
A Attacks overview

In this section, we make the ensemble of attacks explicit and explain essential details. We then adapt
these attack primitives to circumvent the defense mechanisms (see § E).

Global evasion attacks. The goal of a global attack is to provoke the misclassification of a large
fraction of nodes (i.e., the test set) jointly, crafting a single perturbed adjacency matrix. For evasion,
we use (1) the Fast Gradient Attack (FGA) and (2) Projected Gradient Descent (PGD). In FGA, we
calculate the gradient towards the entries of the clean adjacency matrix ∇Aℓattack(fθ∗(A,X),y) and
then flip the highest-ranked edges at once s.t. we exhaust the budget ∆. In contrast, PGD requires
multiple gradient updates since it uses gradient ascent (see § 2 or explanation below for Meta-PGD).
We deviate from the PGD implementation of Xu et al. [53] is two ways: (I) we adapt the initialization
of the perturbation before the first attack gradient descent step and (II) we adjust the final sampling of
Ã. See below for more details.

Global poisoning attacks. We either (a) transfer the perturbation Ã found by evasion attack (1)
or (2) and use it to poison training, or (b) differentiate through the training procedure by unrolling
it, thereby obtaining a meta gradient. The latter approach is taken by both (3) Metattack [66] and
(4) our Meta-PGD. Metattack greedily flips a single edge in each iteration and then obtains a new
meta gradient at the changed adjacency matrix. In Meta-PGD, we follow the same relaxation as Xu
et al. [53] (see below as well as § 2) and obtain meta gradients at the relaxed adjacency matrices. In
contrast to the greedy approach of Metattack, Meta-PGD is able to revise early decisions later on.

Meta-PGD. Next, we explain the details of Meta-PGD and we present the pseudo code for reference
in Algorithm A.1. Recall that the discrete edges are relaxed {0, 1} → [0, 1] and that the “weight” of
the perturbation reflects the probability of flipping the respective edge.

Algorithm A.1 Meta-PGD
1: Input: Adjacency matrix A, node features X, labels y, GNN fθ(·), loss ℓattack
2: Parameters: Budget ∆, iterations E, learning rates αt

3: Initialize P0 ∈ Rn×n

4: for t ∈ {1, 2, . . . , E} do
5: Step P(t) ← P(t−1) + αt∇P(t−1)

[
ℓattack

(
f
(
A+P(t−1),X; θ = train(A+P(t−1),X,y)

)
,y

)]
6: Projection P(t) ← Π∥E[A+P(t)]−A∥0≤2∆(P(t))

7: Sample Ã s.t. ∥Ã−A∥0 ≤ 2∆

8: Return Ã

In the first step of Meta-PGD, we initialize the perturbation (line 3). In contrast to Xu et al. [53]’s
suggestion, we find that initializing the perturbation with the zero matrix can cause convergence
issues. Hence, we alternatively initialize the perturbation with Ã from an attack on a different model
(see also lesson learned #8 in § 4).

In each attack iteration, a gradient ascent step is performed on the relaxed perturbed adjacency matrix
Ã(t−1) = A + P(t−1) (line 5). For obtaining the meta gradient through the training process, the
training is unrolled. For example, with vanilla gradient descent for training fθ(A,X) = f(A,X; θ),
the meta gradient resolves to

∇P(t−1)

(
ℓattack

[
f
(
A+P(t−1),X; θ = θ0 − η

Etrain∑
k=1

∇θk−1
ℓtrain[f(A+P(t−1),X; θ = θk−1),y]

)
,y

])
(A.1)

with number of training epochs Etrain, fixed training learning rate η, and parameters after (random)
initialization θ0. Notice that to obtain our variant of non-meta PGD, it suffices to replace the gradient
computation in line 5 with ∇P(t−1)

[
ℓattack(fθ∗(A+P(t−1),X),y)

]
.

Thereafter in line 6, the perturbation is projected such that in expectation the budget is obeyed, i.e.,
Π∥E[A+P(t)]−A∥0≤2∆. First, the projection clips A+P(t−1) to be in [0, 1]. If the budget is violated
after clipping, it solves

argmin
P̂(t)

∥P̂(t) −P(t)∥2 s.t. A+ P̂(t) ∈ [0, 1]n×n and
∑

|P̂(t)| ≤ 2∆ (A.2)

After the last iteration (line 7), each element of P(t) is interpreted as a probability and multiple
perturbations are sampled accordingly. The strongest drawn perturbed adjacency matrix (in terms of
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attack loss) is chosen as Ã. Specifically, in contrast to [53], we sample K = 100 potential solutions
that all obey the budget ∆ and then choose the one that maximizes the attack loss ℓattack.

Local attacks. For local attacks we only run evasion attacks, and then transfer them to poisoning.
This is common practice (e.g., see Zügner et al. [67] or Li et al. [34]). The attacks we use are (1) FGA,
(2) PGD, (3) Nettack [67], and a (4) Greedy Brute Force attack. Nettack greedily flips the best edges
considering a linearized GCN, whose weights are either specially trained or taken from the attacked
defense. In contrast, in each iteration, our Greedy Brute Force attack flips the current worst-case edge
for the attacked model. It determines the worst-case perturbation by evaluating the model for every
single edge flip. Notice that all examined models use two propagation steps, so we only consider
all potential edges adjoining the target node or its neighbors4. Importantly, Greedy Brute Force is
adaptive for any kind of model. Runtime-wise, the algorithm evaluates the attacked model O(∆nd)
times with the number of nodes n and the degree of the target node d. We provide pseudo code in
Algorithm A.2.

