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ABSTRACT

The paradigm of “pre-training and prompt-tuning”, with its effectiveness and
lightweight characteristics, has rapidly spread from the language field to the graph
field. Several pioneering studies have designed specialized prompt functions for
diverse downstream graph tasks based on various graph pre-training strategies.
These prompts concentrate on the compatibility between the pre-training pretext
and downstream graph tasks, aiming to bridge the gap between them. However,
designing prompts blindly to adapt to downstream tasks based on this concept ne-
glects crucial security issues. By conducting covert attacks on downstream graph
data, we find that even when the downstream task data closely matches that of the
pre-training tasks, it is still feasible to generate highly misleading prompts using
simple deceptive techniques. In this paper, we shift the primary focus of graph
prompts from compatibility to vulnerability issues in adversarial attack scenar-
ios. We design a highly extensible shield defense system for the prompts, which
enhances their robustness from two perspectives: Direct Handling and Indirect
Amplification. When downstream graph data contains unreliable biases, the for-
mer directly combats invalid information by incorporating hybrid multi-defense
prompts to the input graph’s feature space, while the latter adopts a training strat-
egy to bypass the invalid components and amplifies valid part. We provide a the-
oretical derivation that proves their feasibility, indicating that unbiased prompts
exist under certain conditions on unreliable data. Extensive experiments across
various scenarios of adversarial attacks (including adaptive and non-adaptive at-
tacks) indicate that the prompts within our defense system exhibit enhanced re-
silience and superiority. This paper explores a new perspective in graph prompt
learning, offering a novel option for robust prompt tuning in downstream tasks.

1 INTRODUCTION

Graph neural networks (GNNs) have demonstrated impressive performance across various appli-
cations due to their unique ability to handle complex and irregular data, such as recommendation
systems (Liu et al., 2024), traffic prediction (Shao et al., 2022), and social computing (Sun et al.,
2023b). With the advancement of society, real-world scenarios typically align with three character-
istics: abundant data, sparse labels, and diverse task domains. Therefore, the algorithm paradigm
has shifted from designing specific models for particular problems to training general models that
can be fine-tuned for downstream tasks—known as “pre-training and fine-tuning”. This paradigm
effectively maximizes the benefits of the large volume of data and has led to the emergence of many
outstanding works (Zhu et al., 2021; 2020; Velickovic et al., 2019; Hou et al., 2022; 2023).
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Figure 1: The prompts can be easily
misled by simple deceptive tactics. The
red edges represent the edges changed
by structural perturbations.
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StressTest: As a mathematics instructor, calculate the answer to the
following problem related to and false is not true {}:
DeepWordBug: As a mathematics iestructor, calculate the answex to the
following problem related to {}:
CheckList: As a mathematics instructor, calculate the answer to the
following problem related to KjPJJ2a7RB {}:

Clean Prompt:   As a mathematics instructor, calculate the 
answer to the
following problem related to {}:

Figure 2: The adversarial language
prompts generated by different attacks
inspire us to design graph prompts tai-
lored to various node scenarios.

As pre-trained models in the language field have become increasingly powerful, prompt-based tun-
ing has gradually emerged as a new research focus. Unlike fine-tuning which adjusts the parameters
of pre-trained models, prompt-based methods freeze the parameters of the pre-trained model and
focus on adjusting the data space through input transformation. These transformation operations are
termed prompts, whose objective is to narrow the gap between the pretext of pre-training and the ob-
jectives of various downstream tasks, while avoiding the computational cost of retraining the model
from scratch. Therefore, “Pre-training, prompting, and fine-tuning” has become the new paradigm.

This new paradigm has rapidly spread to the graph field due to its popularity. Although apply-
ing prompt-based tuning strategies on GNN models poses greater challenges compared to language
prompts, many pioneering studies (Sun et al., 2023a; Liu et al., 2023b; Fang et al., 2024; Yu et al.,
2024) have attempted to propose viable prompts from different perspectives. These studies have
made outstanding contributions and they share a commonality in their concentrate on the com-
patibility between the pre-training pretext and downstream graph tasks, aiming to bridge the gap
between them. However, designing prompts blindly to adapt to downstream tasks based on this
compatibility neglects crucial security issues. As shown in Figure 1, effective prompts often pro-
vide strong support for downstream tasks, but making certain interventions during the prompt tuning
phase, such as simple perturbations to the graph structure, can render the prompts ineffective and
lead to catastrophic consequences.

To illustrate this phenomenon more intuitively, we conduct an interesting experiment. For node
classification tasks, we employ the well-known MetaAttack (Zügner & Günnemann, 2019) to attack
the downstream graph data, and we present the classification results of existing mainstream prompt
functions on clean and attacked graphs in Figure 3.
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Figure 3: The performance of existing prompt functions on clean graphs and graphs attacked by
MetaAttack with a 20% attack ratio. The scale of the radar chart represents classification accuracy.

we find that even when the downstream data closely matches that of the pre-training tasks, it is still
feasible to generate highly misleading prompts using simple deceptive techniques. Therefore, this
inspires us to consider the safety issues of graph prompts.
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A recent study (Zhu et al., 2023) has proposed PromptBench for language prompts, as shown in
Figure 2. For instance, there is a clean prompt “As a mathematics instructor, calculate the answer
to the following problem related to {}”, The pre-trained model can adapt to downstream tasks based
on its key terms. However, adversarial prompts can cause the pre-trained model to focus on both
the target text and the adversarial content, amplifying its sensitivity to adversarial perturbations.
In word-level attacks like DeepWordBug, introducing typos or altering specific words diverts the
model’s attention from key terms. In sentence-level attacks like StressTest and CheckList, attackers
attempt to distract the pre-trained model by adding irrelevant or unrelated sentences to the input text,
which may cause it to lose focus on the primary context. The robustness of language prompts has
led us to examine the robustness of graph prompts, and we aim to equip graph prompts with certain
adversarial perturbation capabilities.

Challenges. However, designing a robust graph prompt is a significant challenge, as graph prompts
are inherently more fragile than language prompts for two main reasons. First, the cost of perturbing
a graph is very low and the implementation is straightforward. Just simply adding a few irrelevant
edges to the graph structure can lead to catastrophic changes due to the message-passing mechanism,
reminiscent of the saying “a single spark can start a prairie fire”. Second, the design of graph
prompts is complex and specialized. Prompts that are suited for a specific graph property or structure
can quickly become ineffective due to even slight alterations.

Contributions. To smoothly tackle these two challenges, we design a highly extensible shield
defense system for the prompts, which enhances their robustness from two perspectives: Direct
Handling and Indirect Amplification. When downstream graph data contains unreliable biases, the
former directly combats invalid information by incorporating hybrid multi-defense prompts to the
input graph’s feature space. We do not adopt a universal learnable prompt for all node features like
GPF (Fang et al., 2024), as we analyzed above, a prompt that works for one node may not be suitable
for all nodes. Instead, our hybrid multi-defense prompts will customize a individual prompt for each
node according to the diverse sensitive information associated with different perturbations. When
attacks cause biased node distributions, customized prompts can provide context-specific guidance
tailored to nodes in different situations. While the latter adopts a training strategy to bypass the in-
valid components and amplifies valid part. We do not need to design new prompts. Instead, we can
directly build upon existing prompts by providing a supplementary tool to address their overlooked
safety issues. To ensure the effectiveness of our proposed strategies, we provide a theoretical analy-
sis demonstrating that when the downstream graph data is unreliable, there exists at least one viable
prompt capable of achieving results comparable to those on clean graph under certain conditions.

