Symbolic Optimization — Problem Statement

* Many AutoML problems can be formulated as discrete sequence optimization under a black-box
reward.

argmax |R(ry,...,7,)] with, € L={a,5,...,(}

N<N,T1,...,Tn
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L = {{RelLU, tanh}, {32,64}}
R = validation accuracy

R = —MSE
L={+—-,%X,+sinz,...}

L = {ALA, ARG, ..., VAL}
R = binding affinity

* These problems are characterized by vast domains (sequences of variable length tokens)
and by black-boxed reward or objective functions (non-differentiable). Tokens are
discrete, which creates a nonconvex problem with potentially many local optima.

Discrete tokens
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Search Space

* Since tokens are discrete, the search space of symbolic optimization can be thought of as
a very large search tree. At each node of the tree, the possible choices for selecting the
next token can be represented by the branches stemming from that node (which represents
the subsequence of the previously selected tokens).

After a token 1s selected, under some assumptions, a linear fraction of the remaining possible
sequences 1s eliminated of the current search

Subtrees eliminated after the first token selection
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Incorporating domain knowledge into neural-guided search
via in situ priors and constraints

Examples of in situ Constraints (Hard Pruning)

Length Sequences must fall between [min] and [max] length.
Relational [ Target tokens] cannot be the [relationship] of [effector tokens].
Repeat [Target tokens] must appear between [min] and [max] times.
Blacklist Sequences already in [buffer] are constrained.
Valency Atoms must adhere to valency rules.
Lexicographic Children of [target token] must be lexicographically sorted.
Subtree length Subtrees of [target token] must be sorted by length.
Type & Unit All tokens must follow specified types and/or units.

» Although it is possible to consider the intersections of constraints, doing it naively may render
some constraints invalid, meaning that they lead to situations where all tokens are constrained.
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Constraints = Domain Reduction

* Constraints (or hard pruning) reduce the search space by preventing some tokens from being
selected as the sequence unfolds. There are two types of hard pruning:

* ecliminate infeasible token sequences: some sequence of tokens may be 1dentified ahead
of the optimization procedure to be infeasible;

* climinate semantically repeated token sequences: different token sequences may be
semantically equal.

* Depending on the constraint, this may reduce an exponential number of points (token
sequences).

* At each level i of the search tree, the number of subtrees will be equal to the cardinality of the
constraint set C;.

Example: Trig Constraint - trig functions cannot be nested W

C={sin,cos}
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Examples of in situ Priors (Soft Pruning)

Prior Description

Soft length Sequences are discouraged to have length far from [length].
Uniform arity

The prior probability over arities 1s uniform.
Language model Probabilities are informed by language model outputs.
Token-specific Tokens have a relative fold-increase prior probability of [A].

Positional Tokens at position [1] follow a token-specific prior.

* Soft pruning consists of using priors to penalize decisions:
77('\7'1:(@'—1)3 0) = SOftmaX(RNN(le(i—l)a 0) + ¢(T1:(z'—1)))

Example: Soft length prior
(|71 (i—1); 0) = sottmax(RNN(7y.;1),0) + %SLP)
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Results & Conclusion

We perform a performance study of priors/constraints on the Nguyen symbolic regression benchmark
using DSR and Random Search.

* Row 1 contains the results using no priors/constraints;
* Rows 2-7 contain results for the corresponding prior/constraint;

* Since the intersection of the lexicographical (L) and subtree length (S) constraints may lead to
infeasibilities, 1.e., they are not mutually compatible, Rows 8-9 contain results for lexicographic + all
priors/constraints and subtree length + all priors/constraints, respectively.
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Experiment

Recovery

Steps

Recovery

Steps

No fo, £®
Lexicographical
Subtree length
Trigonometric
Inverse

Soft length
Max length

All 45,45 (L)
All 45,45 (S)

Conclusion

Adding priors/constraints (Rows 2-7) generally improves the performance compared to no
priors/constraints (Row 1);
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Combining all priors/constraints (Rows 8-9) generally improves the performance;

The performance of Random Search + all priors/constraints was close to DSR + no

priors/constraints

Contributions

» Formalizing the framework for incorporating priors and constraints into neural-
guided search.

» Integrating many existing classes of priors/constraints, and propose several new ones.

» Describing sufficient conditions for being able to specify constraints in neural-guided
search.
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