Algorithm A.2 Greedy Brute Force

1: Input: Target node i, adjacency matrix A, node features X, labels y, GNN fθ(·), loss ℓattack
2: Parameter: Budget ∆
3: Initialize Ã(0) = A
4: for t ∈ {1, 2, . . . ,∆} do
5: for potential edge e adjoining i or any of i’s direct neighbors do
6: Flip edge Ã(t) ← Ã(t−1) ± e

7: Remember best Ã(t) in terms of ℓattack(fθ∗(Ã
(t),X),y)

8: if node i is missclassifed then
9: Return Ã(t)

10: Recover best Ã(t)

11: Return Ã∆

Unnoticeability typically serves as a proxy to ensure that the label of an instance (here node) has
not changed. In the image domain, it is widely accepted that a sufficiently small perturbation of the
input image w.r.t. an Lp-norm is unnoticeable (and similarly for other threat models such as rotation).
For graphs the whole subject of unnoticeability is more nuanced. The only constraint we use is the
number of edge insertions/deletion, i.e., an L0-ball around the clean adjacency matrix.

The only additional unnoticeability constraint proposed in the literature compares the clean and
perturbed graph under a power law assumption on the node degrees [67]. However, we do not include
such a constraint since (1) the degree distribution is only one (arbitrary) property to distinguish
two graphs. (2) The degree distribution is a global property with an opaque relationship to the local
class labels in node classification. (3) As demonstrated in Zügner & Günnemann [66], enforcing
an indistinguishable degree distribution only has a negligible influence on attack efficacy, i.e., their
gradient-based/adaptive attack conveniently circumvents this measure. Thus, we argue that enforcing
such a constraint is similar to an additional (weak) defense measure and is not the focus of this
work. Finally, since many defense (and attack) works in the literature considering node-classification
(including the ones we study) also only use an L0-ball constraint as a proxy for unnoticeability,
we do the same for improved consistency. Out of scope are also other domains, like combinatorial
optimization, where unnoticeability is not required since the true label of the perturbed instance is
known [18].

4 Due to GCN-like normalization (see § E), the three-hop neighbors need to be considered to be exhaustive.
However, it is questionable if perturbing a neighbor three hops away is ever the strongest perturbation there is.
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B Defense taxonomy

Next, we give further details behind our reasoning on how to categorize defenses for GNNs. Our
taxonomy extends and largely follows Günnemann [21]’s. The three main categories are improving
the graph (§ B.1), improving the training (§ B.2), and improving the architecture (§ B.3). We assign
each defense to the category that fits best, even though some defenses additionally include ideas
fitting into other categories as well. For the assignment of defenses see Table 1.

B.1 Improving the graph

With this category, we refer to all kinds of preprocessing of the graph. Alternatively, some approaches
make the graph learnable with the goal of improved robustness. In summary, this category addresses
changes that take place prior to the GNN (i.e., any message passing). We further distinguish (1)
unsupervised and (2) supervised approaches.

Unsupervised. Any improvements that are not entangled with a learning objective, i.e., pure pre-
processing, usually arising from clues found in the node features and graph structure. For example,
Jaccard-GCN [48] filters out edges based on the Jaccard similarity of node features, while SVD-
GCN [12] performs a low-rank approximation to filter out high-frequency perturbations. Most other
approaches from this category exploit clues from features and structure simultaneously.

Supervised. These graph improvements are entangled with the learning objective by making the
adjacency matrix learnable, often accompanied by additional regularization terms that introduce
expert assumptions about robustness. For example, ProGNN [30] treats the adjacency matrix like a
learnable parameter, and adds loss terms s.t. it remains close to the original adjacency matrix and
exhibits properties which are assumed about clean graphs like low-rankness.

B.2 Improving the training

These approaches improve training – without changing the architecture – s.t. the learned parameters
θ∗ of the GNN exhibit improved robustness. In effect, the new training “nudges” a regular GNN
towards being more robust. We distinguish (1) robust training and (2) further training principles.

Robust training. Alternative training schemes and losses which reward the correct classification of
synthetic adversarial perturbations of the training data. With this category, Günnemann [21] targets
both straightforward adversarial training and losses stemming from certificates (i.e., improving
certifiable robustness). Neither approach is interesting to us: the former is discussed in § C, and the
latter targets provable robustness which does not lend itself to empirical evaluation.

Further training principles. This category is distinct from robust training due to the lack of a clear
mathematical definition of the training objective. It mostly captures augmentations [15, 29, 39, 42, 61]
or alternative training schemes [5, 11, 55, 64] that encourage robustness. A simple example for such
an approach is to pre-train the GNN weights on perturbed graphs [42]. Another recurring theme is to
use multiple models during training and then, e.g., enforce consistency among them [5].

B.3 Improving the architecture

Even though there are some exceptions (see sub-category (2) miscellaneous), the recurring theme
in this category is to somehow weight down the influence of some edges adaptively for each layer
or message passing aggregation. We refer to this type of improved architecture with (1) adaptively
weighting edges. We further distinguish between approaches that are (a) rule-based, (b) probabilistic,
or use (c) robust aggregation.

Rule-based approaches typically use some metric [31, 58], alternative message passing [36, 37], or an
auxiliary MLP [57] to filter out alleged adversarial edges. Probabilistic approaches either work with
distributions in the latent space [63], are built upon probabilistic principles like Bayesian uncertainty
quantification [13], or integrate sampling into the architecture and hence apply it also at inference
time [8, 24, 25, 38]. Robust aggregation defenses replace the message passing aggregation (typically
mean) with a more robust equivalent such as a trimmed mean, median, or soft median [7, 17]. In
relation to the trimmed mean, in this category we include also other related approaches that come
with some guarantees based on their aggregation scheme Wang et al. [47].
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C On adversarial training defenses

The most basic form of adversarial training for structure perturbations aims to solve:

min
θ

max
A′∈Φ(A)

ℓ(fθ(A
′,X),y) (C.1)

Similarly to [44, 1, 4], we exclude defenses that build on adversarial training in our study for three
reasons.