Overall, the contributions of this paper can be summarized as follows:

• We have opened up a new perspective on graph prompt tuning focused on robustness, we
shift the primary focus of graph prompts from compatibility to vulnerability issues in ad-
versarial attack scenarios.

• We propose a highly extensible shield defense system for the prompts. This system in-
cludes a hybrid multi-defense prompt and a robust prompt tuning strategy, and we provide
theoretical proof of its feasibility.

• We conduct extensive experiments in few-shot scenarios under various adversarial attacks
(including adaptive and non-adaptive attacks). The results indicate that our hybrid multi-
defense prompt and robust prompt tuning strategy significantly enhance the resilience of
prompt tuning in downstream biased tasks.

2 RELATED WORK

This paper primarily focuses on advancements in the field of prompt tuning. Additionally, We also
provide a systematic description of graph pre-training strategies in Appendix A.1.

Graph Prompt Tuning

Prompt-based methods freeze the parameters of the pre-trained model and focus on adjusting the
data space through input transformation. Due to the parameter efficiency of prompts, they have been
widely used in the language domain (Liu et al., 2023a; Sivarajkumar et al., 2024; Greshake et al.,
2023; Mizrahi et al., 2024), but they are still in the early stages in the graph domain. However, some
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pioneering studies have already been conducted to explore this area. GPPT (Sun et al., 2022) applies
the pairwise token template (the task token for downstream problem and the structure token contain-
ing the node information) to modify nodes. All-in-one (Sun et al., 2023a) reformulates node-level
and edge-level tasks as graph-level tasks, introducing meta-learning technique to learn a prompt.
GPF/GPF-plus (Fang et al., 2024) proposes a universal prompt tuning method by introducing addi-
tional learnable parameter as a prompt in the feature space of the input graph. To achieve effective
knowledge transfer from pre-training to a downstream task, GraphPrompt (Liu et al., 2023b) pro-
poses a unified framework based on subgraph similarity, aiming to retain graph properties that are
compatible with the given task during pre-training. MultiGPrompt (Yu et al., 2024) argues that a
single pretext task is not sufficient. Therefore, it designs a series of pretext tokens to collaboratively
address different pretext tasks during pre-training. It also introduces a dual-prompt mechanism that
uses both a composed prompt and an open prompt to leverage task-specific and global pre-training
knowledge. However, all of these prompts focus on the compatibility between pre-training and
downstream tasks, neglecting potential security issues.

3 PRELIMINARIES

In this paper, we primarily discuss the robustness of graph prompt tuning in downstream node clas-
sification tasks, as most mainstream attacks are centered around this scenario. We do not focus on
the compatibility between upstream and downstream tasks, as existing studies have already provided
excellent discussions on this aspect. Instead, we place greater emphasis on the resilience of prompts
when faced with biased data.

Notations. Define an undirected, unweighted graph G = (V, E) with N nodes, N = |V|. V =
{v1, v2, · · · , vN} and E ⊆ V × V represent the set of nodes and edges, respectively. Its feature
matrix X = [x1, x2, · · · , xn] ∈ RN×din , where xn is a din-dimensional feature vector of the n-
th node. A ∈ {0, 1}N×N is the symmetric adjacency matrix where Aij = 1 if (vi, vi) ∈ E .
Moreover, the labels of all nodes are denoted as y. Each node is associated with a label yi ∈ C,
where C = {c1, c2, · · · , cK}.

Fine-Tuning. Define a pre-trained GNN model f , a learnable projection head θ. Next, we re-
formulate the node task as a subgraph classification task and define a downstream task dataset
D = {(Sx1

, y1), · · · , (Sxm
, ym)}, where Sxi

= (Si, XnSi
) is the multi-hop neighbor subgraph

of node i extracted from G. Si is the structure of the node subgraph. nSi
is the set of nodes con-

tained in Si. XnSi
represents the features of the contained nodes. We adjust the parameters of the

pre-trained model f and the projection head θ to maximize the likelihood of predicting the correct
labels yi of the downstream local subgraph Sxi . Fine-Tuning aims to maximize the classification
likelihoods for nodes in the graph, which can be expressed as follows:

max
f,θ

n∑
i=1

pf,θ(yi|XnSi
, Si) (1)

Prompt-Tuning. In prompt-tuning for downstream node classification tasks, the parameters of the
pre-trained model f are frozen, and instead introduces a lightweight graph prompt function ψ. ψ
can be attached in the form of structure or features, transforming the input subgraph into a prompt
subgraph for pre-trained model f ’s input. The prompt subgraph can be expressed as follows:

S∗
xi

: (S∗
i , X

∗
nSi

) = ψ(Sxi
) (2)

Therefore, the process of prompt-tuning can be described as:

max
ψ,θ

n∑
i=1

pf,θ(yi|S∗
xi
) (3)

In the evaluation phase after prompt-tuning, by adding a prompt ψ to the subgraph of a test node,
the frozen model f can process it directly.
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Effectiveness Analysis. This study explores prompt effectiveness from the perspective of data dis-
tribution. Following (Li et al., 2022b), define Ŝ∗

xi
as a prompt subgraph embedding output. As-

sume subgraph embeddings follow p(Ŝ∗
x|y) and are sampled from the joint distribution p(Ŝ∗

x, y).
Existing prompts seek general templates. Their effectiveness relies on unbiased data in down-
stream tasks (ptrain(Ŝ∗

x, y) = ptest(Ŝ∗
x, y) = ptrue(Ŝ∗

x, y)), as analyzed in (Li et al., 2022b). With
consistent distributions, prompts work well even with few samples. But attacks cause distribu-
tion deviations (ptrain(Ŝ∗

x, y) ̸= ptest(Ŝ∗
x, y) ̸= ptrue(Ŝ∗

x, y)), leading to overfitting to erroneous
data. Despite fixed pre-trained model parameters, misleading prompt harm is underestimated. As
p(Ŝ∗

x, y) = p(y)p(Ŝ∗
x|y) and p(y) is consistent, inconsistent p(Ŝ∗

x|y) causes differences. Therefore,
when the prompts obtained through prompt tuning with few-shot samples on the training data are
added to the test data based on the principle of distribution consistency, it will result in catastrophic
performance. This phenomenon is well reflected in Figure 3.

Attacks. In this paper, we mainly adopt two attack scenarios: the commonly used gray-box global
poisoning attack and the white-box adaptive attack. We focus on attacks against the graph struc-
ture. In the setting of the former scenario, attackers have visibility into the graph data and labels
but lacks visibility into the details of the model. MetaAttack (Zügner & Günnemann, 2019) as a
classic gray-box poisoning attack, utilizes a surrogate model for the attack, which can be formulated
mathematically as a bilevel optimization problem:

min
Ĝ∈Φ(G)

Latk(fθ∗(Ĝ)) s.t. θ∗ = argmin
θ

Ltrain(fθ(Ĝ)) (4)

Φ(G) represents a set of graphs that satisfies the disturbance budget constraint ∆. ∆ indicates a
limit on the number of changes ∥A − Â∥ ≤ ∆. Latk is the attack loss function, could be −Ltrain
or −Lself .

