼ Categorical(Softmax(` + `◦)).
We define constraints as a special case of “hard” priors in which logit adjustments are
either zero (no effect) or negative infinity (the token cannot be selected), denoted `�. Thus,
priors bias the search but do not reduce the size of the search space, whereas constraints
prune (i.e. eliminate possible sequences of) the search space. Typically, multiple priors and
constraints can be composed simply by summing their logit adjustments, yielding the final

distribution for the ith token: τi ∼ Categorical(Softmax(`+
∑

j `
(j)
◦ +

∑
k `

(k)
�)), where `

(j)
◦

is the jth prior and `
(k)
� is the kth constraint.

Tables 1 and 2 provide succinct summaries of several broadly applicable classes of con-
straints and priors, respectively. In the sections below, we provide details for three novel
constraints, two additional constraints which appear in existing works but we generalize
in this work, and two novel priors. Detailed descriptions of other existing constraints and
priors are provided in the Appendix.

3.1 Example classes of in situ constraints

Lexicographical constraint. Many SO problem exhibit large semantic equivalence classes,
or sets of objects whose semantics are identical, e.g. x+ y and y + x in mathematics, CH4

and H4C in chemistry, or A ∧ B and B ∧ A in logical reasoning. To reduce the number of
semantically equivalent sequences generated for tree-based objects, we can assign a prede-
fined, arbitrary order for the operands of commutative operators (e.g. + or ×). To do so, we
posit a lexicographical ordering of the tokens, defined by an injective function l(τi), where
l : L → N. Given a commutative operator token of arity n, the lexicographical constraint
is enforced by requiring the lexicographical value of a child token to be no less than that
of the previous child token, i.e. children are lexicographically sorted. Given n different

3

Anonymous authors

child tokens, there are n! possible ways to place them as children of an n-ary commutative
operator. This constraint reduces the number of possible orderings to one. Further, since
this reduction propagates through the subtrees, it reduces the search space exponentially
with the number of commutative tokens. Note that this constraint reduces the size of the
search space without reducing the number of semantically unique objects in the search
space. Example. Under the lexicographical constraint applied to the commutative operator
+, if l(cos) > l(sin), then the expression cos(�) + sin(�) (in this order) is constrained but
sin(�) + cos(�) is allowed.

Subtree length constraint. Similar to the lexicographical constraint, the subtree
length constraint reduces the number of semantically repeated sequences generated. Here
it does so by limiting the length of a subtree by the length of the preceding sibling subtree.
When sampling a tree-based object by its pre-order traversal, a given subtree completes
before the next sibling subtree begins. Thus, we can implement constrain each subtree
to have a maximum length given by preceding sibling subtree length. Example. Under
the subtree length constraint applied to the commutative binary operator +, consider the
partial sequence [+, sin, x] (corresponding to the expression sin(x) + �). The first subtree
(sin(x)) has length 2, so the next subtree (�) length is constrained to be at most 2.

Type and unit constraints. In NAS, different positions along the sequence have
different types, (e.g. activation function, number of neurons), each of which has its own
set of allowable tokens. A type constraint ensures that all positions satisfy the specified
types. More generally, as in the case of mathematical expressions, tokens may have specific
input/output types or units. For example, the × token has no requirements on input units,
but the output units must be equal to the product of the input units. Example. Given the
partial sequence [×, x] (corresponding to the expression x ·�), where x has units kg and the
final output has units kg2, tokens whose output types cannot be kg are constrained (e.g.
trigonometric functions, input variables with units other than kg).

Relational constraint. A broad class of constraints for tree-based objects involves
preventing one arbitrary set of tokens (called “targets”) from having a particular structural
relationship with another arbitrary set of tokens (called “effectors”). Common relationships
include descendants, children, and siblings. This type of constraint is useful in expres-
sion search spaces for preventing nested trigonometric functions, inverse unary operators
cancelling out (e.g. log(exp(x))), or redundantly adding together two constants. A few
instances of relational constraints are used in Petersen et al. (2021); here, we generalize
them into a single constraint class. Example. Under the relational constraint “[trigono-
metric functions] cannot be the [descendant] of [trigonometric functions],” given the partial
sequence [sin,+, x,×, x] (corresponding to the expression sin(x+ x ·�)), all trigonometric
tokens are constrained because they are a descendant of sin.

Blacklist constraint. For all object types, one can constrain a specified set of “black-
listed” sequences (or partial sequences) from being sampled. This may be useful to prune
the search space of previously known sub-optimal solutions. Example. Liang et al. (2018)
implement a special case of this constraint called “systematic exploration” in which the set
of blacklisted sequences grows over time, and is defined by the history of sequences sampled
so far. Under this constraint, the same sequence will never be sampled more than once.