First, we observe that adversarial training requires knowing the clean A. However, for poisoning,
we would need to substitute A with an adversarially perturbed adjacency matrix Ã. In this case,
adversarial training aims to enforce adversarial generalization A′ ∈ Φ(Ã) for the adversarially
perturbed adjacency matrix Ã – potentially even reinforcing the poisoning attack.

Second, an adaptive poisoning attack on adversarial training is very expensive as we need to unfold
many adversarial attacks for a single training. Thus, designing truly adaptive poisoning attacks
requires a considerable amount of resources. Scaling these attacks to such complicated training
schemes is not the main objective of this work.

Third, adversarial training for structure perturbations on GNNs seems to be an unsolved question. So
far, the robustness gains come from additional and orthogonal tricks such as self-training [53]. Hence,
adversarial training for structure perturbations requires an entire paper on its own.

D On defenses against feature perturbations

As introduced in § 2, attacks may perturb the adjacency matrix A, the feature matrix X, or both.
However, during our survey we found that few defenses tackle feature perturbations. Similarly, 6 out
of the 7 defenses chosen by us mainly based on general popularity turn out to not consciously defend
against feature perturbations.

The only exception is SVD-GCN [12], which also applies its low-rank approximation to the binary
feature matrix. However, the authors do not report robustness under feature-only attacks; instead, they
only consider mixed structure and feature attacks found by Nettack. Given the strong bias of Nettack
towards structure perturbations, we argue that their experimental results do not confirm feature
robustness. Correspondingly, in preliminary experiments we were not able to achieve considerable
robustness gains of SVD-GCN compared to an undefended GCN – even with non-adaptive feature
perturbations. If a non-adaptive attack is strong enough, there is not much merit in applying an
adaptive attack.

To reiterate, due to the apparent scarcity of defenses apt against feature attacks, we decided to focus
our efforts on structure attacks and defenses. However, new defenses considering feature perturbations
should study robustness in the face of adaptive attacks – similarly to our work. In the following,
we give some important hints for adaptive attacks using feature perturbations. We leave attacks
that jointly consider feature and structure perturbations for future work due to the manifold open
challenges, e.g., balancing structure and feature perturbations in the budget quantity.

Baseline. To gauge the robustness of defenses w.r.t. global attacks, we introduce the RAUC metric,
which employs the accuracy of an MLP – which is perfectly robust w.r.t. structure perturbations – to
determine the maximally sensible budget to include in the summary. As MLPs are however vulnerable
to feature attacks, a different baseline model is required for this new setting. We propose to resolve
this issue by using a label propagation approach, which is oblivious to the node features and hence
perfectly robust w.r.t. feature perturbations.

Perturbations. The formulation of the set of admissible perturbations depends on what modality
the data represents, which may differ between node features and graph edges. Convenient choices
for continuous features are l-p-norms; in other cases, more complicated formulations are more
appropriate. Accordingly, one has to choose an appropriate constrained optimization scheme.
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E Examined adversarial defenses

In this section, we portray each defense and how we adapted the base attacks to each one. We refer to
Table H.1 for the used hyperparameter values for each defense. We give the used attack parameters
for a GCN below and refer to the provided code for the other defenses.

GCN. We employ an undefended GCN [33] as our baseline. A GCN first adds self loops to the
adjacency matrix A and subsequently applies GCN-normalization, thereby obtaining A′ = (D +

I)−
1
2 (A + I)(D + I)−

1
2 with the diagonal degree matrix D ∈ Nn×n. Then, in each GCN layer it

updates the hidden states H(l) = dropout(σ(A′H(l−1)W(l−1) + b(l−1))) where H(0) = X. We
use the non-linear ReLU activation for intermediate layers. Dropout is deactivated in the last layer
and we refer to the output before softmax activation as logits. We use Adam [32] to learn the model’s
parameters.

Attack. We do not require special tricks since the GCN is fully differentiable and does not come
with defensive measures to consider. In fact, the off-the-shelf attacks we employ are tailored to a
GCN. For PGD, we use E = 200 iterations, K = 100 samples, and a base learning rate of 0.1. For
Meta-PGD, we only lower the base learning rate to 0.01 and add gradient clipping to 1 (w.r.t. global
L2-norm). For Metattack with SGD instead of Adam for training the GCN, we use an SGD learning
rate of 1 and restrict the training to Etrain = 100 epochs.

E.1 Jaccard-GCN

Defense. Additionally to a GCN, Jaccard-GCN [48] preprocesses the adjacency matrix. It computes
the Jaccard coefficient of the binarized features for the pair of nodes of every edge, i.e., Jij =

XiXj

min{Xi+Xj ,1} . Then edges are dropped where Jij ≤ ϵ.

Adaptive attack. We do not need to adapt gradient-based attacks as the gradient is equal to zero for
dropped edges. Straightforwardly, we adapt Nettack to only consider non-dropped edges. Analogously,
we ignore these edges in the Greedy Brute Force attack for increased efficiency.

E.2 SVD-GCN

Defense. SVD-GCN [12] preprocesses the adjacency matrix with a low-rank approximation (LRA) for
a fixed rank r, utilizing the Singular Value Decomposition (SVD) A = UΣV⊤ ≈ UrΣrV

⊤
r = Ar.

Note that the LRA is performed on A before adding self-loops and GCN-normalization (see above).
Thereafter, the dense Ar is passed to the GCN as usual. Since A is symmetric and positive semi-
definite, we interchangeably refer to the singular values/vectors also as eigenvalues/eigenvectors.

