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1 DENOISING DIFFUSION IMPLICIT MODELS

Denoising Diffusion Probabilistic Models (DDPMs) [1] are the state-
of-the-art generative models employed for image generation, where
an iterative denoising of an initial Gaussian noise is conducted.
DDPMs contain both an inversion process and a denoising process.
In the inversion process, Gaussian noise is gradually added to an

image x¢ for a total timestep T to get latents x1, xp, . . X in the
following equation:
q(xtlxt-1) = N(V1 = Brxr—1, BrD), (1)

where t € [1,T] and f € (0,1). When T is large enough, the last
latent x.. will be approximately a pure Gaussian noise. According to
the additivity of Gaussian distributions, x; can be directly calculated
using xp:

q(xt|x0) = N (Varxo, (1 - @)l),
xt = Varxo + V1 — aze,

where € ~ N(0,1), ¢y =1 — ¢, a@r = ]_[220 as.

In the denoising process, a new sample is drawn from x;. by
iteratively sampling from q(x;—1|x;). Since q(x;-1|x;) is hard to
calculate for the distribution of x is unknown, a neural network
pe with parameters denoted as 0 is trained to predict the mean and
covariance of q(x;—1|x;):

@

Po(xe-1lxt) = N(pg(xt, 1), 2 (x1,1)). (3)

Ho et al. [1] proposed to predict the noise €y (x;, t) to simplify
the objective:

min £(6) = Ex,.c.lle - €o(xr, i3 4

After pg is fully trained, we can sample x;_1 as follows:

xt-1 = po(xt,t) + 012,z ~ N(0,I). ©)

Song et al. [3] proposed Denoising Diffusion Implicit Models
(DDIMs) to accelerate sampling in DDPMs. In DDIMs, the denoising
process is no more a Markovian process:

— Xt — Vl—&té (Xt) _
Xi—1 = Var-1 L S A2 Iy Ap—1 — atz-eg(xt)+atz.
vai
(6)

where z ~ N(0,I). In DDIMs, o is set to 0 to make the denoising
process determined. The reversion of the denoising process is called
DDIM inversion.

2 EXPERIMENTAL RESULTS ON MSCOCO
DATASET

Besides Flickr30k Dataset, we also conduct experiments on image-
text and text-image retrieval tasks on MSCOCO dataset. According
to the conclusions in the ablations studies (Section 4.2), increasing
either relative weight control factor p or guidance scale w could
effectively improve the attack performance under both white-box
and black-box settings. With relative weight control factor y = 0.5
and guidance scale v = 2.5, our method MDA have surpassed
all other compared attack methods except SGA under white-box
settings, as shown in Section 4.2. Therefore, different from the
experiments conducted on Flickr30k dataset, we here choose a
larger guidance scale w = 5 to test whether our method MDA could
surpass state-of-the-art attack method SGA [2] under white-box
settings. The experimental results are listed in Table 1. From Table
1 we could see that our method MDA achieves the best results both
under white-box and black-box settings, successfully surpassing
the attack performance of SGA. (in image-text retrieval task, MDA
outperforms SGA by over 5% under white-box settings and over 30%
under black-box settings.) This is because a larger guidance scale
indicates a stronger guidance by adversarial text, which introduces
more distortions in the denoising process, thus enhancing attack
performance.
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Table 1: ASR on image-text and text-image retrieval tasks on MSCOCO dataset. ALBEF is adopted as the surrogate model. *

indicates the performance under white-box attack. The best results are highlighted in bold.
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Task Attack ALBEF TCL CLIPyir CLIPcaN

R@l R@5 R@10 | R@l R@5 R@10 | R@l R@5 R@I10| R@l R@5 R@I10

PGD 76.70*  67.49%  62.47* | 1246 500 3.4 | 1396 733 521 | 1745 9.08  6.45

BERT-Attack | 24.39* 10.67*  6.75* | 2434 992  6.25 | 44.94 2797 2255 | 47.73 2956 23.10

Image-Text Sep-Attack | 82.60*  73.20*  67.58" | 32.83 1552 10.10 | 44.03 27.60 21.84 | 4696 29.83 23.15
Co-Attack | 79.87*  68.62* 62.88% | 32.62 1536  9.67 | 44.89 2833 21.89 | 47.30 29.89  23.29

SGA 96.75*  92.83*  90.37* | 58.56 39.00 30.68 | 57.06 39.38 3155 | 58.95 4249 34.84
MDA 99.51* 98.64* 97.51* | 93.35 80.61 73.55 | 93.11 80.62 75.40 | 94.01 81.50 76.15

PGD 86.30*  78.49* 73.94* | 17.77 836 532 | 23.10 1274 943 | 2354 13.26  9.61

BERT-Attack | 36.13* 23.71* 18.94* | 3339 2021 1556 | 52.28 38.06 32.04 | 5475 4139 35.11

Text Image Sep-Attack | 89.88*  82.60*  78.80* | 42.92 27.04 20.65 | 54.46 40.12 3346 | 55.88 4130 35.18
Co-Attack | 87.83* 80.16* 75.98% | 43.09 2732 2135 | 5475 40.00 33.81 | 55.64 4148 35.28

SGA 96.95*  93.44* 91.00* | 6538 47.61 38.96 | 6525 5042 4347 | 66.52 5244 45.05
MDA 99.63* 98.57* 96.91* | 95.67 84.66 76.52 | 94.80 83.98 77.22 | 94.91 84.05 78.84
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