4

Incorporating domain knowledge into neural-guided search

Table 1: Descriptions of various constraints. Objects (Obj.) refers to the types of objects to which
the constraint applies (i.e. any, tree-based, molecule). References (Ref.) are [1] Petersen et al.
(2021), [2] Kim et al. (2021b), [3] Liang et al. (2018), and [4] Popova et al. (2019). ?: The reference
introduces a special case, which we generalize in this work.

Constraint Description Obj. Ref.
Length “Sequences must fall between [min] and [max] length.” Any [1]

Relational “[Targets] cannot be the [relationship] of [effectors].” Tree [1]?

Repeat “[Target tokens] must appear between [min] and [max] times.” Any [1, 2]
Blacklist “Sequences already in [buffer] are constrained.” Any [3]?

Valency “Atoms must adhere to valency rules.” Mol. [4]
Lexicographical “Children of [target token] must be lexicographically sorted.” Tree Here
Subtree length “Subtrees of [target token] must be sorted by length.” Tree Here
Type & Unit “All tokens must follow specified types and/or units.” Any Here

3.2 Sufficient conditions for imposing in situ constraints

Here we describe sufficient conditions for the ability to enforce a particular in situ constraint.
Let Ci be the desired set of constrained/disallowed tokens before sampling τi. Autoregressive
sampling can enforce any constraint that can be expressed as a function f(·) of the partial
sequence τ1:i−1, the library of tokens L, and any constraint parameters Ω (e.g. [min] and
[max] for the length constraint), provided that Ci does not include all tokens in L. That
is, if there exists an f(·) such that Ci = f(τ1:i−1,L,Ω) and Ci (L, then autoregressive
sampling can enforce the constraint induced by f(·). Further, k independent constraints

C(1)i , . . . , C(k)i can be combined if and only if C(1)i ∪ · · · ∪ C
(k)
i (L. Notably, these conditions

preclude constraints based on the semantics or knowledge of the complete sequence τ . For
example, one cannot constrain the search to all expressions with a particular range, or to
molecules with a specific melting point. We describe several examples under this formalism:

Lexicographical : Ci = {v : l(v) < l(τleft), v ∈ L}, where τleft is the left sibling of τi. The
constraint parameters are the lexicographical values: Ω = {l(v) : v ∈ L}.

Subtree length: Set N ← i + L(τ1:i−1) and apply the length constraint with [min] = 1
and [max] = N , where L(τ1:i−1) is the size of the subtree rooted at the left sibling of τi.

Blacklist : Ci = {v : (τ1:i−1‖v) ∈ T , v ∈ L}, where T is the set of blacklisted sequences
and ‖ represents concatenation. In this case, Ω = T .

3.3 Example classes of in situ priors

Token-specific priors. Token-specific priors allow users to differentially control the rela-
tive prior probability of particular tokens. Specifically, the user selects a vector λ of length
|L| that specifies the desired relative prior probability of each token. The token-specific
prior adds logits `◦ such that the resulting probability vector is multiplied element-wise
by λ and renormalized to sum to unity. To compute this prior, we seek `◦ such that
Softmax(`+ `◦) = (λ�Softmax(`))/(λ ·Softmax(`)), where � represents element-wise mul-
tiplication and · represents the dot product. The solution is simply `◦ = log λ (defined up
to an additive constant); interestingly, this does not depend on `.

Positional priors. For sequence-based objects, it may be desirable to apply different
token-specific priors at different positions along the sequence. In this case, separate token-

5

Anonymous authors

Table 2: Descriptions of various priors. References (Ref.) are [5] Landajuela et al. (2021) and [6]
Kim et al. (2021a).

Prior Description Obj. Ref.
Soft length “Sequences are discouraged to have length far from [length].” Tree [5]

Uniform arity “The prior probability over arities is uniform.” Tree [5]
Language model “Probabilities are informed by language model outputs.” Any [6]
Token-specific “Tokens have a relative fold-increase prior probability of [λ].” Any Here

Positional “Tokens at position [i] follow a token-specific prior.” Seq. Here

specific priors can be applied at particular positions along the sequence. For example,
in NAS, given a known, high-performing reference architecture, one can guide the search
toward similar architectures by applying positional priors that bias each position toward
the corresponding value in the reference architecture.

4. Experiments and Discussion

Table 3: Average recovery rate and steps to solve across
the 12 Nguyen benchmarks (n = 20).