Adaptive attack. Unfortunately, the process of determining the singular vectors Ur and Vr is
highly susceptible to small perturbations, and so is its gradient. Thus, we circumvent the need of
differentiating the LRA.

We now explain the approach from a geometrical perspective. Each row of A (or interchangeably
column as A is symmetric) is interpreted as coordinates of a high-dimensional point. The r most
significant eigenvectors of A span an r-dimensional subspace, onto which the points are projected by
the LRA. Adding or removing an adversarial edge (i, j) corresponds to moving the point Ai along
dimension j, i.e., Ai ± ej (vice-versa for Aj). As hinted at in § 4, the r most significant eigenvectors
of A turn out to usually have few large components. Thus, the relevant subspace is mostly aligned
with only few dimensions.

Changes along the highest-valued eigenvectors are consequently preserved by LRA. To quantify how
much exactly such a movement along a dimension j, i.e., ej , is preserved, we project the movement
itself onto the subspace and extract the projected vector’s j-th component. More formally, we denote
the projection matrix onto the subspace as P =

∑r
k=0 vkv

T
k where vk are the eigenvectors of A.

We now score each dimension j with (Pej)j = Pjj . Since the adjacency matrix is symmetric and
rows and columns are hence exchangeable, we then symmetrize the scores Wij = (Pii + Pjj)/2.

Finally, we decompose the perturbed adjacency matrix Ã = A+ δA and, thus, only need gradients
for δA. Using the approach sketched above, we now replace LRA(A+ δA) ≈ LRA(A)+ δA ◦W.
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The weights W can also be incorporated into the Greedy Brute Force attack by dropping edges
with weight < 0.2 and, for efficient early stopping, sort edges to try in order of descending weight.
Similarly, Nettack’s score function sstruct(i, j) – which attains positive and negative values, while W
is positive – can be wrapped to s′struct(i, j) = log(exp(sstruct(i, j)) ◦W) = sstruct(i, j) + logW.

Note that we assume that the direction of the eigenvectors remains roughly equal after perturbing
the adjacency matrix. In practice, we find this assumption to be true. Intuitively, a change along the
dominant eigenvectors should even reinforce their significance.

E.3 RGCN

Defense. The implementations of R(obust)GCN provided by the authors5 and in the widespread
DeepRobust [35] library6 are both consistent, but diverge slightly from the paper [63]. We use and now
present RGCN according to those reference implementations. Principally, RGCN models the hidden
states as Gaussian vectors with diagonal variance instead of sharp vectors. In addition to GCN’s A′,
a second A′′ = (D + I)−1(A + I)(D + I)−1 is prepared to propagate the variances. The mean
and variance of this hidden Gaussian distribution are initialized as M(0) = V(0) = X. Each layer
first computes an intermediate distributions given by M̂(l) = elu(dropout(M(l−1))W

(l−1)
M ) and

V̂(l) = relu(dropout(V(l−1))W
(l−1)
V ). Then, attention coefficients α(l) = e−γV̂(l)

are calculated
with the aim to subdue high-variance dimensions (where exponentiation is element-wise and γ

is a hyperparameter). The final distributions are obtained with M(l) = A′M̂′(l) ◦ α(l). Note the
absence of bias terms. After the last layer, point estimates are sampled from the distributions via
the reparameterization trick, i.e., scalars are sampled from a standard Gaussian and arranged in a
matrix R. These samples are then used to obtain the logits via M(L) + R ◦ (V(L) + ϵ)

1
2 (where

the square root applies element-wise and ϵ is a hyperparameter). Adam is the default optimizer.
The loss is extended with the regularizer β

∑
i KL(N (M̂

(1)
i ,diag(V̂

(1)
i ))∥N (0, I)) (where β is a

hyperparameter).

Adaptive attack. A direct gradient attack suffices for a strong adaptive attack. Only when unrolling
the training procedure for Metattack and Meta-PGD, we increase hyperparameter ϵ from 10−8 to
10−2 to retain numerical stability.

E.4 ProGNN

Defense. We use and present Pro(perty)GNN [30] exactly following the implementation provided by
the authors in their DeepRobust [35] library6. ProGNN learns an alternative adjacency matrix S that is
initialized with A. A regular GCN – which, as usual, adds self-loops and applies GCN-normalization
– is trained using S, which is simultaneously updated in every τ -th epoch. For that, first a gradient
descent step is performed on S with learning rate η and momentum µ towards minimizing the principal
training loss alongside two regularizers that measure deviation β1∥S−A∥2F and feature smoothness
β2

2

∑
i,j Sij∥ Xi√

di
− Xj√

dj

∥2 (where di =
∑

j Sij + 10−3). Next, the singular value decomposition

UΣVT of the updated S is computed, and S is again updated to be Umax(0,Σ − ηβ3)V
T to

promote low-rankness. Thereafter, S is again updated to be sgn(S) ◦max(0, |S| − ηβ4) to promote
sparsity. Finally, the epoch’s resulting S is obtained by clamping its elements between 0 and 1.

Adaptive attack. Designing an adaptive attack for ProGNN proved to be a challenging endeavor. We
describe the collection of tricks in § 4’s Example 2.

E.5 GNNGuard

Defense. We closely follow the authors’ implementation7 as it deviates from the formal definitions in
the paper [58]. GNNGuard adopts a regular GCN and, before each layer, it adaptively weights down
alleged adversarial edges. Thus, each layer has a unique propagation matrix A(l) that is used instead
of A′.

