
Supplementary Material - Credal Marginal MAP

Radu Marinescu
IBM Research, Ireland

radu.marinescu@ie.ibm.com

Debarun Bhattacharjya
IBM Research, USA

debarunb@us.ibm.com

Junkyu Lee
IBM Research, USA

junkyu.lee@ibm.com

Alexander Gray
IBM Research, USA

alexander.gray@ibm.com

Fabio Cozman
Universidade de São Paulo, Brazil

fgcozman@usp.br

1 Preliminaries

1.1 Bayesian Networks

A Bayesian network (BN) [1] is defined by a tuple ⟨X,D,P, G⟩, where X = {X1, . . . , Xn} is a set
of variables over multi-valued domains D = {D1, . . . , Dn}, G is a directed acyclic graph (DAG)
over X as nodes, and P = {Pi} where Pi = P (Xi|Πi)) are conditional probability tables (CPTs)
associated with each variable Xi and Πi are the parents of Xi in G. A Bayesian network represents a
joint probability distribution over X, namely P (X) =

∏n
i=1 P (Xi|Πi).

Let XM = {X1, . . . , Xm} be a subset of X called MAP variables and XS = X \ XM be the
complement of XM , called sum variables. The Marginal MAP (MMAP) task seeks an assignment
x∗
M to variables XM having maximum probability. This requires access to the marginal distribution

over XM , which is obtained by summing out variables XS :

x∗
M = argmax

XM

∑
XS

n∏
i=1

P (Xi|Πi) (1)

MMAP is a mixed inference task (max-sum) and its complexity is known to be NPPP-complete
[2]. Over the past decades, several algorithmic schemes have been developed for solving MMAP
efficiently. We later overview the most relevant exact and approximate algorithms for MMAP.

Given a Bayesian network B = ⟨X,D,P, G, its moral graph Gm is the undirected graph obtained
from the directed acyclic graph G by connecting the parents of each variable Xi with undirected
edges and removing the direction on the edges in G.
Definition 1 (induced width). An ordered graph is a pair (G, d) where G is an undirected graph,
and d = (X1, ..., Xn) is an ordering of the nodes. The width of a node is the number of the node’s
neighbors that precede it in the ordering. The width of an ordering d is the maximum width over all
nodes. The induced width of an ordered graph, denoted by w∗

d, is the width of the induced ordered
graph obtained as follows: nodes are processed from last to first; when node Xi is processed, all its
preceding neighbors are connected. The induced width of a graph, denoted by w∗, is the minimal
induced width over all its orderings.

Marginal MAP requires processing along constrained elimination orderings that constrain the sum
variables to be processed before the MAP variables. In this case, the induced width obtained for a
constrained elimination ordering is called the constrained induced width.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

(a) Bayesian network (b) Credal network

Figure 1: Examples of Bayesian and credal networks with bi-valued variables.

1.2 Credal Networks

A set of probability distributions for variable X is called a credal set and is denoted by K(X) [3].
Similarly, a conditional credal set is a set of conditional distributions, obtained by applying Bayes
rule to each distribution in a credal set of joint distributions [4]. We consider credal sets that are closed
and convex with a finite number of vertices. Two credal sets K(X|Y = y1) and K(X|Y = y2),
where y1 ̸= y2 are two values in variable Y ’s domain, are called separately specified if there is no
constraint on the first set that is based on the properties of the second set.

Two variables X and Y are strongly independent when every extreme point of K(X,Y) satisfies
standard stochastic independence of X and Y that is P (X|Y) = P (X) and P (X|Y) = P (Y),
respectively. Furthermore, strong conditional independence states that X and Y are strongly inde-
pendent conditional on Z when every extreme point of K(X,Y |Z = z) satisfies standard stochastic
independence conditional on every value z of Z.

A credal network (CN) [5] is defined by a tuple ⟨X,D,K, G⟩, where X = {X1, . . . , Xn} is a set of
discrete variables with finite domains D = {D1, . . . , Dn}, G is a directed acyclic graph (DAG) over
X as nodes, and K = {K(Xi|Πi = πik)} is a set of separately specified conditional credal sets for
each variable Xi and each configuration πik of its parents Πi in G. The strong extension K(X) of a
credal network is the convex hull (denoted CH) of all joint distributions that satisfy the following
Markov property: every variable is strongly independent of its non-descendants conditional on its
parents [5].

K(X) = CH{P (X) : P (X) =
n∏

i=1

P (Xi|Πi, P (Xi|Πi = πik) is a vertex of K(Xi|Πi = πik)}

(2)

Example 1. Figure 1a shows a simple Bayesian network with 5 bi-valued variables {A,B,C,D,E}.
The conditional probability tables are shown next to the nodes. For example, we have that P (B =
1|A = 0) = 0.2, P (B = 0|A = 0) = 0.8, P (B = 1|A = 1) = 0.6 and P (B = 0|A = 1) = 0.4,
respectively. In Figure 1b we show a credal network defined over the same set of variables. In
this case, the conditional credal sets associated with the variables are given by closed probability
intervals such as, for example, 0.1 ≤ P (B = 1|A = 0) ≤ 0.3, 0.7 ≤ P (B = 0|A = 0) ≤ 0.9,
0.5 ≤ P (B = 1|A = 1) ≤ 0.7 and 0.3 ≤ P (B = 0|A = 1) ≤ 0.5, respectively.

Unlike in Bayesian networks, in credal networks it is no longer the case that there is a unique marginal
distribution corresponding to a MAP assignment. Therefore, we define the following two Credal
Marginal MAP (CMMAP) tasks:

Definition 2 (maximin). Let C = ⟨X,D,K, G⟩ be a credal network whose variables are partitioned
into MAP variables XM and sum variables XS = X \XM . The maximin Credal Marginal MAP

2

Algorithm 1 Variable Elimination for Credal Marginal MAP

1: procedure CVE(C, XM , XS)
2: initialize Γ← ∅
3: for all variable Xi ∈ X do
4: ϕ = {p : p ∈ ext(K(Xi|Πi))}
5: update Γ = Γ ∪ {ϕ}
6: create constrained elimination ordering o
7: for all variable Xi ∈ o do
8: ΓXi

= {ϕ : ϕ ∈ Γ, Xi ∈ vars(ϕ)}
9: update Γ = Γ \ ΓXi

10: for all variable Xi ∈ o do
11: if Xi ∈ XS then

12: ψ = max
(∑

Xi

∏
{ϕ ∈ ΓXi

}
)