DSR Random search
Experiment Recovery Steps Recovery Steps
No `◦, `� 57.5% 1069.0 14.2% 1785.9
Lexicographical 71.7% 801.9 22.5% 1643.8
Subtree length 66.3% 871.4 20.8% 1693.6
Trigonometric 83.3% 519.6 21.3% 1700.7
Inverse 57.9% 1054.6 13.3% 1792.3
Soft length 75.4% 701.2 46.7% 1298.6
Max length 59.6% 1148.3 17.5% 1759.2
All `◦, `� (L) 84.2% 552.0 52.9% 1107.0
All `◦, `� (S) 83.8% 611.1 55.4% 1111.1

For empirical analysis, we consider
symbolic regression, the task of discov-
ering tractable mathematical expres-
sions to fit a dataset (X, y), where X ∈
Rn and y ∈ R. In this SO problem, to-
kens represent mathematical operators
(e.g. sin,×). A sequence τ is instan-
tiated as a function τ = f(X), where
f : Rn → R, which is used to predict
values ŷ = f(X). Reward is based on
mean-square error between ŷ and y.

Table 3 shows performance on the Nguyen symbolic regression benchmarks (Uy et al.,
2011), using either deep symbolic regression (DSR) (Petersen et al., 2021) or random search,
i.e. DSR with learning rate set to 0. We observe that adding individual priors or constraints
(rows 2− 7) generally improves performance over no priors or constraints (row 1), for both
DSR and random search. Combining all priors and constraints (rows 8 and 9; note that the
lexicographical constraint (L) and subtree length constraint (S) are mutually incompatible)
greatly improves performance. Lastly, it is interesting to note that random search with all
priors and constraints (55.4%) achieves nearly the same performance as DSR with no priors
or constraints (57.4%), demonstrating the ability of priors and constraints to effectively bias
and prune the search.

5. Conclusion

We consider a generic framework for incorporating in situ priors and constraints into neural-
guided search, which we believe is well-suited for integrating expert knowledge into symbolic
optimization tasks. By contextualizing many existing priors and constraints within this
framework and proposing several new ones, we hope to encourage researchers to design
their own priors and constraints suited to their particular AutoML tasks.

6

Incorporating domain knowledge into neural-guided search

References

Daniel A Abolafia, Mohammad Norouzi, Jonathan Shen, Rui Zhao, and Quoc V Le. Neural
program synthesis with priority queue training. arXiv preprint arXiv:1801.03526, 2018.

Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D Francone. Genetic pro-
gramming: an introduction, volume 1. Morgan Kaufmann Publishers San Francisco,
1998.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural com-
binatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940,
2016.

Wolfgang Bibel. Automated theorem proving. Springer Science & Business Media, 2013.

Daniel James Edwards and TP Hart. The alpha-beta heuristic. 1961.

Richard D Greenblatt, Donald E Eastlake III, and Stephen D Crocker. The greenblatt chess
program. In Proceedings of the November 14-16, 1967, fall joint computer conference,
pages 801–810, 1967.

Ernst A Heinz. Extended futility pruning. ICGA Journal, 21(2):75–83, 1998.

Joanne T Kim, Mikel Landajuela Larma, and Brenden K Petersen. Distilling wikipedia
mathematical knowledge into neural network models. arXiv preprint arXiv:2104.05930,
2021a.

Soo K Kim, Mikel Landajuela Larma, Brenden K Petersen, Claudio P Santiago, R Glatt,
T Nathan Mundhenk, Jacob F Pettit, and Daniel M Faissol. Discovering symbolic policies
with deep reinforcement learning. In International Conference on Machine Learning,
2021b.

Mikel Landajuela, Brenden K Petersen, Soo K Kim, Claudio P Santiago, R Glatt, T Nathan
Mundhenk, Jacob F Pettit, and Daniel M Faissol. Improving exlporation in policy gra-
dient search: application to symbolic optimization. In 1st Mathematical Reasoning in
General Artificial Intelligence Workshop, ICLR 2021, 2021.

Li Li, Minjie Fan, Rishabh Singh, and Patrick Riley. Neural-guided symbolic regression
with asymptotic constraints. arXiv preprint arXiv:1901.07714, 2019.

Chen Liang, Mohammad Norouzi, Jonathan Berant, Quoc Le, and Ni Lao. Memory aug-
mented policy optimization for program synthesis with generalization. arXiv preprint
arXiv:1807.02322, 2018.

Brenden K Petersen, Mikel Landajuela Larma, T Nathan Mundhenk, Claudio P Santiago,
Soo K Kim, and Joanne T Kim. Deep symbolic regression: Recovering mathematical
expressions from data via risk-seeking policy gradients. In International Conference on
Learning Representations, 2021.

7

Anonymous authors

Mariya Popova, Mykhailo Shvets, Junier Oliva, and Olexandr Isayev. Molecular-
rnn: Generating realistic molecular graphs with optimized properties. arXiv preprint
arXiv:1905.13372, 2019.

Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach. 2002.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Nguyen Quang Uy, Nguyen Xuan Hoai, Michael O’Neill, Robert I McKay, and Edgar
Galván-López. Semantically-based crossover in genetic programming: application to
real-valued symbolic regression. Genetic Programming and Evolvable Machines, 12(2):
91–119, 2011.