5 https://github.com/ZW-ZHANG/RobustGCN 6 https://github.com/DSE-MSU/DeepRobust
7 https://github.com/mims-harvard/GNNGuard
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GNNGuard’s rule-based edge reweighting can be clustered into four consecutive steps: (1) the

edges are reweighted based on the pair-wise cosine similarity C
(l)
ij =

H
(l−1)
i ·H(l−1)

j

∥H(l−1)
i ∥∥H(l−1)

j ∥
according to

S(l) = A ◦C(l) ◦ I[C(l) ≥ 0.1], where edges with too dissimilar node embeddings are removed (see
Iverson bracket I[C(l) ≥ 0.1]). Then, (2) the matrix is rescaled Γ

(l)
ij = S

(l)
ij /s

(l)
i with s

(l)
i =

∑
j S

(l)
ij

For stability, if s(l)i < ϵ, s(l)i is set to 1 (here ϵ is a small constant). Next, (3) self-loops are added and
Γ(l) is non-linarily transformed according to Γ̂(l) = exp̸=0(Γ

(l)+diag 1/1 + d(l)), where exp ̸=0 only

operates on nonzero elements and d
(l)
i = ∥Γ(l)

i ∥0 is the row-wise number of nonzero entries. Last,
(4) the result is smoothed over the layers with Ω(l) = σ(ρ)Ω(l−1) + (1− σ(ρ))Γ̂(l) with learnable
parameter ρ and sigmoid function σ(·).
The resulting reweighted adjacency matrix Ω(l) is then GCN-normalized (without adding self-loops)
and passed on to a GCN layer. Note that steps (1) to (3) are excluded from back-propagation during
training. When comparing with the GNNGuard paper, one notices that among other deviations, we
have omitted learnable edge pruning because it is disabled in the reference implementation.

Adaptive attack. The hyperparameter ϵ must be increased from 10−6 to 10−2 during the attack
to retain numerical stability. In contrast to the reference implementation but as stated above, it is
important to place the hard filtering step I[C(l) ≥ 0.1] for S(l) s.t. the gradient calculation w.r.t. A is
not suppressed for these entries.

E.6 GRAND

Defense. The Graph Random Neural Network (GRAND) [15] model is the only defense from our
selection that is not based on a GCN. First, A is endowed with self-loops and GCN-normalized to
obtain A′. Also, each row of X is l1-normalized, yielding X′. Next, rows from X′ are randomly
dropped with probability δ during training to generate a random augmentation, and X′ is scaled by
1− δ during inference to compensate, thereby obtaining X̂. Those preprocessed node features are
then propagated multiple times along the graph to get X = 1

K+1

∑K
k=0 A

′kX̂. Finally, dropout is
applied once to X, and the result is plugged into a 2-layer MLP with dropout and ReLU activation to
obtain class probabilities Z. The authors also propose an alternative architecture using a GCN instead
of an MLP, however, we do not explore this option since the MLP version is superior according to
their own results.

GRAND is trained with Adam. The training loss comprises the mean of the cross-entropy losses of S
model evaluations, thereby incorporating multiple random augmentations. Additionally, a consistency
regularizer is added to enforce similar class probabilities across all evaluations. More formally, first
the probabilities are averaged across all evaluations: Z = 1

S

∑S
s=1 Z

(s). Next, each node’s categorical
distribution is sharpened according to a temperature hyperparameter T , i.e., Z

′
ij = Z

1
T
ij
/
∑

c Z
1
T
ic . The

final regularizer penalizes the distance between the class probabilities and the sharpened averaged
distributions, namely β

S

∑S
s=1 ∥Z(s) − Z

′∥2F .

Adaptive attack. When unrolling the training procedure for Metattack and Meta-PGD, to reduce
the memory footprint, we reduce the number of random augmentations per epoch to 1, and we use a
manual gradient calculation for the propagation operation. We also initialize Meta-PGD with a strong
perturbation found by Meta-PGD on ProGNN. Otherwise, the attack has issues finding a perturbation
with high loss; it presumably stalls in a local optimum. It is surprising that “only” initializing from
GCN instead of ProGNN does not give a satisfyingly strong attack. Finally, we use the same random
seed for every iteration of Metattack and Meta-PGD, as otherwise the constantly changing random
graph augmentations make the optimization very noisy.

E.7 Soft-Median-GDC

Defense. The Soft-Median-GDC [17] deviates in two ways from a GCN: (1) it uses Personalized
Page Rank (PPR) with restart probability α = 0.15 to further preprocess the adjacency matrix after
adding self-loops and applying GCN-normalization. The result is then sparsified using a row-wise
top-k operation (k = 64). (2) the message passing aggregation is replaced with a robust estimator
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called Soft-Median. From the perspective of node i, a GCN uses the message passing aggregation
H

(l)
i = AiH

(l−1) which can be interpreted as a weighted mean/sum. In Soft-Median-GDC, the
“weights” Ai are replaced with a scaled version of Ai ◦ softmax (−c/T

√
d). Here the vector c denotes

the distance between hidden embedding of a neighboring node to the neighborhood-specific weighted
dimension-wise median: ci = ∥Median(Ai,H

(l−1))−H
(l−1)
i ∥. To keep the scale, these weights

are scaled s.t. they sum up to
∑

Ai.

Adaptive attack. During gradient-based attacks, we adjust the c of every node s.t. it now captures
the distance to all other nodes, not only neighbors. This of course modifies the values of c, but is
necessary to obtain a nonzero gradient w.r.t. to all candidate edges. We initialize PGD with a strong
perturbation found by a similar attack on GCN, and initialize Meta-PGD with a perturbation from
a similar attack on ProGNN (as with GRAND, using an attack against GCN as a base would be
insufficient here).

F Evaluation of adaptive attacks

In Table F.1, we summarize the variants of the datasets we use, both of which we have precisely
extracted from Nettack’s code8. In Fig. F.1, we complement Fig. 2 and compare the (R)AUC of all
defenses on Citeseer. The robustness estimates for the defenses on Citeseer are also much lower
as originally reported. For completeness, we give absolute envelope curve plots for all settings and
datasets as well as for higher budgets in Fig. F.2 and Fig. F.3 (compare with Fig. 4 and Fig. 5).