13: else
14: ψ = max (maxXi

∏
{ϕ ∈ ΓXi

})
15: let Y ∈ vars(ϕ) be the closest to Xi

16: update ΓY = ΓY ∪ {ψ}
17: initialize x∗

M = ∅
18: for all variable Xi ∈ reversed(o) do
19: if Xi ∈ XM then
20: x∗i = argmaxXi

∏
{ϕ(x∗

M) ∈ ΓXi
}

21: x∗
M = x∗

M ∪ {Xi = x∗i }
22: return x∗

M

task is finding the assignment x∗
M to XM with maximum lower marginal probability, namely:

x∗
M = argmax

XM

min
P (X)∈K(X)

∑
XS

n∏
i=1

P (Xi|Πi) (3)

Definition 3 (maximax). Let C = ⟨X,D,K, G⟩ be a credal network whose variables are partitioned
into MAP variables XM and sum variables XS = X \XM . The maximax Credal Marginal MAP
task is finding the assignment x∗

M to XM with maximum upper marginal probability, namely:

x∗
M = argmax

XM

max
P (X)∈K(X)

∑
XS

n∏
i=1

P (Xi|Πi) (4)

It can be shown that solving CMMAP is NPPP-hard [6]. CMMAP is applicable to probabilistic
diagnosis [7], counterfactual analysis [8] or uncertainty quantification in machine learning [9].

2 Exact Credal MMAP

2.1 Variable Elimination

Algorithm 1 describes our variable elimination procedure for CMMAP which extends the exact
method developed previously for marginal inference tasks [10] and operates on potentials.
Definition 4 (potential). Given a set of variables Y, a potential ϕ(Y) is a set of non-negative
real-valued functions p(Y) on Y. The product of two potentials ϕ(y) and ψ(Z) is defined by
ϕ(Y) · ψ(Z) = {p · q : p ∈ ϕ, q ∈ ψ}. The sum-marginal

∑
Z ϕ(Y) and the max-marginal

maxZ ϕ(Y) of a potential ϕ(Y) with respect to a subset of variables Z ⊆ Y are defined by∑
Z ϕ(Y) = {

∑
Z p(Y) : p ∈ ϕ} and maxZ ϕ(Y) = {maxZ p(Y) : p ∈ ϕ}, respectively.

Since the multiplication operator may grow the size of potentials dramatically, we introduce an
additional pruning operation that can reduces the cardinality of a potential. Specifically, the operator
maxϕ(Y) returns the set of non-zero maximal elements of ϕ(Y), under the partial order ≥ defined
component wise as p ≥ q iff ∀yk ∈ DY, p(yk) ≥ q(yk), where DY is the cartesian product of the
domains of the variables in Y: maxϕ(Y) = {p ∈ ϕ(Y) : ∄q ∈ ϕ, q ≥ p}.
Given a credal network C = ⟨X,D,K, G⟩ as input together with a partitioning of its variables into
disjoint subsets XM (as MAP variables) and XS (as sum variables) algorithm CVE transforms each
conditional credal set K(Xi|Πi) into a corresponding potential that contains the set of all conditional
probability distributions in the strong extension of K(Xi|Πi) (lines 3–5). Subsequently, given an
ordering o of the variables in which all the MAP variables come after the summation variables,
the potentials are partitioned into buckets. A bucket is associated with a single variable Xi and
contains all of the un-allocated potentials that have Xi as an argument (lines 6–9). The algorithm
then processes each bucket, from first to last, by multiplying all potentials in the current bucket

3

Algorithm 2 Depth-First Search Credal Marginal MAP

1: procedure DFS(C, XM ⊆ X)
2: initialize x∗

M ← ∅, best← −∞
3: SEARCH(∅)
4: return x∗

M

5: procedure SEARCH(x, XM)
6: if size(x) == size(XM) then
7: score(x)← CV E+(x)

8: if score(x) > best then
9: x∗

M ← x, best← score(x)

10: else
11: select uninstantiated variable Xi ∈ XM

12: for all values xi of Xi do
13: x← x ∪ {Xi = xi}
14: SEARCH(x)

and eliminating the bucket’s variable (by summation for sum variables, and by maximization for
MAP variables), resulting in a new potential which is first pruned by its non-maximal elements and
then placed in a subsequent bucket, depending on its scope (lines 10–16). Following the top-down
elimination phase, a bottom-up pass over the MAP buckets, from the last to the first MAP variable in
the ordering, assembles the solution x∗

M by selecting the value x∗i of variable Xi that maximizes the
combination of potentials in its bucket, conditioned on the already assigned MAP variables in the
ordering (lines 18–21). Note that the bucket Xi’s combined potential may contain more than one
components. In this case, we choose the value x∗i that maximizes the largest number of components
in that potential (breaking ties arbitrarily). Clearly, we have the following complexity result:

Theorem 1 (complexity). Given a credal network C, the complexity of algorithm CVE is time and
space O(n · C · kw∗

o), where n is the number of variables, k bounds the domain sizes, w∗
o is the

induced width of the constrained elimination order o and C bounds the cardinality of the potentials.

Proof. Let o = (X1, ..., Xn) be a constrained ordering of the variables such that all sum variables
appear before the MAP variables. Based on previous work on bucket elimination [11], the scope size
of the intermediate potentials generated during variable elimination is bounded by the induced width
of the constrained elimination ordering (i.e., the constrained induced width) denoted by w∗

o . Let ψXi

be the potential generated by eliminating variable Xi (either by summation or by maximization).
Clearly, the size of each component pj of ψXi

is bounded exponentially byw∗
o , namelyO(kw

∗
o) where

k is the maximum domain size. Since the cardinality of the potentials is bounded by C, it follows
easily that eliminating variable Xi is time and space bounded by O(C · kw∗

o). Moreover, since there
are at most n elimination steps, we have that CVE is bounded time and space by O(n ·C · kw∗

o).

2.2 Depth-First Search

An alternative approach to solving CMMAP exactly, described by procedure DFS in Algorithm 2, is
to conduct a depth-first search over the space of partial assignments to the MAP variables, and, for
each complete MAP assignment xM compute its score as the exact upper probability P (xM). This
way, the optimal solution x∗

M corresponds to the configuration with the highest score. Evaluating
P (xM) can be done by using a simple modification of the CVE algorithm described in the previous
section. Specifically, given a complete assignment xM to the MAP variables, the modified CVE,
denoted by CVE+, computes an unconstrained elimination ordering of all the variables regardless of
whether they are MAP or summation variables. Then, for each MAP variable Xi and corresponding
value xi ∈ xM , CVE+ adds to the bucket of Xi a deterministic potential ϕ(Xi) = {δxi

}, where δxi

returns one if Xi = xi and zero otherwise. Finally, CVE+ eliminates all variables by summation
and obtains the desired upper probability bound after processing the bucket of the last variable in the
ordering. The following complexity result holds:

Theorem 2 (complexity). Given a credal network C, the complexity of the depth-first search algorithm
is time O(n · C · km+w∗

u) and space O(n · C · kw∗
u), where n is the number of variables, m is the

number of MAP variable, k is the maximum domain size, w∗
u bounds the induced width of the

unconstrained elimination ordering u and C bounds the cardinality of the potentials.