Adaptive attacks (Gosch et al., 2024) are a type of white-box attack with stronger capabilities, where
the attacker possesses complete information, including the defender’s model features, graph struc-
ture, labels, and all details. (Gosch et al., 2024) categorizes defenses into seven types and designs
adaptive attacks for the most representative method in each category.

Problem Statement. This paper explores the robustness of prompt strategies in node classification
tasks. To mimic real-world situations, we pretrain a GNN model on clean graphs and freeze its
parameters. Our target is to design a robust prompt and optimization strategy. When the downstream
graph data is biased by attacks, our prompt strategy leverages few-shot samples for robust tuning,
improving the classification accuracy of unlabelled nodes.

4 METHODS

In this section, we will introduce a highly extensible shield defense system designed for the prompts,
which enhances their robustness from two perspectives: Direct Handling and Indirect Amplifica-
tion. They provide viable solutions for enhancing the resilience of prompts at two different stages:
robust prompt design and robust optimization strategy.

4.1 DIRECT HANDLING

We have previously analyzed that when the data distribution is biased, prompts that are effective for
certain nodes may mislead others. Therefore, when the downstream graph is attacked, we do not use
a universal prompt like GPF. Instead, we designed a hybrid multi-defense prompt. Since we cannot
know in advance the tactics employed by attackers, we customize a specific prompt for each node’s
situation by organizing the commonalities and analyzing the focal points of different attacks.

Downstream unbiased subgraphs that share consistent properties with pre-training data often do not
require complex prompts. A typical example is subgraphs with high homophily similar to the pre-
training data, which inherently exhibit strong compatibility. The nodes that truly require focused
prompting are the biased ones resulting from attacks. For these biased nodes, adding prompts iden-
tical to those of unbiased nodes is obviously irrational.
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We aim for the prompts on these biased nodes capable of mitigating the impact of biased infor-
mation. Therefore, we propose several different node filtering strategies based on various sensi-
tive points that the attacks may target. These strategies identify potential biased nodes with dif-
ferent properties and apply attribute-specific prompts to each of them. For a perturbed subgraph
S̃xi = (S̃i, XnS̃i

) in a few-shot training set, we will next demonstrate how to add a hybrid multi-
defense prompt to it.

Filtering Tip 1: Degree Some indiscriminate attacks (such as DICE (Waniek et al., 2018) and
Random attack) apply the same attack probability to all nodes. In this context, nodes with higher
degrees tend to exhibit more stable community features and maintain good consistency with the
pre-training data. Under the same attack cost, low-degree nodes are more likely to generate biased
community features. Therefore, we filter out the set of nodes with low degree, denoted as nld =
{u| |Nu| < τdegree}, where Nu is u’s neighbors and τdegree is the degree threshold. We provide
an auxiliary degree defense prompt pd ∈ Rdin applied to their feature space, where din is the
dimensionality of the node features. this process can be expressed as:

X∗
nS̃i

[nld] = XnS̃i
[nld] + pd (5)

Filtering Tip 2: Node Centrality Similarity. Most mainstream attacks aim to disrupt the ho-
mophily assumption in graphs, where nodes with the same label and similar features are often con-
nected. They utilize low-cost, high-reward tactics to increase the graph’s heterophily as much as
possible. This change in heterophily is typically reflected in the central similarity of nodes, where
the attacked biased nodes connect with nodes that have different labels and features, thus confusing
the assessment of their own community characteristics. Therefore, we filter out the set of nodes with
low central similarity, denoted as nls =

{
u| 1

|Nu|
∑
v∈Nu

sim(Xu,Xv) < τsim

}
, where τsim is the

similarity threshold. We provide an auxiliary similarity defense prompt ps ∈ Rdin applied to their
feature space. This process can be expressed as:

X∗
nS̃i

[nls] = XnS̃i
[nls] + ps (6)

Filtering Tip 3: Out-of-distribution nodes. (Li et al.) proposes a novel adversarial training
paradigm that generates perturbations through adversarial attacks during training, using adversarial
edges as out-of-distribution samples and initial edges as in-distribution samples to train multiple de-
tectors fD =

{
f1d , f

2
d , · · ·

}
. Using this detector, we can identify out-of-distribution edges generated

by attacks when faced with a biased graph. More detailed description is provided in Appendix A.2.
By detecting these edges, the nodes at both ends of the edges become the focal points of the attack
method. We add prompts to these nodes and denote them as nod = {u|∃fD(e) = 1, e ∈ E , u ∈ e}.
We provide an auxiliary out-of-distribution defense prompt po ∈ Rdin applied to their feature space.
This process can be expressed as:

X∗
nS̃i

[nod] = XnS̃i
[nod] + po (7)

In this paper, we initially propose above-mentioned three feasible solutions. As attacks continue
to evolve, node sets can be selected based on a wider range of sensitive properties. After ob-
taining different sets of vulnerable nodes, the prompt selection for a node is actually included in
set {(), (pd, ps, po), (pd, ps), (po), · · · }. In the experiments, we also design an enhanced prompt
pe ∈ Rdin for nodes that do not have any sensitive prompts added.

Since each node has a different number of prompts, integrating all the prompts that belong to each
node on graph is a challenge. Defining a node’s prompt set as PSi, we propose two fusion strategies:
one is the weighted average Mean, and the other is the self-attention mechanism SA (Vaswani, 2017)
used in language models. Therefore, a node’s hybrid muti-defense prompt can be expressed as:

X∗
nS̃i

[i] =
∑|PSi|

n=1
wnpn or

∑|PSi|

n=1
ai,npn pn ∈ PSi (8)
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Figure 4: Robust Prompt Optimization Workflow for Hybrid Multi-Defense Prompt.

We present the fusion strategy of SA in Figure 4. Finally, the process of adding hybrid muti-defense
prompt to the perturbed subgraph S̃xi

is described as follows:

S̃∗
xi

= (S̃i, XnS̃i
+X∗

nS̃i

) (9)

Our prompt is applied in the feature space. We do not choose structure-based prompts like All-
in-one (Sun et al., 2023a). Instead, feature-based prompts allow for real-time adjustments to the
structure of the disturbed subgraphs based on the current state of prompt tuning.

Prompt Tuning. To optimize the learnable prompts, we propose three robust auxiliary con-
straints. Consider a biased node classification task with a few-shot labeled training set T .
Under the few-shot setting, there are only k labeled cases for each class in C, i.e., T ={
(S̃x1

, y1), · · · , (S̃xk×|C| , yk×|C|)
}

. We define S̃xi
with prompt added as S̃∗

xi
. After inputting S̃∗

xi

into the pre-trained model f , we define the output node embeddings as H̃nS̃∗
i

, and the graph em-

bedding as G̃∗
i . To enhance the denoising capability of our prompt, we hope that the output node

embeddings better satisfy the first-order proximity. Therefore, we use hidden feature smoothness as
a regularizer, as shown below:

Ls =
∑k×|C|

i=1

∑
m,n∈S̃∗

i

∥H̃nS̃∗
i

[m]− H̃nS̃∗
i

[n]∥2 (10)

In each filtering scenario t, we hope to reduce the distance between the output distribution of bi-
ased nodes and unbiased nodes. To elaborate clearly, we define the nodes with prompt added in
filtering scenario t as ntp and the set of remaining nodes as ntnp, i.e., the complement nodes ∁nS̃∗

i

ntp.