Table F.1: Statistics of the datasets we used. We measure homophily as the fraction of edges which
connect nodes of the same class.

Dataset Nodes Undirected Edges Features Classes Avg. Degree Homophily

Cora ML [2] 2485 5069 1433 7 4.08 0.804
Citeseer [19] 2110 3668 3703 6 3.477 0.736
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Figure F.1: Variant of Fig. 2 for Citeseer.

8 https://github.com/danielzuegner/nettack
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Figure F.2: Absolute variant of Fig. 4, showing relative budgets up to 15%.
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Figure F.3: Absolute variant of Fig. 5, showing relative budgets up to 200%.
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G Ensemble transferability study

In Fig. 8, we transfer attacks found on an individual model to other models. It is natural to also assess
the strength of transfer attacks supplied by ensembles of models. In Fig. G.1, we address this question
for 2-ensembles. For poisoning, the combination of RGCN and ProGNN turns out to be (nearly) the
strongest in all cases, which is reasonable since both already form strong individual transfer attacks
as is evident in Fig. 8. For evasion, the differences are more subtle.

We also investigate 3-ensembles, but omit the plots due to their size. For poisoning, RGCN and
ProGNN now combined with Soft-Median-GDC remain the strongest transfer source, yet the im-
provement over the 2-ensemble is marginal. For evasion, there is still no clear winner.
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Figure G.1: Variant of Fig. 8 with ensembles of models as attack transfer sources. The color maps are
not matched across (a) and (b) for improved readability.
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H GCN and defense hyperparameters: original vs. tuned for adaptive attacks

To allow for the fairest comparison possible, we tuned the hyperparameters for each model (including
GCN) towards maximizing both clean accuracy and adversarial robustness on a single random data
split. In Table H.1, we list all hyperparameter configurations. While we cannot run an exhaustive
search over all hyperparameter settings, we report substantial gains for most defenses and the GCN
in Fig. H.1. The only exceptions are GRAND, Soft-Median-GDC on Cora ML, and GNNGuard. For
GRAND, we do not report results for the default hyperparameters as they did not yield satisfactory
clean accuracy. Moreover, for Soft-Median-GDC on Cora ML and GNNGuard we were not able to
substantially improve over the default hyperparameters.

For the GCN, tuning is important to ensure that we have a fair and equally-well tuned baseline. A
GCN is the natural baseline since most defense methods propose slight modifications of a GCN or
additional steps to improve the robustness. For the defenses, tuning is vital since they were most
originally tuned w.r.t. non-adaptive attacks. In any case, the tuning should counterbalance slight
variations in the setup.

As stated in the introduction, each attack only provides an upper bound for the actual adversarial
robustness of a model (with fixed hyperparameters). A future attack of increased efficacy might lead
to a tighter estimate. Thus, when we empirically compare the defenses to a GCN, we only compare
upper bounds of the respective actual robustness. However, we attack the GCN with state-of-the-art
approaches that were developed by multiple researchers specifically for a GCN. Even though we also
tune the parameters of the adaptive attacks, we argue that the robustness estimate for a GCN is likely
tighter than our robustness estimate for the defenses. In summary, the tuning of hyperparameters
is necessary that we can fairly compare the robustness of multiple models, even though, we only
compare upper bounds of the true robustness.
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Figure H.1: Each defense’s clean accuracy vs. (R)AUC values of the strongest attacks, akin to
Fig. 6. Muted (semi-transparent) colors represent untuned defenses (except for Soft-Median-GDC on
Cora ML and GNNGuard), solid colors denote tuned defenses, and lines connect the two. Our tuned
defenses are almost always better than untuned variants w.r.t. both clean accuracy and robustness.
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I Comparison of success of attack approaches

In Fig. I.1 we report which of the global attack techniques generate the strongest attacks, and in
Fig. I.3, we break down every global attack attempt. Analogously, in Fig. I.2 and Fig. I.4, we report
which local attack techniques require the smallest budget to misclassify the target nodes. In Fig. I.3,
we additionally compare different loss types for global attacks.

In general, we can say that PGD is the dominating attack for global evasion. For poisoning, Meta-PGD
seems to be the strongest – slightly more successful than Metattack, though not in every case. Greedy
brute force dominates the local attacks, but for some defenses, PGD and Nettack have an edge.

FGA PGD Metattack w/ Adam Metattack w/ SGD Meta-PGD

0 50 100
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GNNGuard
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(b) Citeseer, Pois.

0 50 100

Cases supp. envelope

(c) Cora ML, Evas.
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(d) Citeseer, Evas.