Proof. The size of the search space defined by the MAP variables is bounded by O(km) where m is
the number of MAP variables and k is the maximum domain size. The evaluation of each complete

4

Algorithm 3 Mini-Buckets for Credal Marginal MAP

1: procedure CMBE(C, XM , XS , i-bound)
2: create constrained elimination ordering o
3: initialize buckets ΓXi

as in Algorithm 1
4: for all variable Xi ∈ o do
5: create mini-buckets {Q1, . . . , Ql} of ΓXi

6: for all mini-bucket Qj , j ∈ {1, . . . , l} do
7: if Xi ∈ XS then

8: ψ = max
∑

Xi

∏
{ϕ ∈ Qj}

9: else
10: ψ = maxmaxXi

∏
{ϕ ∈ Qj}

11: let Y ∈ vars(ϕ) be the closest to Xi

12: update ΓY = ΓY ∪ {ψ}
13: generate x∗

M as in Algorithm 1
14: return x∗

M

MAP assignment involves solving exactly a summation subproblem defined over n variables (m
of them already instantiated and acting as evidence, and (n −m) uninstantiated representing the
sum variables). Let w∗

u be the induced width of an unconstrained variable ordering. Clearly, the
complexity of evaluating a MAP assignment is bounded time and space by O(n · C · kw∗

u), where C
bounds the cardinality of the potentials involved in the summation subproblem. Therefore, it follows
that the complexity of the DFS algorithm is time O(n · C · km+w∗

u) and space O(n · C · kw∗
u).

3 Approximate Credal Marginal MAP

Solving the CMMAP task exactly is computationally hard and does not scale to large problems.
Therefore, in this section, we present several schemes to approximate CMMAP using the mini-bucket
partitioning as well as stochastic local search combined with approximate credal marginal inference.

3.1 Mini-Buckets Approximation

The first approximation method is described by Algorithm 3 and adapts the mini-bucket partitioning
scheme developed for graphical models [12] to the CMMAP task. Specifically, algorithm CMBE(i)
is parameterized by an i-bound i and works by partitioning large buckets into smaller subsets, called
mini-buckets, each containing at most i distinct variables (line 5). The mini-buckets are processed
separately, as follows: MAP mini-buckets (in XM) are eliminated by maximization, while variables in
XS are eliminated by summation. In practice, however, for variables in XS , one (arbitrarily selected)
is eliminated by summation, while the rest of the mini-buckets are processed by maximization.
Clearly, CMBE(i) outputs an upper bound on the optimal maximax CMMAP value from Equation 4.
Theorem 3 (complexity). Given a credal network C, the complexity of algorithm CMBE(i) is time
and space O(n · C · ki), where n is the number of variables, k is the maximum domain size, i is the
mini-bucket i-bound and C bounds the cardinality of the potentials.

Proof. Based on previous work on mini-bucket approximation [12], the scope size of each intermedi-
ate potential is bounded by the i-bound i. Therefore, the complexity bound of each intermediate step
is bounded time and space by O(C · ki), where k is the maximum domain size and C bounds the
cardinality of the potential. Since there are at most n elimination steps, the time and space complexity
of algorithm CMBE(i) is O(n · C · ki).

3.2 Local Search

The basic idea behind any local search scheme is to start from an initial guess xM as the solution (i.e.,
a complete assignment to the MAP variables), and iteratively try to improve the solution by moving to
a better neighbor x′

M such that P (x′
M) > P (xM) (or, alternatively, P (x′

M) > P (xM) for maximin).
A neighbor of instantiation xM is defined as the instantiation which results from changing the value
of a single variable X in xM . For example, if variables have bi-valued domains, then we have |XM |
neighbors in this case. Figure 2a shows the neighbors of xM : (B = 0, C = 1, D = 0) for the credal
network from Figure 1b.

In order to perform local search efficiently, we need to compute the scores for all the neighbors
efficiently. Therefore, computing the score of a neighbor, P (x′

M), requires estimating the upper

5

(a) Neighbors of (B = 0, C = 1, D = 0). (b) Augmented CN for (B = 0, C = 1).

Figure 2: Examples of neighbors and an augmented credal network for given MAP assignments.

probability of the evidence represented by x′
M . This can be done efficiently using any of the

approximation schemes developed for marginal inference in credal networks such as L2U [13] or
ApproxLP [14]. However, since these schemes were originally designed to compute the marginal
lower and upper probabilities of a query variable Z = z conditioned on evidence Y = y, we use the
following transformation of the credal network to evaluate the probability of evidence P (Y = y).

Let C = ⟨X,D,K, G⟩ be a credal network and let Y = y be the evidence set, where Y =
{Y1, . . . , Yk} and y = (y1, . . . , yk), respectively. We construct an augmented credal network
C′ = ⟨X′,D′,K′, G′⟩ by adding set of bi-valued variables W = {W1, . . . ,Wk} and deterministic
conditional probability tables P (W1|Y1) and P (Wj |Wj−1, Yj), for all 2 ≤ j ≤ k, such that P (W1 =
1|Y1 = y1) = 1, P (W1 = 1|Y1 ̸= y1) = 0, P (Wj = 1|Wj−1 = 1, Yj = yj) = 1, and
P (Wj = 1|Wj−1, Yj ̸= yj) = 0, respectively. It is easy to see that computing P (Y = y) and
P (Y = y) in C is equivalent to computing the posterior marginals P (Wk = 1) and P (Wk = 1)
in the augmented network C′, respectively. For illustration, Figure 2b shows the augmented credal
network corresponding to the assignment (B = 0, C = 1) in the network from Figure 1b.

Stochastic Hill Climbing Our first method is based on Stochastic Hill Climbing and is described
by procedure SHC in Algorithm 4. More specifically, SHC proceeds by repeatedly either changing
the state of the variable that creates the maximum score change (line 13), or changing a variable at
random (lines 9 and 15). The quality of the solution returned by the method depends to a large extent
on which part of the search space it is given to explore. Therefore, our scheme restarts the search
from a different initial solution which is initialized uniformly at random (lines 3-4).