(ntp, n
t
np) ∈ NT , where NT =

{
(nld, ∁nS̃∗

i

nld), (nls, ∁nS̃∗
i

nls), (nod, ∁nS̃∗
i

nod), · · ·
}

. Therefore,
we utilize a distribution loss to minimize the distance between the distributions of biased nodes and
unbiased nodes in each perturbed subgraph across all filtering scenarios, enabling the prompt to
guide and correct the biased distributions. This can be specifically expressed as follows:

Lkl =
k×|C|∑
i

1

|NT |
∑

(nt
p,n

t
np)∈NT

DKL(p(H̃nS̃∗
i

[ntp])||p(H̃nS̃∗
i

[ntnp])) (11)

Additionally, to impose constraint on the correlation between different defense prompts, we propose
a node overlap matrix E for each S̃∗

i . Assuming there are T filtering scenarios corresponding to T
defense prompts, E is an T × T symmetric matrix. Eij represents the degree of overlap between
the biased node sets of the two filtering scenarios. Take nld and nls for example, this implies:

Eij = Eji =
|nld ∩ nls|
|nld ∪ nls|

(12)
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The matrix E indicates that defense prompts with a higher node overlap should be more similar,
while those with lower overlap should exhibit greater differences. Defining the defense prompt
matrix of S̃∗

i as Pi ∈ RT×din , we obtain the following multi-prompt constraint loss.

Lo =
k×|C|∑
i

∥PiPTi − E∥2 (13)

With these three auxiliary robust constraints, we perform robust prompt tuning by optimizing the
following expression:

min
θ,pd,ps,po···

k×|C|∑
i

L(G̃∗
i , yi) + αLs + βLkl + γLo (14)

L is the downstream loss function (e.g., cross entropy). During the tuning process, we prune each
S̃∗
i in training set using a tuning similarity threshold τtune, based on the intermediate state of the

current H̃nS̃∗
i

, denoted as

ˆ̃
S
∗

i =
{
(i, j) ∈ S̃∗

i |sim(H̃nS̃∗
i

[i], H̃nS̃∗
i

[j]) > τtune

}
. (15)

After the tuning process, during the evaluation phase, we add the tuned prompt to different biased
nodes of a biased test graph. Subsequently, we obtain the classification result using the frozen pre-
trained model f and the projection head θ. We clearly illustrate our hybrid multi-defense prompt
tuning workflow in Figure 4.

4.2 INDIRECT AMPLIFICATION

Inspired by (Li et al., 2022b), given the contaminated local structure but consistent global feature
distribution in the downstream task, we commence by training a multi-layer perceptron (MLP) de-
void of structural information with few-shot training samples. Subsequently, the trained MLP is
employed to generate pseudo-labels for subgraphs. Through a comparison of softmax scores, we
identify the most confident predictions for each class and incorporate them into a new label set Vpsu.
Compute cross-entropy loss with Vpsu to tune prompts while freezing the pre-trained model. This
method applies to any prompt template. By reducing bias focus and improving unbiased understand-
ing, it effectively alleviates the interference of irrelevant information during prompt tuning.

4.3 THEORETICAL ANALYSIS

We are inspired by the theory of GPF (Fang et al., 2024) to prove the existence of the robust prompt
we proposed under specific conditions.

Theorem 1. Given a pre-trained GNN model f and an unbiased input graph G = (A,X). An attack
yields a biased graph structure Ã, where Ã = A+ C ◦ S (C = 11T − I − 2A, and Sij = Sji = 1
means the edge between nodes u and v is modified). Taking f(A,X) as the output of the model
on unbiased data, there exists a hybrid multi-defense prompt P = N × M in the feature space
(N ∈ R|V|×T is the prompt selection matrix, M ∈ RT×din is the prompt matrix, T is the number
of defense prompts) satisfying:

f(Ã,X + P ) = f(A,X) (16)

The proof is in Appendix A.3. Thus, for biased downstream tasks, under certain assumptions, a
hybrid multi prompt can help the model produce unbiased outputs on biased data.
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5 EXPERIMENTS

5.1 EXPERIMENT SETUP

This paper primarily investigates the robust tuning of prompts on biased data in downstream node
tasks across various attack scenarios. Thus, we use several datasets that are the focus of most attacks,
including Cora-ML(McCallum et al., 2000), citation graph (Cora, Citeseer) (Sen et al., 2008). We
use a wide range of attacks for experiments. For non-adaptive attacks, we select four representative
attacks of different types, including gradient-based attack (MetaAttack (Zügner & Günnemann,
2019)), distribution-based attack (Heuristic attack (Li et al., 2022b)), heuristic-based attack (DICE
(Waniek et al., 2018)), and Random attack. We attack downstream graph data used for prompt
tuning with relatively large perturbation ratios, where MetaAttack is 25%, while the others are 50%.
For convenience, it is abbreviated as M-0.25 in the Tables. For adaptive attacks, (Mujkanovic et al.,
2022) proposes a unit test that includes 2,700 testable graphs. We select perturbed graphs targeting
four defenses, including GCNSVD (Entezari et al., 2020), GRAND (Feng et al., 2020), GNNGuard
(Zhang & Zitnik, 2020), and GCNJaccard (Wu et al., 2019), which basically cover most of the de-
sign principles of defense models. We have also conducted a general exploration on link prediction
and graph classification tasks, with only the robustness-related results presented in the main text.
All detailed experimental data can be found in Appendix A.4.

5.2 PRE-TRAINING STRATEGIES AND PROMPT TUNING

To better showcase the applicability of the prompt function, we select the most representative gen-
erative method GraphMAE (Hou et al., 2022) and contrastive method GraphCL (You et al., 2020)
in the field of graph self-supervised learning as pre-training strategies. Additionally, we select the
following widely-used prompts to explore their robustness, including GPF/GPF-plus (Fang et al.,
2024), All-in-one (Sun et al., 2023a), GPPT (Sun et al., 2022), GraphPrompt (Liu et al., 2023b)
and MultiGPrompt (Yu et al., 2024). GraphPrompt and MultiGPrompt require specific pre-training
methods, so we follow their templates. The implementations of all prompts are available in Ap-
pendix A.5.

Table 1: Performance of Different Prompts in 5-shot scenario under Non-Adaptive Attacks.

Pre-Training
Strategies Prompts Cora Citeseer CoraML

Clean M-0.25 D-0.5 R-0.5 H-0.5 Clean M-0.25 D-0.5 R-0.5 H-0.5 Clean M-0.25 D-0.5 R-0.5 H-0.5

GraphPrompt 57.68 34.06 36.01 42.68 35.19 67.20 40.22 34.24 34.29 31.68 67.17 41.96 36.75 44.68 44.32
MultiGPrompt 48.34 39.37 32.97 43.71 29.52 50.37 41.99 38.09 42.31 48.34 56.24 36.99 39.75 46.68 26.90

GraphCL

All-in-one 50.93 31.02 17.91 34.29 28.34 43.96 37.18 37.29 27.72 21.31 37.43 28.38 26.50 35.35 27.46
GPF 54.06 33.83 27.62 29.43 15.92 56.46 38.78 44.07 14.37 22.12 41.95 30.26 28.58 39.31 24.46

GPF-plus 66.39 36.83 30.52 42.22 26.53 66.19 45.30 38.68 31.68 14.37 71.30 35.43 38.59 30.74 26.30
GPPT 45.24 20.86 24.04 19.50 27.71 41.41 30.18 33.33 23.88 24.57 41.75 34.67 38.51 30.90 32.15