Figure I.1: Number of global attack attempts which support the envelope curve over all attack attempts,
as introduced in Fig. 3. We observe that for evasion, PGD almost always yields the strongest attack,
while for poisoning, either Metattack, Meta-PGD, or both dominate. Using Adam instead of SGD to
train the defense nearly always worsens Metattack’s performance.
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Figure I.2: Number of target nodes for which the respective local attack needs the least budget (among
all attacks) to misclassify them. When multiple attacks achieve the same lowest budget, the target
node is counted in parts towards each winning attack and drawn with a muted color. We observe
that greedy brute force is often the strongest attack; only sometimes, PGD and Nettack beat it on
some defenses, especially for poisoning. Using the defense’s weights instead of a surrogate model for
Nettack is rarely an improvement. Still, for the majority of target nodes, multiple attacks are equally
strong in terms of achieving the same lowest budget (tie). We do not run the greedy brute force attack
on Soft-Median-GDC due to the costly PPR calculation.
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Figure I.3: The RAUC of every global attack we have conducted. Attacks are color-coded by
principal technique, and markers indicate the attack loss. Muted colors represent attacks without
edge masking (Jaccard-GCN), our edge weighting trick (SVD-GCN), multiple PGD auxiliary models
(ProGNN), Meta-PGD initialization from ProGNN and unlimited unrolled epochs (GRAND), and
PGD initialization from GCN (Soft-Median-GDC). We observe that (1) the TLM and PM losses are
superior in almost all cases; (2) PGD attacks are best for evasion while Metattack and Meta-PGD
are unsuited; (3) Metattack with SGD and Meta-PGD are best for poisoning while Metattack w/
Adam even falls behind the surprisingly strong evasion-poisoning transfer; (4) FGA is weak for each
defense apart from SVD-GCN; (5) the cited adaptions are beneficial as attacks with muted colors are
worse; (6) a strong adaptive attack is necessary to reach a low RAUC.
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Figure I.4: The AUC of every local attack we have conducted. Attacks are color-coded by principal
technique. Muted colors have the same signification as in Fig. I.3. We observe that (1) greedy brute
force is often the best attack, closely followed by PGD, while FGA is not as strong; (2) Nettack can
rarely be made stronger by utilizing the target model’s weights instead of a surrogate model (red); (3)
many defenses successfully defend against Nettack; (4) against those defenses for which we have
adapted Nettack, it becomes much stronger (muted vs. normal green); (5) the adaptions are also
beneficial for other attacks, as those with muted colors are worse.
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J Sensitivity to random seed
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ProGNN Untuned
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GCN Untuned
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Different seed

Figure J.1: Lowest RAUC achieved by global
evasion-poisoning transfer attacks on Cora
ML under the premise that the random seed
used by the victim is known respectively un-
known to the attacker. While not knowing
the seed is disadvantageous especially on
ProGNN, our attack using multiple auxiliary
models successfully compensates this issue.

When transferring perturbations from evasion to poi-
soning, a different random seed is used for training
the poisoned model than was used for the evasion
one. In Fig. J.1, we study using the example of GCN
and ProGNN whether poisoning success improves
when we instead assume the same seed is used. This
is indeed the case and turns out particularly strong
on tuned ProGNN. However, by using multiple aux-
iliary models during evasion as detailed in § 4 under
the ProGNN example subheading, we can substan-
tially reduce the dependence of the attack upon a
particular random seed and thereby improve attack
performance.

K Robustness over node degree

We explore the behavior of nodes under attack de-
pending on their degree. In Fig. K.1, we show the
probability that a successfully misclassified node falls
into a certain degree range, broken down by relativ budget.

We cannot confirm the prevalent conjecture that global attacks tend to target low-degree nodes, as
they are easier to break. Our results show that all degree groups are misclassified uniformly over all
budgets. There is no clear preference for lower-degree nodes.

For local attacks, on the other hand, we indeed observe that the success rate of changing the predicted
class is independent of the node degree if and only if using a relative budget. For example, when
allowing a certain relative budget, e.g., 100% of the target node’s degree, we manage to misclassify
the same fraction of 1-degree target nodes (with absolute budget of 1) as 5-degree ones (with absolute
budget of 5).
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Figure K.1: The probability that a misclassified node is in a certain degree range. More specifically,
for global attacks, that is which ratios of test set nodes from subsets with degree 1, 2, 3, ... , 9, ≥ 10
are misclassified per budget, normalized s.t. the stacked results sum to 1 everywhere. For local attacks,
we show the amount of nodes from each target node set misclassified per budget, again normalized
s.t. the stack sums to 1. Results are averaged over all experiments conducted (including evasion and
poisoning) on tuned models. The dotted lines indicate standard deviation. We observe no substantial
systematic bias towards the misclassification of low-degree nodes.
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L Attack characteristics

Next, we present interesting patterns of the adversarial perturbations for each model/defense. We show
the (1) node degree, (2) closeness centrality, (3) homophily, (4) Jaccard similarity of node attributes,
and (5) the ratio of removed edges over the strongest edge perturbations in Fig. L.1. For statistics 1-4,
we consider the pairs of nodes that were affected by an adversarial edge flip (i.e., insertion or removal).
Here we average over the strongest attack found for each budget (without transferring attacks between
defenses). Thus, the values indicate what characteristics are important for strong, adaptive attacks.
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Figure L.1: Various metrics characterizing the nature
of the adversarial edges from our strongest attacks,
which are those visible in Fig. I.1 and Fig. I.2, as
well as the nature of the nodes connected respectively
disconnected by them.

(1) Node degree. For global attacks, the de-
gree tends to be lower than the average degree
of the dataset as given in Table F.1. The higher
average degree for local attacks might be influ-
enced by the node selection. Interestingly, on
SVD-GCN attacks connect very high-degree
nodes, most likely because high-degree nodes
correspond to dimensions represented by the
most significant eigenvectors of A (see § 4
Example 1 and § E.2). The attacks exploit the
sensitivity of SVD-GCN to perturbations of
high-degree nodes. This could hint towards
how adaptive attacks catastrophically break
SVD-GCN.

(2) Closeness centrality. The closeness cen-
trality of a particular node v is one over the
sum of distances from v to all other nodes in
the graph, multiplied by the total number of
nodes in the graph. Attacks against SVD-GCN
connect very central nodes, which probably
correlates with them having high degrees. In-
terestingly, also the perturbations for GNN-
Guard seem to be of slightly increased central-
ity.

(3) Homophily refers here to the fraction
of pairs of nodes that share the same class.
Successful adaptive attacks on Jaccard-GCN
share the same homophily as those on GCN,
indicating that the Jaccard coefficient is not
suited to filter heterophil edges. Attacks on
SVD-GCN, GNNGuard, and Soft-Median-
GDC have higher homophily than those on
GCN, hinting that these defenses successfully
filter some heterogeneous edges, forcing some
attacks to adapt.