Taboo Search Our second procedure denoted by TS in Algorithm 4 implements a Taboo Search
approach for credal Marginal MAP. Specifically, Taboo search is similar to stochastic hill climbing
except that the next neighbor of the current state is chosen as the best neighbor that hasn’t been
visited recently. A taboo list maintains a portion of the previously visited states so that at the next
step a unique point is selected. Our TS algorithm implements a random restarts scheme.

Simulated Annealing Procedure SA in Algorithm 4 describes our Simulated Annealing based
scheme for credal Marginal MAP. The basic principle behind this approach is to consider some
neighboring state x′

M of the current state xM , and probabilistically decides between moving to state
x′
M or staying in the current state. The probability of making the transition from xM to x′

M is specified
by an acceptance probability function P (x′

M ,xM , T) that depends on the scores of the two states
as well as a global time-varying parameter T called temperature. We chose P (x′

M ,xM , T) = e
∆
T ,

where ∆ = logP (x′
M)− logP (xM). At each iteration, the temperature is decreased using a cooling

schedule σ (e.g., σ = 0.9). Like SHC and TS, algorithm SA implements a random restarts strategy.

Theorem 4 (complexity). Given a credal network C, the complexity of algorithms SHC, TS and
SA is time O(N ·M · P) and space O(n), where n is the number of variables, N is the number of
iterations, M is the maximum number of flips allowed per iteration, and P bounds the complexity of
approximating the probability of evidence in C.

6

Algorithm 4 Local Search for Credal Marginal MAP

1: procedure SHC(C, XM ⊆ X, pflip)
2: initialize x∗

M ← ∅, best← −∞
3: for all iterations i = 1 . . . N do
4: initialize xM randomly
5: for all flips j = 1 . . .M do
6: sample randomly p ∈ (0, 1)
7: let N be xM ’s neighbors
8: if (p ≤ pflip) then
9: select random neighbor x′

M ∈ N
10: else
11: for all neighbor x′

M ∈ N do
12: compute score(x′

M)

13: select highest score neighbor x′′
M ∈ N

14: if score(x′′
M) ≤ score(xM) then

15: select random neighbor x′
M ∈ N

16: else
17: select x′

M ← x′′
M

18: if score(x′
M) > best then

19: x∗
M ← x′

M
20: best← score(x′

M)

21: xM ← x′
M

22: return x∗
M

23: procedure TS(C, XM ⊆ X)
24: initialize xM = ∅, best← −∞
25: for all iterations i = 1 . . . N do
26: initialize xM randomly
27: T ← ∅
28: for all flips j = 1 . . .M do
29: T ← T ∪ {xM}
30: let N be xM ’s neighbors
31: initialize x′′

M ← ∅, b← −∞
32: for all neighbor x′

M ∈ N do
33: if x′

M /∈ T and score(x′
M) > b then

34: x′′
M ← x′

M

35: b← score(x′
M)

36: if x′′
M = ∅ then

37: select random neighbor x′
M ∈ N

38: else
39: x′

M ← x′′
M

40: if score(x′
M) > best then

41: x∗
M ← x′

M
42: best← score(x′

M)

43: xM ← x′
M

44: if size(T) ≥ S then
45: prune T until size(T) < S

46: return x∗
M

47: procedure SA(C, XM ⊆ X, temp, σ)
48: initialize x∗

M randomly
49: best← score(x∗

M)
50: for all iterations i = 1 . . . N do
51: set xM ← x∗

M , T ← temp
52: for all flips j = 1 . . .M do
53: let N be xM ’s neighbors
54: select random neighbor x′

M ∈ N
55: ∆← log score(x′

M)− log score(xM)
56: if ∆ > 0 then
57: xM ← x′

M
58: else
59: sample randomly p ∈ (0, 1)

60: if p < e
∆
T then

61: xM ← x′
M

62: if score(xM) > best then
63: x∗

M ← xM

64: best← score(xM)

65: T ← T ∗ σ
66: return x∗

M

Proof. Assuming for example the L2U based approximation of probability of evidence in the input
credal network C [13], its complexity can be bounded time by O(t · n · e · 2p) and space by O(n · e),
where n is the number of nodes in G, e is the number of edges in G, p bounds the size of a node’s
family in G. Denoting by P the time complexity of L2U, then it follows that the time complexity of
local search algorithms is O(N ·M · P) where N is the number of iterations and M is the maximum
number of flips per iteration. The space complexity is clearly linear and bounded by O(n).

4 Additional Experiments

We evaluate the proposed algorithms for CMMAP on random credal networks and credal networks
derived from real-world applications. All competing algorithms were implemented in C++ and the
experiments were run on a 32-core machine with 128GB of RAM running Ubuntu Linux 20.04.

We consider the two exact algorithms denoted by CVE and DFS, as well as the four approximation
schemes denoted by SHC, TS, SA and CMBE(i), respectively. The local search algorithms used
N = 10 iterations and M = 10, 000 maximum flips per iteration, and they all used the approximate
L2U algorithm with 10 iterations [13] to evaluate the MAP assignments during search. Furthermore,
for SHC we set the flip probability pflip to 0.2, TS used a taboo list of size 100, while for SA we set

7

the initial temperature and cooling schedule to Tinit = 100 and σ = 0.9, respectively. For CMBE(i)
we set the i-bound i to 2 and used the same L2U algorithm to evaluate the solution found. All
competing algorithms were allocated a 1 hour time limit and 8GB of memory per problem instance.

In all our experiments, we report the CPU time in seconds, the number of problems solved within the
time/memory limit and the number of times an algorithm converged to the best possible solution. The
latter is called the number of wins and is meant to be a measure of solution quality for the respective
algorithm. We also record the number of variables (n), the number (or percentage) of MAP variables
(Q) and the constrained induced widths (w∗). The best performance points are highlighted.

4.1 Random Credal Networks

For our purpose, we generated random credal networks, m-by-m grid networks as well as k-tree net-
works. Specifically, for the random networks, we varied the number of variables n ∈ {100, 150, 200},
for grids, we choose m ∈ {10, 14, 16}, and for k-trees we selected k = 2 and the number of variables
n ∈ {100, 150, 200}, respectively. In all cases, the maximum domain size was set to 2 and the
conditional credal sets were generated uniformly at random as probability intervals such that the
difference between the lower and upper probability bounds was at most 0.3.

First, we note that the exact algorithms CVE and DFS could only solve very small problems with up
to 10 variables and 5 MAP variables. The main reason for the poor performance of these algorithms
is the extremely large size of the intermediate potentials generated during the variable elimination
procedure which causes the algorithms to run out of memory or time on larger problems. Therefore,
we omit their evaluation hereafter.