*MD-PT 49.39 48.06 40.15 44.94 44.67 54.86 53.69 48.02 43.70 54.38 67.45 52.84 50.44 55.24 59.81
*IA-PT 57.82 58.82 51.07 53.65 62.27 52.08 50.80 44.71 47.92 52.24 70.34 60.53 47.80 60.25 62.77

GraphMAE

All-in-one 44.67 29.75 30.25 35.83 29.98 67.84 55.36 40.38 44.71 39.00 45.20 32.43 13.21 24.50 28.82
GPF 66.71 38.82 33.15 48.53 39.27 73.24 53.31 41.45 41.61 29.38 61.01 15.73 20.42 10.57 16.65

GPF-plus 63.40 39.46 33.38 49.84 36.46 75.16 51.87 40.33 36.81 28.26 70.26 22.62 40.95 45.36 21.70
GPPT 67.79 43.17 47.71 42.40 35.46 61.70 46.90 49.11 43.86 50.05 71.62 41.55 48.08 54.84 41.59

*MD-PT 62.49 62.49 52.61 48.03 51.61 62.87 58.81 50.32 50.11 56.89 65.45 68.37 57.29 55.24 50.72
*IA-PT 68.93 68.30 61.90 67.30 66.62 59.72 60.63 57.26 59.40 61.22 75.90 57.85 54.32 66.41 64.65

5.3 PROMPT TUNING UNDER NON-ADAPTIVE ATTACKS

We conduct experiments in both 5-shot and 10-shot scenarios. We demonstrate the robustness per-
formance under the 5-shot setting here. 10-shot results can be found in Appendix A.6. We denote
our hybrid multi-defense prompt as MD-PT and the indirect amplification prompt as IA-PT. In Table
1, we can see that our prompts offer viable solutions to the potential security issues of prompts from
two different perspectives. When the data is biased due to attacks, our tuning process can effectively
avoid these invalid pieces of information to prevent the generation of misleading prompts. Aside
from individual cases, the data in the Table also shows that the robustness of our prompts generally
remains within a range of ±10%, unlike other prompts, which can vary by more than 40%. Notably,
on clean unbiased tuning data, our prompts still maintain a state-of-the-art performance in many
cases, without sacrificing excessive accuracy for the sake of robustness.
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5.4 PROMPT TUNING UNDER ADAPTIVE ATTACKS

We conduct experiments on adaptive poisoning attack graphs targeting classical defenses to demon-
strate the versatility of our prompt tuning process. We still present the 5-shot results, while the
10-shot results can be found in Appendix A.7. In Table 2, it can be seen that the defense capability
of MD-PT appears slightly inferior to that of IA-PT when facing more targeted attacks. This is
understandable, “as directly ignoring a problem is often easier than dealing with more challenging
issues”. However, our two strategies still remain highly competitive compared to other prompts.

Table 2: Performance of Different Prompts in 5-shot scenario under Adaptive Attacks.

Pre-Training
Strategies Prompts

CoraML Citeseer
GCNSVD GRAND GNNGuard GCNJaccard GCNSVD GRAND GNNGuard GCNJaccard

GraphPrompt 47.66 35.24 37.64 41.90 48.72 34.99 40.71 38.25
MultiGPrompt 24.22 30.20 15.56 14.97 25.16 25.96 31.41 33.55

GraphCL

ProG 37.32 31.02 52.78 32.38 23.93 30.56 33.92 31.14
GPF 30.88 23.08 27.39 35.42 29.59 21.85 18.43 25.53

GPF-plus 52.29 28.93 41.41 38.37 24.95 21.85 24.95 18.38
GPPT 35.69 26.53 40.14 40.45 43.96 30.88 32.05 43.48

*MD-PT 47.85 45.54 49.67 41.35 51.60 51.60 51.01 53.90
*IA-PT 61.27 58.73 53.83 46.08 59.35 57.05 62.61 57.10

GraphMAE

ProG 17.05 23.22 27.62 23.45 34.35 27.14 39.05 44.34
GPF 48.56 25.12 50.84 41.00 45.83 31.46 50.37 44.98

GPF-plus 47.21 30.75 48.48 46.26 45.57 35.84 50.75 46.37
GPPT 29.52 20.32 32.06 29.80 44.76 33.01 46.85 36.43

*MD-PT 49.17 45.60 54.60 49.24 57.26 54.70 53.37 53.47
*IA-PT 66.17 63.54 63.17 63.49 65.54 64.21 64.42 65.60

5.5 ABLATION STUDY

Since IA-PT is nested within any prompt, we primarily discusses MD-PT. We compare MD-PT
with six prompt variants: “w/o pd” is a variant that does not use degree prompt. “w/o ps” is a
variant that does not use similarity prompt. “w/o po” is a variant that does not use prompt for out-
of-distribution nodes. “w/o Lkl” indicates that no distribution alignment is used during the tuning
process. “w/o Lo” signifies that multi-prompt constraints are not employed. “w/o Ls” indicates
that feature smoother is not used. Table 3 illustrates the key modules of the robust prompt tuning
phase across different biased environments. Additionally, we have implemented a transfer attack
experiment in Appendix A.10 to validate the scalability and transferability of GPromptShield.

Table 3: Performance of Hybrid Multi-Defense Prompt by Ablating Different Modules.

Ablation Variants
Cora 5-shot Citeseer 5-shot Cora 10-shot Citeseer 10-shot

Meta 0.25 DICE 0.5 Meta 0.25 DICE 0.5 Meta 0.25 DICE 0.5 Meta 0.25 DICE 0.5

MD-PT 60.12% 54.55 64.20% 52.39 71.02% 62.30% 67.04% 55.35
MD-PT w/o pd 62.31% 53.05% 63.68% 51.76% 67.87% 61.36% 66.67% 56.31%
MD-PT w/o ps 58.46% 52.02% 58.97% 53.21% 69.92% 59.48% 61.57% 54.39%
MD-PT w/o po 59.32% 55.37% 60.42% 51.98% 69.09% 60.99% 65.69% 55.18%
MD-PT w/o Lkl 59.86% 55.28% 60.42% 52.14% 69.83% 60.81% 64.42% 54.23%
MD-PT w/o Lo 59.59% 51.20% 59.94% 50.00% 69.23% 58.33% 65.64% 55.01%
MD-PT w/o Ls 58.32% 56.46% 60.84% 51.50% 69.87% 60.72% 66.34% 54.58%

6 CONCLUSION

In this paper, we shift the primary focus of graph prompts from compatibility to vulnerability issues
in adversarial attack scenarios. We design a highly extensible shield defense system for the prompts.
Specifically, we design a hybrid multi-defense prompt based on the principle of direct handling and
an adaptable tuning strategy based on the principle of indirect amplification. We theoretically prove
the feasibility of our strategies and achieve outstanding robustness performance in both adaptive and
non-adaptive attack scenarios.
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7 REPRODUCIBILITY STATEMENT

The code for this paper is provided at https://github.com/GTLSysGraph/GPromptShield. All de-
tailed experimental data can be found in Appendix A.4. The implementations of all baselines are
available in Appendix A.5. The explanations of the theoretical part in the paper can be found in
Appendix A.3.

