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1 DENOISING DIFFUSION IMPLICIT MODELS
Denoising Diffusion Probabilistic Models (DDPMs) [1] are the state-
of-the-art generative models employed for image generation, where
an iterative denoising of an initial Gaussian noise is conducted.
DDPMs contain both an inversion process and a denoising process.
In the inversion process, Gaussian noise is gradually added to an
image 𝑥0 for a total timestep 𝑇 to get latents 𝑥1, 𝑥2, . . . , 𝑥𝑇 in the
following equation:

𝑞(𝑥𝑡 |𝑥𝑡−1) = N(
√︁

1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 I), (1)

where 𝑡 ∈ [1,𝑇 ] and 𝛽 ∈ (0, 1). When 𝑇 is large enough, the last
latent 𝑥

𝑇
will be approximately a pure Gaussian noise. According to

the additivity of Gaussian distributions, 𝑥𝑡 can be directly calculated
using 𝑥0:

𝑞(𝑥𝑡 |𝑥0) = N(
√
𝛼𝑡𝑥0, (1 − 𝛼𝑡 )I),

𝑥𝑡 =
√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖,

(2)

where 𝜖 ∼ N(0, I), 𝛼𝑡 = 1 − 𝛽𝑡 , 𝛼𝑡 =
∏𝑡

𝑠=0 𝛼𝑠 .
In the denoising process, a new sample is drawn from 𝑥

𝑇
by

iteratively sampling from 𝑞(𝑥𝑡−1 |𝑥𝑡 ). Since 𝑞(𝑥𝑡−1 |𝑥𝑡 ) is hard to
calculate for the distribution of 𝑥0 is unknown, a neural network
𝑝𝜃 with parameters denoted as 𝜃 is trained to predict the mean and
covariance of 𝑞(𝑥𝑡−1 |𝑥𝑡 ):

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) = N(𝜇𝜃 (𝑥𝑡 , 𝑡), Σ𝜃 (𝑥𝑡 , 𝑡)) . (3)

Ho et al. [1] proposed to predict the noise 𝜖𝜃 (𝑥𝑡 , 𝑡) to simplify
the objective:

min
𝜃

L(𝜃 ) = E𝑥0,𝜖,𝑡 ∥𝜖 − 𝜖𝜃 (𝑥𝑡 , 𝑡)∥2
2 . (4)

After 𝑝𝜃 is fully trained, we can sample 𝑥𝑡−1 as follows:

𝑥𝑡−1 = 𝜇𝜃 (𝑥𝑡 , 𝑡) + 𝜎𝑡𝑧, 𝑧 ∼ 𝑁 (0, 𝐼 ) . (5)

Song et al. [3] proposed Denoising Diffusion Implicit Models
(DDIMs) to accelerate sampling in DDPMs. In DDIMs, the denoising
process is no more a Markovian process:

𝑥𝑡−1 =
√︁
𝛼𝑡−1

(
𝑥𝑡 −

√
1 − 𝛼𝑡𝜖𝜃 (𝑥𝑡 )√

𝛼𝑡

)
+
√︃

1 − 𝛼𝑡−1 − 𝜎2
𝑡 ·𝜖𝜃 (𝑥𝑡 )+𝜎𝑡𝑧.

(6)
where 𝑧 ∼ 𝑁 (0, 𝐼 ). In DDIMs, 𝜎𝑡 is set to 0 to make the denoising
process determined. The reversion of the denoising process is called
DDIM inversion.

2 EXPERIMENTAL RESULTS ON MSCOCO
DATASET

Besides Flickr30k Dataset, we also conduct experiments on image-
text and text-image retrieval tasks on MSCOCO dataset. According
to the conclusions in the ablations studies (Section 4.2), increasing
either relative weight control factor 𝜇 or guidance scale 𝜔 could
effectively improve the attack performance under both white-box
and black-box settings. With relative weight control factor 𝜇 = 0.5
and guidance scale 𝜔 = 2.5, our method MDA have surpassed
all other compared attack methods except SGA under white-box
settings, as shown in Section 4.2. Therefore, different from the
experiments conducted on Flickr30k dataset, we here choose a
larger guidance scale 𝜔 = 5 to test whether our method MDA could
surpass state-of-the-art attack method SGA [2] under white-box
settings. The experimental results are listed in Table 1. From Table
1 we could see that our method MDA achieves the best results both
under white-box and black-box settings, successfully surpassing
the attack performance of SGA. (in image-text retrieval task, MDA
outperforms SGA by over 5% under white-box settings and over 30%
under black-box settings.) This is because a larger guidance scale
indicates a stronger guidance by adversarial text, which introduces
more distortions in the denoising process, thus enhancing attack
performance.
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Table 1: ASR on image-text and text-image retrieval tasks on MSCOCO dataset. ALBEF is adopted as the surrogate model. *
indicates the performance under white-box attack. The best results are highlighted in bold.

Task Attack ALBEF TCL CLIPViT CLIPCNN
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Image-Text

PGD 76.70* 67.49* 62.47* 12.46 5.00 3.14 13.96 7.33 5.21 17.45 9.08 6.45
BERT-Attack 24.39* 10.67* 6.75* 24.34 9.92 6.25 44.94 27.97 22.55 47.73 29.56 23.10
Sep-Attack 82.60* 73.20* 67.58* 32.83 15.52 10.10 44.03 27.60 21.84 46.96 29.83 23.15
Co-Attack 79.87* 68.62* 62.88* 32.62 15.36 9.67 44.89 28.33 21.89 47.30 29.89 23.29

SGA 96.75* 92.83* 90.37* 58.56 39.00 30.68 57.06 39.38 31.55 58.95 42.49 34.84
MDA 99.51* 98.64* 97.51* 93.35 80.61 73.55 93.11 80.62 75.40 94.01 81.50 76.15

Text-Image

PGD 86.30* 78.49* 73.94* 17.77 8.36 5.32 23.10 12.74 9.43 23.54 13.26 9.61
BERT-Attack 36.13* 23.71* 18.94* 33.39 20.21 15.56 52.28 38.06 32.04 54.75 41.39 35.11
Sep-Attack 89.88* 82.60* 78.80* 42.92 27.04 20.65 54.46 40.12 33.46 55.88 41.30 35.18
Co-Attack 87.83* 80.16* 75.98* 43.09 27.32 21.35 54.75 40.00 33.81 55.64 41.48 35.28

SGA 96.95* 93.44* 91.00* 65.38 47.61 38.96 65.25 50.42 43.47 66.52 52.44 45.05
MDA 99.63* 98.57* 96.91* 95.67 84.66 76.52 94.80 83.98 77.22 94.91 84.05 78.84
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