Table 1 summarizes the results obtained on random, grid and k-tree networks. Each data point
represents an average over 100 random problem instances generated for each problem size (n) and
number of MAP variables (Q), respectively. Next to the running time we show the number of instances
solved within the time/memory limit (if the number is omitted then all instances were solved). We
can see that in terms of running time, CMBE(2) performs best on the grid networks. This is because
the intermediate potentials generated during elimination are relatively small size and therefore are
processed quickly. However, the algorithm is not able converge to good quality solutions compared
with its competitors. The picture is reversed on the random and k-tree networks where CMBE(2) is
the worst performing algorithm both in terms of running time and solution quality. In this case, the
relatively large intermediate potentials cause the algorithm to exceed the time and memory limits on
many problem instances and thus impact negatively its performance.

The local search algorithms SHC, TS and SA yield the best performance in terms of solution quality
with all three algorithms almost always converging to the best possible solutions on these problem
instances. In terms of running time, SA is the fastest algorithm achieving almost one order of
magnitude speedup over its competitors, especially for larger numbers of MAP variables (e.g., k-trees
with n = 100 variables and Q = 60 MAP variables). Algorithms SHC and TS have comparable
running times (with SHC being slightly slower than TS) but they are significantly slower than SA.
This likely caused by the significantly larger computational overhead required for evaluating the
scores of all the neighbors of the current state, especially when there are many MAP variables.

Table 2 summarizes the results obtained on random credal networks for the maximin CMMAP case.
We can see that the resutls display a similar pattern with those for the maximax case from Table 1.

4.2 Real-World Credal Networks

Table 5 shows the results obtained on a set of credal networks derived from 22 real-world Bayesian
networks1 by converting the probability values in the CPTs into probability intervals such that
the difference between the corresponding lower and upper probability bounds was at most 0.3.
Furthermore, since the local search algorithms rely on the L2U approximation to evaluate the MAP
configurations, we restricted the domains of the multi-valued variables to the first two values in the
domain while shrinking and re-normalizing the corresponding CPTs. For each network we selected
uniformly at random Q = 50% of the variables to act as MAP variable and generated 10 random
instances. The number of variables for these networks is recorded in Table 3. As before, we indicate
next to the average running times the number of instances solved by the respective algorithms within

1Available at https://www.bnlearn.com/bnrepository/

8

n #Q w∗ SHC TS SA CMBE(2)
time (#) W time (#) W time (#) W time (#) W

random

20 25 32.69±7.99 100 23.08±2.30 100 6.47±2.30 100 225.28±407.06 (70) 1
100 40 37 163.05±38.99 100 79.11±14.12 100 14.78±5.38 100 327.67±612.07 (43) 0

60 23 421.93±117.26 100 185.41±38.82 100 29.99±9.52 100 224.93±299.38 (7) 0
30 39 254.32±31.36 100 141.03±15.60 100 24.08±3.86 100 294.48±587.48 0

150 60 57 1143.78±127.75 100 531.45±58.89 100 70.06±8.69 100 555.98±827.29 0
90 66 2811.47±336.31 100 1259.79±117.77 100 139.78±15.68 75 925.41±912.05 0
50 58 1044.79±116.91 100 490.38±50.70 100 72.09±8.29 100 276.98±392.39 0

200 100 86 3496.77±181.34 32 2143.79±211.97 100 211.47±25.25 14 927.31±0.00 0
150 69 3601.67±2.14 16 3550.99±79.44 17 339.34±38.06 72 - 0

grid

20 25 31.35±9.94 100 22.77±7.77 100 4.66±1.65 100 0.07±0.05 2
100 40 37 155.34±45.51 100 79.83±25.55 100 10.51±3.18 100 3.85±24.27 0

60 23 358.81±93.73 100 168.79±50.13 100 19.18±6.35 100 28.76±244.41 0
30 36 219.49±23.99 100 121.86±11.73 100 21.02±1.98 100 0.34±0.85 0

144 60 53 878.63±104.22 100 426.70±49.57 100 54.77±5.59 100 1.03±1.84 0
90 26 2109.47±197.10 100 958.13±108.68 100 102.93±10.20 73 27.79±225.99 0
50 55 817.52±94.16 100 382.46±45.32 100 58.13±6.37 100 0.68±0.90 0

196 100 56 3045.54±436.60 94 1453.39±155.86 100 147.11±10.73 13 51.01±368.96 0
150 22 3601.25±1.95 23 3011.47±410.05 93 190.26±14.20 3 41.27±145.47 2

ktree

20 25 68.25±22.23 100 44.25±14.10 100 10.48±3.67 100 221.18±526.97 0
100 40 37 307.91±91.63 100 151.97±50.63 100 23.19±8.36 100 163.59±396.07 0

60 23 650.72±170.18 100 306.26±94.47 100 40.19±13.59 100 - 0
30 28 443.33±48.49 100 245.71±20.98 100 44.58±4.17 100 492.55±932.29 (26) 0

150 60 47 1647.29±223.33 100 724.01±102.54 100 106.71±12.41 100 14.68±0.00 (1) 0
90 51 2917.01±531.54 (84) 84 1541.91±208.37 100 192.76±18.32 82 - (0) 0
50 45 1306.43±238.31 100 660.59±91.77 100 108.36±13.82 100 1199.83±1029.86 0

200 100 64 3376.59±121.62 (54) 54 1917.95±388.87 100 266.24±23.09 21 - (0) 0
1500 48 3602.98±4.05 (4) 4 3334.49±229.35 (59) 59 344.96±28.40 38 - (0) 0

Table 1: Results on random, grid and k-tree credal networks. Mean CPU times in seconds with
standard deviations, number of instances solved (#) and number of wins (W) for maximax CMMAP.
Time limit 1 hour, memory limit 8GB of RAM.

the time and memory limits. We can see again that CMBE(2) is competitive only on the easiest
instances (e.g., child, mildew) while SA yields the best performance in terms of both running time and
solution quality on the majority of the problem instances. In summary, the relatively large potentials
hinder CMBE’s performance, while the computational overhead incurred during the evaluation of
relatively large neighborhoods of the current state slows down significantly SHC and TS compared
with SA.

Table 7 reports the results obtained on the 22 networks withQ = 50% MAP variables for the maximin
CMMAP case. Similarly, Tables 4 and 6 summarize the results obtained on the real-world networks
with Q = 25% MAP variables for the maximax and the maximin CMMAP cases, respectively. We
can see that the results show the same pattern as those from Table 5.

4.3 Applications

Figure 3 shows the credal network for the brain tumour diagnosis use case derived from the Bayesian
network described in [15]. The variables are: MC - metastatic cancer, PD - Paget disease, B - brain
tumour, ISC - increased serum calcium, H - headaches, M - memory loss, CT - scan result.