8 ETHIC STATEMENT

The robustness of graph prompts in the face of adversarial attacks is a key research focus. In this
work, we have opened up a new perspective on graph prompt tuning focused on robustness, we
shift the primary focus of graph prompts from compatibility to vulnerability issues in adversarial
attack scenarios. We design a shield defense system for prompts, including direct handling with a
hybrid multi-defense prompt and indirect amplification through a robust tuning strategy. Our work
is aimed at improving the security of graph-based applications. Overall, we believe our research can
positively contribute to the field without introducing new security risks.
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A APPENDIX

A.1 GRAPH PRE-TRAINING STRATEGIES

The pre-training strategy aims to extract knowledge from the vast amount of data in the real world to
learn a general model, thereby reducing the costs associated with task-specific training. Most graph
pre-training strategies exist in a self-supervised form and can be broadly divided into contrastive
strategies and generative strategies. Contrastive strategies train an encoder by maximizing the mu-
tual information between different graph views. The representative GraphCL (You et al., 2020)
minimizes the differences in graph representations from different views of the same graph. DGI
(Velickovic et al., 2019) follows the InfoMax principle (Linsker, 1988) by learning node represen-
tations through local-global mutual information maximization. GRACE (Zhu et al., 2020) proposes
edge removal and feature masking augmentation, GCA (Zhu et al., 2021) adopts probabilistic adap-
tive augmentation, while MVGRL (Hassani & Khasahmadi, 2020) employs diffusion graph as aug-
mentation view. Generative strategies use the reconstruction of input data as a pretext, significantly
lowering training costs. Currently, a popular paradigm is based on masking strategies inspired by
BERT (Devlin et al., 2018) in the language domain and MAE (He et al., 2022) in the image domain.
GraphMAE (Hou et al., 2022), as a representative example, reconstructs features using masking
strategies and designs scaled cosine error. GraphMAE2 (Hou et al., 2023) further extends this idea
by designing the strategies of multi-view random re-mask decoding and latent representation pre-
diction for feature reconstruction, aiming to reduce excessive reliance on feature discriminability.
S2GAE (Tan et al., 2023) proposes direction-aware graph masking and cross-correlation decoder.
MaskGAE (Li et al., 2022a) adopts edge-wise and path-wise random masking, also introduces a
degree decoder to alleviate the problem of structural information overfitting. Pre-training strategies
have been studied in great depth, with a wide range of pretext tasks extracting knowledge from
multiple aspects.

A.2 ADAPTIVE ROBUSTNESS FROM THE PERSPECTIVE OF OUT-OF-DISTRIBUTION (OOD)
GENERALIZATION.

Adaptive attacks are a proposed new robustness evaluation standard and are a type of white-box
attack. They indicate that, with a thorough understanding of the defense model, attackers can bypass
defenses using corresponding strategies. Thus, existing defenses are not as robust as they were
evaluated in their papers. These defenses are vulnerable to adaptive attacks because most of them are
designed based on some specific properties that can be used to differentiate adversarial edges from
original edges. Adversarial modifications on graphs often violate some intrinsic properties shared by
the real-world graphs (e.g., increasing heterophily (Zügner & Günnemann, 2019) and focusing on
the high-frequency component (Chang et al., 2021)). The adversary can easily defeat the defenses
by imposing constraints on the same properties during the attack. Therefore, the key to enhancing
adaptive robustness is not relying on artificially defined properties. To overcome this dependence,
Li et al. proposed a new approach from the out-of-distribution perspective, arguing that adversarial
edges generated through attacks are inherently out-of-distribution compared to the original edges.
Thus, by modeling the entire out-of-distribution problem, an integrated out-of-distribution detector
is trained using adversarially generated edges to detect and remove perturbations.

A.3 PROOF FOR THEOREM 1

Proof. Consider a pre-trained graph neural network (GNN) model f and an unbiased input graph
G = (A,X). An adversarial attack can induce a biased graph structure Ã. Specifically, Ã is
formulated as Ã = A + C ◦ S, where C = 11T − I − 2A. When Sij = Sji = 1, the edge
linking nodes u and v is either added or removed. Based on this formulation, we can simplify Ã as
Ã = A+∆A. Taking f(A,X) as the output of the model on unbiased data, there exists a prompt P
that can be incorporated into the feature space, ensuring the satisfaction of the following equation:

f(Ã,X + P ) = f(A,X) (17)

We adopt the assumptions from GPF (Fang et al., 2024), the pre-trained GNN model f can be
represented as:
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f(A,X) = H = (A+ (1 + ϵ)I)XW (18)

We substitute f(Ã,X + P ) to obtain:

f(Ã,X + P ) = (A+∆A+ (1 + ϵ)I)(X + P )W

= (A+∆A+ (1 + ϵ)I)XW + (A+∆A+ (1 + ϵ)I)PW

= (A+ (1 + ϵ)I)XW +∆AXW + (A+ (1 + ϵ)I)PW +∆APW

= H +∆AXW + (A+ (1 + ϵ)I)PW +∆APW

(19)

Therefore, to satisfy f(Ã,X + P ) = f(A,X) , we need to solve the equation:

H +∆AXW + (A+ (1 + ϵ)I)PW +∆APW = H (20)

In our hybrid multi-defense prompt, assuming there are T defense prompts, then P can be repre-
sented asN×M , whereN ∈ R|V|×T is the prompt selection matrix andM ∈ RT×din is the prompt
matrix. Therefore, by replacing P with N and M in the equation, the problem is transformed into
solving for M . To solve the equation

H +∆AXW + (A+ (1 + ϵ)I)NMW +∆ANMW = H (21)

Subtracting H from both sides of this equation, we get

∆AXW + (A+ (1 + ϵ)I)NMW +∆ANMW = 0 (22)

By factoring out M from the terms involving M , we have

∆AXW + ((A+ (1 + ϵ)I) + ∆A)NMW = 0 (23)

Let B = (A+ (1 + ϵ)I) + ∆A, then the equation becomes

∆AXW +BNMW = 0 (24)

Isolating the term with M by subtracting ∆AXW from both sides, we obtain

BNMW = −∆AXW (25)

Assuming that BN is invertible (if BN is not invertible, the solution may not exist in the gen-
eral sense or may have infinitely many solutions depending on the properties of the matrices), we
multiply both sides of the equation on the left by (BN)−1, resulting in

(BN)−1BNMW = (BN)−1(−∆AXW ) (26)

Since (BN)−1BN = I (the identity matrix), the equation simplifies to

MW = −(BN)−1∆AXW (27)

Case 1: W is invertible

we multiply both sides of the equation on the right by W−1, so

MWW−1 = −(BN)−1∆AXWW−1 (28)

Since WW−1 = I , we get the solution for M as
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M = −(BN)−1∆AX (29)

Substitute B = (A+ (1 + ϵ)I) + ∆A, the solution for the matrix M is

M = −((A+ (1 + ϵ)I) + ∆A)N)−1∆AX (30)

Case 2: W is non-invertible

If W is non-invertible, we can solve the problem by calculating the pseudoinverse of W . In this
case, we cannot multiply by W−1 directly. We can use Singular Value Decomposition (SVD). Let
W = UΣV T , where U is an m × r orthogonal matrix (m is the number of rows of W , r is the
rank of W ), satisfying UTU = Ir (Ir is the r-order identity matrix). Σ is an r × r diagonal
matrix, and its diagonal elements σi (i = 1, · · · , r) are the non-zero singular values of W , that
is, Σ = diag(σ1, · · · , σr). V is an n × r orthogonal matrix (n is the number of columns of W ),
satisfying V TV = Ir.