David Weininger. Smiles, a chemical language and information system. 1. introduction to
methodology and encoding rules. Journal of chemical information and computer sciences,
28(1):31–36, 1988.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning.
arXiv:1611.01578, 2016.

8

Incorporating domain knowledge into neural-guided search

Appendix A.

A.1 Descriptions of existing constraints

To describe existing constraints, we define δ as the delta function, di as the number of uns-
elected or “dangling” nodes at position i (for tree-based objects), 1condition as the indicator
function (which returns 1 if condition is true and 0 otherwise), and A(n) as the set of tokens
in L with arity n (for tree-based objects).

Length constraint. Many SO problems allow variable-length objects, e.g. de novo
molecular design, program synthesis, symbolic regression, and some formulations of NAS.
One can constrain the length to prevent objects that are either too complicated or too sim-
ple. An interesting special case of this constraint is when the minimum and maximum length
are equal. For tree- or graph-based objects, this constrains the search to different structures
of the same length. This can be used for the task of searching over the space of molecular
isomers, e.g. straight-chain alkanes. Given constraint parameters Ω = {[min], [max]}, the
length constraint is given by:

Ci ={u : u ∈ A(0)}1di=1 ∪ {u : u ∈ ∪x>0A(x)}1di+i=[max].

Example 1. Given the partial sequence [sin,+, x] (corresponding to the expression sin(x+
�)) with a maximum length of 5, all tokens with arity greater than 1 are constrained because
the sequence would no longer be able to complete before exceeding the maximum length.

Example 2. Given the partial sequence [+, x] (corresponding to the expression x+ �) with
a minimum length of 4, terminal tokens are constrained because they would complete the
sequence prematurely.

Repeat constraint. Given a set T of target tokens and a [min] and [max] value,
the repeat constraint aims to limit the number of times each target token appears to fall
between [min] and [max], inclusive. Set Nv ←

∑i−1
k=1 δτk,v, ∀v ∈ T . Then, for each target

token v ∈ T , set

C(v)i = {u : u ∈ A(0)− {v}}1di=1 ∪ {v}1(di=1)∧([min]−Nv>1) ∪ {v}1Nv=[max].

The final constraint is given by Ci =
⋃
v∈T C

(v)
i . In this case, Ω = {T , [min], [max]}.

Example. Given T = {x}, [min] = 1, and [max] = 2, and the partial sequence [+,+, x, x]
(corresponding to the expression x+ x+ �), x cannot be selected because it would exceed
[max].

Valency constraint. This constraint can be enforced using the length constraint, since
valency corresponds to arity. Thus, given the current value of di and the valency value n,
we can apply the length constraint with [min] = di + n.

A.2 Descriptions of existing priors

Soft length prior. The length constraint is known to result in highly skewed distribution
over lengths (Kim et al., 2021b; Landajuela et al., 2021). To alleviate this phenomenon,
Landajuela et al. (2021) propose combining the length constraint with a “soft” version that
reduces the probability of terminal tokens early on (to discourage short sequences) and of

9

Anonymous authors

non-terminal tokens later on (to discourage long sequences). Specifically, for libraries with
arities in {0, 1, 2}, they define the soft length prior at position i as:

`◦ =

(
−(i− λ)2

2σ2
1i<λ

)
|A(2)|

‖ (0)|A(1)| ‖
(
−(i− λ)2

2σ2
1i>λ

)
|A(0)|

,

where (·)n denotes that element (·) is repeated n times, λ and σ are hyperparameters, and
the tokens corresponding to logits ` are sorted by increasing arity.

Uniform arity prior. With zero-initialized RNN weights, the initial distribution is
uniform over all tokens in L. One can convert this to instead to be uniform over all arities
in L by applying a uniform arity prior (Landajuela et al., 2021) given by:

`◦ = (− log |A(1)|)|A(1)|‖ · · · ‖(− log |A(k)|)|A(k)|,

where k is the maximum arity of tokens in L and the tokens corresponding to logits ` are
sorted by increasing arity. This is typically combined with the soft length prior.

Language model prior. Kim et al. (2021a) introduce a mathematical language model
trained on a “corpus” of mathematical expressions derived from Wikipedia, then use this
language model as a prior to demonstrate an increase in search efficiency for symbolic
regression. Given a language model M that produces logits `M from a given partial sequence
τ1:i−1, the language model prior is given by:

`◦ = λ`M ,

where λ is a hyperparameter controlling the strength of the language model prior, acting
like an inverse temperature on the contribution of `M to the softmax computation.

10

	Introduction
	Related Work
	A Framework for in situ Priors and Constraints
	Example classes of in situ constraints
	Sufficient conditions for imposing in situ constraints
	Example classes of in situ priors

	Experiments and Discussion
	Conclusion
	
	Descriptions of existing constraints
	Descriptions of existing priors