Considering the query variables B and ISC, the exact solution for both maximax and maximin
CMMAP is (B = 0, ISC = 0) (obtained by both the CVE and DFS algorithms). In this case, the
maximax and maximin scores are 0.837 and 0.42, respectively. Algorithms SHC, TS and SA also
find the optimal configuration (B = 0, ISC = 0) which is evaluated by L2U to 0.8316 for maximax
CMMAP and to 0.37296 for maximin CMMAP, respectively.

Figure 4 shows the credal network for the intelligence report analysis described in [10]. The variables
are: As - assassination, C - coup/revolt, R - regime change, D - decision to invade, At - attack, B -
build-up, P - propaganda, I - invasion.

Considering the query variables D, At and I , the exact solution for both maximax and maximin
CMMAP is (D = 0, At = 0, I = 0) and is obtained by both algorithms CVE and DFS. The
corresponding scores are in this case 0.765 and 0.458806, respectively. The approximation schemes

9

Figure 3: Credal network for the Brain Tumour diagnosis.

Figure 4: Credal network for the Attack intelligence report.

10

n #Q w∗ SHC TS SA CMBE(2)
time (#) W time (#) W time (#) W time (#) W

random

20 25 76.16±7.25 100 52.16±5.16 100 10.04±1.96 100 265.59±669.38 (67) 2
100 40 37 361.50±30.47 100 186.75±13.02 100 25.01±3.62 100 389.16±668.72 (34) 0

60 44 797.28±98.43 100 404.23±38.40 100 48.46±5.32 100 191.01±151.74 (3) 0
30 39 275.49±26.51 100 149.96±9.69 100 23.37±3.03 99 226.29±390.17 (48) 0

150 60 57 1131.33±466.66 (97) 95 542.28±102.92 100 67.86±13.44 97 603.33±1012.22 (11) 0
90 66 2630.73±504.23 (97) 97 1166.62±191.76 100 141.99±19.33 82 - (0) 0
50 58 1020.76±294.29 (97) 96 495.72±70.67 100 66.53±14.69 96 541.06±823.06 (29) 0

200 100 86 3440.58±233.34 (39) 39 2045.59±514.98 (99) 99 202.11±65.25 18 609.13±522.39 (3) 0
150 69 3605.31±6.27 (18) 17 3520.87±132.30 (26) 26 316.75±95.36 68 - (0) 0

grid

20 25 57.56±10.27 100 42.28±6.38 100 7.98±1.74 100 0.07±0.07 0
100 40 37 324.16±504.02 100 132.12±32.66 100 20.09±4.06 100 0.12±0.09 0

60 23 667.17±649.35 97 262.16±69.02 100 34.36±9.20 95 35.47±348.60 0
30 36 243.26±484.61 (99) 98 102.52±33.82 99 17.76±3.46 98 0.13±0.15 2

144 60 53 751.01±583.37 (93) 93 326.01±95.12 100 44.03±11.96 94 0.34±0.80 0
90 26 1583.69±576.19 (81) 80 670.62±159.36 100 75.69±28.81 62 1.71±6.50 0
50 55 576.72±183.48 100 302.31±77.39 100 46.77±7.52 100 0.30±0.20 0

196 100 56 2494.47±596.88 (90) 90 959.20±198.18 100 118.59±29.84 13 6.21±54.31 0
150 22 3602.12±2.70 (22) 19 2486.36±708.78 96 134.59±48.13 2 22.25±99.44 (99) 2

ktree

20 18 159.04±118.30 100 92.46±8.66 100 20.99±3.80 99 89.58±202.59 (54) 2
100 40 31 822.01±820.36 (99) 97 315.42±74.03 100 43.17±9.75 96 13.92±12.96 (7) 0

60 32 1329.12±848.12 (94) 87 637.93±150.93 100 68.69±26.24 87 - (0) 0
30 28 500.28±314.29 100 254.92±24.43 100 43.02±6.80 99 161.23±427.67 (20) 0

150 60 47 1677.08±757.66 (88) 86 783.84±143.94 100 97.89±32.43 90 7.37±0.00 (1) 0
90 51 2683.21±624.66 (52) 51 1487.89±285.65 100 152.45±81.03 60 - (0) 0
50 45 1396.06±370.51 (94) 94 727.15±82.52 100 103.90±22.73 96 1158.34±564.21 (2) 0

200 100 64 3466.46±129.44 (40) 38 2075.95±487.57 (99) 99 227.81±101.48 17 - (0) 0
1500 48 3606.52±5.78 (11) 11 3467.11±152.83 (43) 43 237.44±156.28 57 - (0) 0

Table 2: Results on random, grid and k-tree credal networks. Mean CPU times in seconds with
standard deviations, number of instances solved (#) and number of wins (W) for maximin CMMAP.
Time limit 1 hour, memory limit 8GB of RAM.

SHC, TS and SA also find the same optimal CMMAP configuration (D = 0, At = 0, I = 0) which
is evaluated by L2U to 0.69651 for maximax CMMAP and to 0.305486 for maximin CMMAP,
respectively.

We note that in both cases, the constrained induced width is 2 and therefore CMBE(2) coincides with
the exact CVE. Therefore, all our approximation schemes found the optimal solutions.

References
[1] Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

[2] James Park. MAP complexity results and approximation methods. In Uncertainty in Artificial
Intelligence (UAI), pages 388–396, 2002.

[3] Isaac Levi. The Enterprise of Knowledge. MIT Press, 1980.

[4] Peter Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London,
UK, 1991.

[5] Fabio Cozman. Generalizing variable-elimination in Bayesian networks. In Workshop on
Probabilistic Reasoning in Bayesian Networks at SBIA/Iberamia 2000, pages 21–26, 2000.

[6] Cassio Campos and Fabio Cozman. The inferential complexity of Bayesian and credal networks.
In International Joint Conference on Artificial Intelligence (IJCAI), pages 1313–1318, 2005.

[7] Gregory Cooper. Nestor: A computer-based medical diagnosis aid that integrates causal and
probabilistic knowledge. Technical report, Computer Science department, Stanford University,
Palo-Alto, California, 1984.

[8] Marco Zaffalon, Alessandro Antonucci, and Rafael Cabañas. Structural causal models are
(solvable by) credal networks. In European Workshop on Probabilistic Graphical Models, 2020.