The pseudoinverse ofW ,W+, can be expressed asW+ = V Σ+UT , where Σ+ is the pseudoinverse
of Σ, also an r × r diagonal matrix, and its diagonal elements are 1

σi
(i = 1, · · · , r).

Multiply both sides of the equation MW = −(BN)−1∆AXW by W+ on the right-hand side, and
we can get:

MWW+ = −(BN)−1∆AXWW+

M(WW+) = −(BN)−1∆AX(WW+)
(31)

WW+ is a projection matrix onto the column space of W . If W is a full column-rank matrix,
WW+ is the identity matrix in the column space of W . Even if W does not have full column-rank,
WW+ can still project vectors onto the column space of W .

Discussion on the solution of M

• If W is a full column-rank matrix, at this time WW+ is an invertible matrix (it is the
identity matrix in the dimension of the column space of W ). Multiply both sides of the
equation on the left by (WW+)−1, and we can get M = −(BN)−1∆AX .

• If W is not a full column-rank matrix, let C = −(BN)−1∆AX . Although we cannot
directly obtain a unique solution for M as in the case of full column-rank, M can still take
multiple values in the complementary space of the column space of W , that is, the solution
of M is not unique. However, if there are other conditions, such as restrictions on the norm
of M , constraints on some elements of M , etc., we can further determine M by combining
these conditions.

Therefore, after finding the inverse-like matrix of W (pseudoinverse in the general case), under
certain conditions (such as W having full column-rank), we can obtain a unique solution for M ; in
general cases, we can obtain the constraints of M in the column space of W , and further solve for
M by combining other conditions. This work does not conduct a detailed analysis of some non-ideal
situations. Of course, we hope that future work can provide more rigorous proofs and derivations
for robust prompts in different biased environments.

A.4 DATASETS AND ATTACKS

A.4.1 DATASETS

For the attacked data, following the settings in Nettack (Zügner et al., 2018), we only consider the
largest connected component (LCC). The details of the datasets are presented in Table 4.

For node classification and link prediction tasks, we select homophilic datasets (Cora, Citeseer,
Pubmed) (Sen et al., 2008; Namata et al., 2012) , heterophilic datasets (Wisconsin) (Pei et al., 2020)
and explore the prompts on large graph (ogbn-arxiv) (Hu et al., 2020). We conduct experiments
under 5-shot and 10-shot settings, where the link prediction task includes 5,000 positive edges and
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Table 4: Details of the largest connected component (LCC) for each dataset.

Datasets NLCC ELCC Features Classes

Citeseer 2110 3668 3703 6
Cora 2485 5069 1433 7

Cora-ML 2810 7981 2879 7

5,000 negative edges. The details of the datasets are presented in Table 5. We present the perfor-
mance of the prompt functions on node classification and link prediction tasks for these datasets in
Appendix A.8.

Table 5: Statistics of all datasets for node classification and link prediction tasks.

Datasets Graphs Nodes Edges Features Classes Task Catagory

Cora 1 2708 5429 1433 7 N / L Homophilic
Pubmed 1 19717 88648 2879 3 N / L Homophilic
Citeseer 1 3327 9104 3703 6 N / L Homophilic

Wisconsin 1 251 515 1703 5 N / L Heterophilic
ogbn-arxiv 1 169343 1166243 128 40 N / L Homophilic & Large scale

For the graph classification task, in order to be more comprehensive, we chose the molecular dataset
MUTAG (Kriege & Mutzel, 2012), the social network dataset COLLAB (Yanardag & Vishwanathan,
2015a), the protein dataset PROTEINS (Wang et al., 2022), and the social network dataset IMDB-
BINARY (Yanardag & Vishwanathan, 2015b). We also conduct experiments under 5-shot and 10-
shot settings. The details of the datasets are presented in Table 6. We present the performance of the
prompt functions on graph classification tasks for these datasets in Appendix A.9.

Table 6: Statistics of all datasets for graph classification tasks.

Datasets Graphs Avg. Nodes Avg. Edges Features Classes Task Catagory

MUTAG 188 17.9 19.8 7 2 G small molecule
COLLAB 5000 74.5 2457.8 0 3 G social network

PROTEINS 1113 39.1 72.8 3 2 G proteins
IMDB-BINARY 1000 19.8 96.53 0 2 G social network

The data recording format for all node classification, link prediction, and graph tasks datasets follows
the approach used in (Zi et al., 2024).

Through generalization experiments on these datasets, we find that our auxiliary robust system does
not make an excessive sacrifice of accuracy in favor of robustness. In fact, it maintains strong
competitiveness on many task datasets, which is a pleasant surprise during the expansion of the
experiments. We speculate that the original datasets might already contain some inherent noise, and
our robustness enhancement tool further purifies the data during the training process.

A.4.2 UNIT TEST AND ATTACKS

To provide a more comprehensive evaluation of robustness, (Mujkanovic et al., 2022) presents an
interesting research point: almost all defenses are evaluated against non-adaptive attacks, leading
to overly optimistic robustness estimates. Therefore, they categorize 49 defense methods and select
the most representative method from each category to design targeted adaptive attack methods. The
adversarial graphs generated by these attacks can be bundled together to test other defenses and can
be considered a minimal standard for evaluating the adaptive robustness of defense models. In the
unit test, the datasets are centered around Citeseer and Cora-ML. for each representative model, there
are 5 random data splits, each containing poisoning and evasion attacks. The attack budget ranges
from 0% to 15%, resulting in approximately 2700 testable graphs in total. The unit test module
used in this paper is adapted from the following repository: https://github.com/LoadingByte/are-
gnn-defenses-robust
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The code implementation for attacking the graph using different attacks can be found at the following
links.

• Metattack: https://github.com/danielzuegner/gnn-meta-attack
• Heuristic attack: https://github.com/likuanppd/STRG/tree/main
• DICE: https://github.com/DSE-MSU/DeepRobust/tree/master/examples/graph/test dice.py
• Random: https://github.com/DSE-MSU/DeepRobust/tree/master/examples/graph/test random.py

A.5 BASELINES FOR PROMPT

The code implementation for all prompts can be found at the following links. Additionally, ProG is
a library built upon PyTorch to easily conduct single or multi-task prompting for pre-trained Graph
Neural Networks (GNNs). You can easily use this library to conduct various graph workflows.

• GPPT: https://github.com/MingChen-Sun/GPPT/tree/main
• GPF/GPF-plus: https://github.com/zjunet/GPF
• All-in-one: https://github.com/sheldonresearch/ProG/tree/zcy
• GraphPrompt: https://github.com/Starlien95/GraphPrompt
• MutiGPrompt: https://github.com/Nashchou/MultiGPrompt
• ProG: https://github.com/sheldonresearch/ProG

A.6 RESULTS OF FEW-SHOT NODE CLASSIFICATION UNDER NON-ADAPTIVE ATTACKS

The results for 10-shot scenarios under non-adaptive attacks. Table 7 shows the robustness
performance of 10-shot graph prompt tuning under different non-adaptive attacks.

Table 7: Performance of Different Prompts in 10-shot scenario under Non-Adaptive Attacks.