(4) Jaccard similarity. As expected, attacks
on Jaccard-GCN have to compensate its filter
by picking edges with nonzero coefficient. Attacks against GNNGuard connect nodes with very
similar features, presumably to get past its cosine distance-based edge weighting. Curiously, attacks
against Soft-Median-GDC behave similarly, yet only in the local setting and less pronounced. This
is probably necessary to avoid that the new edges are weighted down as outliers by the robust
aggregation, which becomes less of an issue when perturbing a large amount of edges in the global
setting and thereby shifting what it means to be an outlier. Other defenses and especially GRAND
admit connecting nodes as or more dissimilar than is the case on GCN.

(5) Ratio of removed edges. It is clear to see that for all models, the adversarial attack mostly adds
new edges. This indicates that edge insertion is stronger than edge deletion. Strong adaptive attacks
on GNNGuard and Soft-Median-GDC seem to require the most edge deletions. Moreover, deletions
are of much greater importance for local attacks.
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M Spectral properties of adaptive attacks

Previous studies have shown that adversarial attacks tend to focus the high-frequency (i.e., less
significant) singular values of the adjacency matrix, both in the local [12] and global [30] setting. In
consequence, defenses that exploit this observation to subdue attacks have been proposed (including
SVD-GCN and ProGNN). This is a prime example of where (1) defenses were designed to circumvent
specific attack characteristics and (2) an intuitive explanation exists of why the defense should improve
robustness. However, our adaptive attacks have shown that neither (1) nor (2) entail actual robustness.
In the case of SVD-GCN, it seems like the model becomes even less robust. It is only natural to ask
whether our attacks exhibit spectral properties different from the high-frequency observation upon
which SVD-GCN is built.

In Fig. M.1, we show the spectra of adjacency matrices before and after attacking GCN and SVD-GCN
in various settings. Indeed, our adaptive attacks on SVD-GCN perturb more of the low frequencies
and less of the high frequencies compared to attacks on GCN. Even though such low frequency-heavy
perturbations are hypothesized to be “noticeable” [12, 30], it is unclear how this can be exploited in
practice without knowing the clean graph or the underlying distribution of the spectrum. In § A, we
give additional reasons why we disregard constraints beyond the L0 difference.

Fig. M.1 also shows that, in contrast to previous beliefs, effective attacks on a GCN may lie in the low-
frequency spectrum (see subplots a and c). This questions the strategy of dampening high-frequency
singular values to defend against attacks in the first place.
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Figure M.1: Singular value spectra of the adjacency matrix before and after perturbation via global
adaptive attacks with relative budget of 7.5% against GCN and SVD-GCN. Results are split into
native evasion attacks (via FGA and PGD) and native poisoning attacks (via Metattack and Meta-
PGD), and averaged in each group. The top row shows the absolute spectrum, and the bottom row the
difference to the clean spectrum. The order is plotted logarithmically. We observe that attacks against
SVD-GCN strongly perturb the low-order singular values, and it is evident from the relative plots
that high-order singular values are perturbed less compared to attacks against GCN.
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N On the scalability of adaptive attacks

In our main paper, we do not study adversarial robustness on larger graphs as (a) most defenses do
not scale well and (b) we do not want to distract from our finding that structure defense evaluations
are overly optimistic. Nevertheless, we consider scalability to be an important aspect for robustness
as it is relevant for many applications. As mentioned in § 7, Geisler et al. [17] already study adaptive
attacks scaled to large graphs. However, their work is focused on their own defense, and they only
consider evasion. For these reasons, we now briefly discuss adaptive attacks on larger graphs.

In Fig. N.1, we show an adaptive attack against “Cosine-GCN” on arXiv from the Open Graph
Benchmark [23] (169k nodes). Our Cosine-GCN defense is a natural equivalent of Jaccard-GCN [48]
for continuous features. Similarly to Jaccard-GCN on the smaller graphs, Cosine-GCN also comes
with some robustness w.r.t. a non-adaptive attack. However, once we apply an adaptive attack, it
performs actually slightly worse than the GCN baseline.

Scaling first order attacks. The biggest challenge is certainly that the number of elements in the
adjacency matrix scales quadratically with the number of nodes. One way to circumvent this “curse
of dimensionality” is to use randomization. For our adaptive attack, we adopt Projected Randomized
Block Coordinate Descent (PRBCD) [17]. PRBCD uses the same relaxation as PGD (see § 2 and
§ A). In each iteration of the attack, it considers only a random subset of edges for gradient update
and subsequent projection. Then, for the next iteration, PRBCD keeps edges of high weight and
randomly re-samples the edges of low weight. This way, the overhead remains constant in the block
size. Since PRBCD is a first-order attack, it is natively adaptive for differentiable models.
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Figure N.1: Adversarial accuracy on the large arXiv dataset per budget for the scalable PRBCD attack
against a regular GCN and our Cosine-GCN (single random seed). We use a block size of 1 million
edges and run the attack for 200 epochs. Thereafter, we keep the best block for another 50 epochs
fixed. Poisoning is conducted by transferring perturbations from evasion.

Evasion vs. poisoning. Gradient-based poisoning attacks seem inherently more challenging since
we need to unroll the training. Nevertheless, as long as we can run an evasion attack, there is the
possibility to transfer the perturbed adjacency matrix to the poisoning setting. Here, we chose this
approach. Still, Zügner & Günnemann [66] show in their appendix that only very few training steps
are actually required for Metattack to be effective. Using a low number of training steps is therefore
something to consider to scale direct poisoning attacks on larger graphs.
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