11

problem n

alarm 37
child 20
link 724
insurance 27
hepar2 70
pathfinder 109
hailfinder 56
largefam 1997
mastermind1 1220
mastermind2 2288
mastermind3 3692
mildew 35
munin 1041
pedigree1 334
pedigree7 1068
pedigree9 1118
win95pts 76
xandes 223
xdiabetes 413
zbarley 48
zpigs 441
zwater 32

Table 3: Number of variables for the real-world networks.

problem w∗ SHC TS SA CMBE
time (#) W time (#) W time (#) W time (#) W

alarm 8 3.92±0.71 10 4.43±0.69 10 1.81±0.24 10 294.42±36.55 0
child 5 0.91±0.08 10 1.34±0.18 10 0.37±0.04 10 0.02±0.01 0
link 173 3612.23±13.19 (5) 5 3622.01±6.16 (3) 2 827.79±43.95 5 - (0) 0
insurance 8 3.98±0.38 10 4.57±0.49 10 3.32±0.26 10 17.84 0
hepar2 16 428.06±24.73 10 277.24±21.11 10 82.73± 10 - (0) 0
pathfinder 18 911.28±99.63 10 21.91±1.21 10 60.70±10.01 10 - (0) 0
hailfinder 12 27.43±3.92 10 14.20±5.01 10 3.99±1.49 10 268.53±44.19 1
largefam 313 - (0) 0 - (0) 0 2406.27±269.09 10 - (0) 0
mastermind1 297 - (0) 0 - (0) 0 3078.89±365.56 5 228.11±258.14 (5) 5
mastermind2 559 - (0) 0 - (0) 0 3603.02±0.43 (2) 2 - (0) 0
mastermind3 908 - (0) 0 - (0) 0 3601.56±0.0 (1) 1 - (0) 0
mildew 8 3.96±0.26 10 4.38±0.43 10 2.29±0.16 10 0.30±0.41 3
munin 203 3600.00±0.0 (1) 0 3600.00±0.0 (4) 4 483.73±21.68 4 37.55pm9.12 (3) 2
pedigree1 77 3598.53±3.67 (5) 5 1593.69±229.87 10 224.76±34.80 10 867.15±281.98 0
pedigree7 191 - 0 - 0 1085±121.73 2 433.92±1006.64 (8) 8
pedigree9 203 3600.86±0.0 (1) 0 - (0) 0 1104.05±102.45 0 33.72±36.79 (9) 9
win95pts 18 2774.38±413.86 10 1621.45±204.85 10 445.95±82.33 10 - (0) 0
xandes 54 3608.36±4.41 10 3605.52±4.20 10 2906.51±888.74 0 - (0) 0
xdiabetes 85 2820.95±392.70 10 1077.20±217.63 10 104.12±33.10 0 137.63±133.95 (2) 0
zbarley 12 27.26±4.91 10 19.06±4.56 10 9.02±1.44 10 384.42±129.99 1
zpigs 89 3240.72±340.71 10 1160±133.09 10 105.87±15.47 0 115.44±0.0 (1) 0
zwater 12 18.11±6.01 10 21.83±3.87 10 10.70±3.08 10 - (0) 0

Table 4: Results on real-world credal networks with Q = 25% MAP variables. Mean CPU time
in seconds with standard deviations, number of instances solved (#) and number of wins (W) for
maximax CMMAP. Time limit 1 hour, 8GB of RAM.

[9] Eyke Hüllermeier, Sébastien Destercke, and Mohammad Hossein Shaker. Quantification of
credal uncertainty in machine learning: A critical analysis and empirical comparison. In James
Cussens and Kun Zhang, editors, Proceedings of the Thirty-Eighth Conference on Uncertainty
in Artificial Intelligence, volume 180 of Proceedings of Machine Learning Research, pages
548–557. PMLR, 01–05 Aug 2022.

[10] Denis Maua and Fabio Cozman. Thirty years of credal networks: Specifications, algorithms
and complexity. International Journal of Approximate Reasoning, 1(126):133–137, 2020.

[11] Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.

12

problem w∗ SHC TS SA CMBE
time (#) W time (#) W time (#) W time (#) W

alarm 12 27.32±3.33 10 21.31±1.95 10 4.89±0.56 10 324±174.99 0
child 7 3.51±0.59 10 3.69±0.46 10 1.19±0.09 10 0.64±1.83 0
link 239 3655±17.76 2 3628.15±1.52 1 1300.14±79.99 8 - 0
insurance 12 64.22±7.58 10 45.77±5.28 10 17.11±0.99 10 97.16±230.11 0
hepar2 25 1734.11±102.70 10 833.82±37.12 10 163.15±22.01 10 - (0) 0
pathfinder 33 2509.89±493.46 10 79.78±13.88 10 93.98±13.92 10 - 0
hailfinder 14 126.60±7.79 10 72.73±7.34 10 12.53±1.42 10 531.52±110.19 0
largefam 402 - 0 - 0 2903.55±195.07 10 - 0
mastermind1 389 - 0 - 0 3600.85 10 - 0
mastermind2 726 - 0 - 0 3617.17±4.22 5 - 0
mastermind3 1193 - 0 - 0 3650.54±20.35 3 - 0
mildew 12 22.49±4.52 10 15.22±3.54 10 3.15±0.82 10 0.16±0.43 0
munin 175 3615.45±15.74 4 3639.57±12.33 3 652.72±25.59 5 - 0
pedigree1 74 3603.87±3.26 7 3609.44±6.66 8 410.61±14.27 0 1269.45±478.10 0
pedigree7 147 3620.74±19.31 1 1689.89±102.59 1 1689.89±102.59 9 - 0
pedigree9 175 - 0 - 0 1719.92±59.88 6 1128.50±993.15 4
win95pts 28 3612.38±7.69 6 3610.94±4.83 6 821.20±145.74 10 - 0
xandes 75 3619.00±11.04 6 3611±8.25 6 3565±103.55 3 - 0
xdiabetes 75 3605.08±4.22 9 3603.76±2.92 10 175.76±18.44 0 182.38±338.30 0
zbarley 18 140.93±6.68 10 82.36±2.71 10 18.47±8.86 10 863.64±0.00 0
zpigs 105 3606.83±4.61 4 3603.8±3.59 5 234.84±13.58 5 100.47±8.08 0
zwater 16 207.07±7.39 10 126.87±8.77 10 44.68±2.43 10 - 0

Table 5: Results on real-world credal networks with Q = 50% MAP variables. Mean CPU time
in seconds with standard deviations, number of instances solved (#) and number of wins (W) for
maximax CMMAP. Time limit 1 hour, 8GB of RAM.

problem w∗ SHC TS SA CMBE
time (#) W time (#) W time (#) W time (#) W

alarm 8 2.57±0.09 10 2.81±0.11 10 1.51±0.22 10 321.21±55.30 0
child 5 0.55±0.03 10 0.77±0.03 10 0.38±0.03 10 0.01±0.01 0
link 173 3601.58±0.89 (2) 2 3613.40±0.00 (1) 1 49.87±8.41 10 - (0) 0
insurance 8 2.07±0.07 10 2.32±0.08 10 2.53±0.58 10 1.77±3.76 0
hepar2 16 1399.11±1190.89 10 395.48±150.11 10 28.23±29.11 4 - (0) 0
pathfinder 18 1111.08±77.54 10 26.79±4.70 10 90.09±3.17 10 - (0) 0
hailfinder 12 19.74±5.64 10 17.92±3.99 10 5.52±0.95 10 598.36±110.52 2
largefam 313 - (0) 0 - (0) 0 318.52±38.98 10 - (0) 0
mastermind1 297 - (0) 0 3600.27 (1) 1 287.21±34.75 10 565.28±915.66 (5) 5
mastermind2 559 - (0) 0 - (0) 0 2962.85±281.46 10 - (0) 0
mastermind3 908 - (0) 0 - (0) 0 3613.59±0.0 (1) 1 - (0) 0
mildew 8 2.42±0.56 10 2.73±0.45 10 1.86±0.20 10 0.19±0.12 5
munin 203 3601.32±0.46 (2) 1 3613.88±0.0 (1) 1 50.04±2.09 7 11.88pm10.99 (3) 3
pedigree1 77 3601.19±0.72 (3) 0 3586.05±244.33 (5) 1 13.42±0.86 0 747.01±236.58 9
pedigree7 191 - (0) 0 - (0) 0 120.42±6.92 3 361.48±799.46 (7) 7
pedigree9 203 - (0) 0 3600.57±0.0 (1) 0 126.79±7.42 0 19.46±17.30 10
win95pts 18 3600.28±0.0 (1) 1 3606.87±5.20 (2) 2 28.29±2.08 10 - (0) 0
xandes 54 3601.63±0.20 (2) 2 3601.28±0.62 (3) 3 1094.33±1640.46 6 - (0) 0
xdiabetes 85 3600.65±0.58 (5) 2 2102.27±361.71 9 37.71±57.13 4 170.86±166.47 (2) 1
zbarley 12 43.30±21.26 10 21.22±4.13 10 8.58±2.57 9 734.30±195.93 (8) 1
zpigs 89 3601.49±0.38 (5) 4 2173.38±299.06 10 40.51±61.89 2 92.51±0.0 (1) 0
zwater 12 18.79±2.54 10 22.18±2.03 10 18.59±2.69 10 - (0) 0

Table 6: Results on real-world credal networks with Q = 25% MAP variables. Mean CPU time
in seconds with standard deviations, number of instances solved (#) and number of wins (W) for
maximin CMMAP. Time limit 1 hour, 8GB of RAM.

[12] Rina Dechter and Irina Rish. Mini-buckets: A general scheme of approximating inference.
Journal of ACM, 50(2):107–153, 2003.

[13] Jaime Shinsuke Ide and Fabio Gagliardi Cozman. Approximate algorithms for credal networks
with binary variables. International Journal of Approximate Reasoning, 48(1):275–296, 2008.

[14] Alessandro Antonucci, Yi Sun, Cassio P De Campos, and Marco Zaffalon. Generalized loopy
2u: A new algorithm for approximate inference in credal networks. International Journal of
Approximate Reasoning, 51(5):474–484, 2010.

[15] Johan Kwisthout. Most probable explanations in Bayesian networks: Complexity and tractability.
International Journal of Approximate Reasoning, 52(1):1452–1469, 2011.

13

problem w∗ SHC TS SA CMBE
time (#) W time (#) W time (#) W time (#) W

alarm 12 157.61±280.73 10 19.48±6.49 10 2.58±1.32 7 328.28±94.58 0
child 7 2.01±0.04 10 2.31±0.06 10 1.01±0.20 10 0.65±1.77 0
link 239 - (0) 0 - (0) 0 143.09±8.89 10 - (0) 0
insurance 12 53.64±9.72 10 37.64±8.86 10 15.41±1.40 10 12.22±23.19 (9) 0
hepar2 25 3601.21±0.79 (8) 7 1888.79±155.99 9 27.31±40.52 6 - (0) 0
pathfinder 33 2909.51±369.03 10 106.33±10.73 10 134.98±14.99 10 - (0) 0
hailfinder 14 212.33±277.89 10 70.94±10.48 10 12.39±1.06 10 650.11±120.27 0
largefam 402 - (0) 0 - (0) 0 490.31±24.04 10 - (0) 0
mastermind1 389 - (0) 0 - (0) 0 812.42±79.77 10 - (0) 0
mastermind2 726 - (0) 0 - (0) 0 3606.25±0.0 (1) 1 - (0) 0
mastermind3 1193 - (0) 0 - (0) 0 3601.45±0.0 (1) 1 - (0) 0
mildew 12 107.96±95.62 10 19.91±2.89 10 5.02±0.40 10 0.18±0.18 0
munin 174 3601.93±0.0 (1) 1 3601.37±0.0 (1) 1 99.98±2.35 10 - (0) 0
pedigree1 74 3602±0.0 (1) 0 3610.61±8.77 (2) 1 29.93±0.68 2 1064.17±244.33 (8) 8
pedigree7 147 3601.96±0.0 (1) 1 - (0) 0 211.73±14.19 10 - (0) 0
pedigree9 175 - (0) 0 - (0) 0 219.91±11.82 8 150.66±116.54 (2) 2
win95pts 28 3601.27±1.21 (2) 2 3604.71±2.53 (2) 2 52.42±1.29 10 - (0) 0
xandes 75 - (0) 0 - (0) 0 51.96±0.78 10 - (0) 0
xdiabetes 75 3602.83±2.69 (2) 1 3604.15±2.41 (4) 2 22.98±0.42 2 55.42±102.97 (6) 6
zbarley 18 1855.64±1543.11 10 91.88±40.42 10 9.29±7.54 5 1387.73±0.0 (1) 0
zpigs 105 3601.30±1.29 (2) 1 3601.81±2.00 10 25.96±0.48 8 35.02±5.45 (2) 2
zwater 16 199.83±11.44 10 113.82±9.49 10 39.97±2.99 10 - (0) 0

Table 7: Results on real-world credal networks with Q = 50% MAP variables. Mean CPU time
in seconds with standard deviations, number of instances solved (#) and number of wins (W) for
maximin CMMAP. Time limit 1 hour, 8GB of RAM.

14

	Preliminaries
	Bayesian Networks
	Credal Networks

	Exact Credal MMAP
	Variable Elimination
	Depth-First Search

	Approximate Credal Marginal MAP
	Mini-Buckets Approximation
	Local Search

	Additional Experiments
	Random Credal Networks
	Real-World Credal Networks
	Applications