Pre-Training
Strategies Prompts Cora Citeseer CoraML

Clean M-0.25 D-0.5 R-0.5 H-0.5 Clean M-0.25 D-0.5 R-0.5 H-0.5 Clean M-0.25 D-0.5 R-0.5 H-0.5

GraphPrompt 72.15 40.48 39.83 52.30 39.79 73.44 49.21 30.84 41.73 32.57 64.80 42.21 39.01 41.08 39.78
MultiGPrompt 52.53 46.88 41.08 49.22 33.44 50.24 47.59 38.16 42.84 45.47 48.99 37.31 33.86 46.76 24.98

GraphCL

All-in-one 69.78 45.26 14.03 11.64 18.95 67.05 42.17 34.04 45.75 17.40 49.68 27.09 19.10 32,08 24.21
GPF 60.99 35.65 35.05 39.37 29.85 73.66 41.63 42.17 37.40 21.90 44.48 15.98 30.45 34.71 24.49

GPF-plus 70.61 41.63 37.21 51.01 36.89 69.16 42.38 42.60 45.58 26.02 65.69 34.83 36.01 24.70 31.63
GPPT 40.71 28.98 30.86 29.44 32.75 51.84 40.38 32.95 32.63 32.25 43.51 37.10 33.17 35.20 29.40

*MD-PT 53.73 47.01 41.77 44.11 47.84 64.50 58.81 55.28 56.42 64.28 71.29 56.12 62.08 55.31 52.76
*IA-PT 65.96 63.52 55.34 57.96 62.70 62.66 62.82 52.20 57.45 56.31 79.08 70.52 64.64 65.13 74.74

GraphMAE

All-in-one 50.55 35.46 30.04 36.89 32.24 69.97 59.73 43.41 50.73 42.28 46.19 20.48 28.75 21.57 21.98
GPF 71.62 43.56 44.43 55.84 44.39 77.07 59.24 45.80 45.20 27.26 68.17 34.06 29.32 22.95 29.24

GPF-plus 69.09 44.48 41.49 55.66 40.06 76.59 56.48 40.49 38.75 29.76 71.21 21.82 36.86 11.68 24.66
GPPT 77.69 45.26 58.05 63.72 47.65 66.2 57.51 53.06 57.02 54.42 68.57 37.96 44.40 47.28 32.20

*MD-PT 72.22 69.41 59.34 64.40 58.23 63.96 64.99 55.45 58.16 61.90 78.26 67.72 62.49 65.17 50.16
*IA-PT 73.05 73.32 65.23 71.16 71.11 67.43 64.66 59.84 62.49 59.30 72.42 71.37 67.40 72.87 69.95

A.7 RESULTS OF FEW-SHOT NODE CLASSIFICATION UNDER ADAPTIVE ATTACKS

The results for 10-shot scenarios under adaptive attacks. Table 8 shows the robustness perfor-
mance of 10-shot graph prompt tuning under different adaptive attacks. On the CoraML dataset, the
performance of most prompts vary widely. Similarly, on the Citeseer dataset, there are significant
differences across various prompts. As can be seen from the Table, MD-PT and IA-PT strategies per-
form more prominently than other prompt functions, demonstrating their effectiveness in enhancing
the robustness of prompt tuning against adaptive attacks.

A.8 PERFORMANCE OF HYBRID MULTI-DEFENSE PROMPT ON NODE CLASSIFICATION AND
LINK PREDICTION TASKS

The results for 5-shot scenarios under Node Classification and Link Prediction Tasks. Table 9
shows the performance of 5-shot graph prompt tuning under different node classification and link
prediction tasks.
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Table 8: Performance of Different Prompts in 10-shot scenario under Adaptive Attacks.

Pre-Training
Strategies Prompts CoraML Citeseer

GCNSVD GRAND GNNGuard GCNJaccard GCNSVD GRAND GNNGuard GCNJaccard

GraphPrompt 53.77 38.78 51.01 35.60 55.99 32.25 45.64 53.77
MultiGPrompt 29.99 32.38 19.09 13.25 31.49 25.04 34.20 33.39

GraphCL

All-in-one 40.48 25.44 36.71 21.90 41.25 33.06 37.13 42.33
GPF 40.80 43.79 16.65 26.91 38.59 37.78 18.92 26.29

GPF-plus 38.96 36.02 45.77 40.39 45.47 22.49 53.17 22.49
GPPT 36.11 30.68 35.33 36.52 48.83 41.03 44.23 39.89

*MD-PT 41.45 50.25 44.62 45.72 58.37 57.72 63.14 57.72
*IA-PT 63.25 57.91 57.91 60.81 65.96 66.61 66.07 66.61

GraphMAE

All-in-one 20.47 24.24 30.73 23.92 43.20 28.40 44.61 45.15
GPF 53.59 37.03 54.83 44.25 62.82 34.15 54.96 56.75

GPF-plus 53.96 38.22 53.77 45.35 58.43 33.55 51.33 53.93
GPPT 50.74 31.51 34.82 36.52 63.69 31.49 56.42 47.48

*MD-PT 44.20 43.88 45.77 48.34 60.38 60.25 60.76 63.52
*IA-PT 68.12 65.92 67.11 67.99 67.86 66.23 64.82 65.91

Table 9: Performance of Hybrid Multi-Defense Prompt and Mainstream Prompts on 5-shot Node
Classification and Link Prediction Tasks.

Methods
Datasets Cora Citeseer Pubmed Wisconsin ogbn-arxiv

Node Link Node Link Node Link Node Link Node Link

Pre-train & Fine-tune 42.73 68.79 52.92 55.14 51.07 54.04 20.95 45.15 10.92 53.34
GPPT 35.96 65.13 49.79 56.56 55.42 43.88 16.99 77.65 6.52 73.52

All-in-one 50.06 74.68 51.11 60.15 44.76 64.99 26.21 78.85 4.54 80.34
Gprompt 68.03 67.25 75.25 58.83 59.93 62.57 44.92 61.13 21.27 53.31

GPF 64.52 58.92 52.56 57.06 57.05 62.95 35.82 39.45 15.81 49.23
GPF-plus 70.55 62.45 74.51 58.47 40.94 82.20 39.45 45.85 22.40 72.43
*MD-PT 71.76 69.95 75.38 78.24 64.00 64.75 50.49 52.49 18.92 65.42

The results for 10-shot scenarios under Node Classification and Link Prediction Tasks. Table
10 shows the performance of 10-shot graph prompt tuning under different node classification and
link prediction tasks.

Table 10: Performance of Hybrid Multi-Defense Prompt and Mainstream Prompts on 10-shot Node
Classification and Link Prediction Tasks.

Methods
Datasets Cora Citeseer Pubmed Wisconsin ogbn-arxiv

Node Link Node Link Node Link Node Link Node Link

Pre-train & Fine-tune 52.23 67.55 58.82 60.57 50.35 59.23 29.12 65.49 14.38 55.41
GPPT 47.77 65.47 54.09 74.48 48.91 55.35 22.43 59.13 7.74 52.86

All-in-one 65.90 77.23 53.24 65.95 49.33 74.03 41.76 82.35 5.25 80.50
Gprompt 70.81 66.45 76.46 50.46 60.10 61.58 43.96 50.43 24.31 75.55

GPF 69.93 73.35 53.82 60.37 39.26 50.08 31.72 57.75 10.36 63.03
GPF-plus 72.79 88.24 78.46 73.02 42.45 88.75 32.26 59.57 14.12 81.40
*MD-PT 73.45 74.55 75.85 77.49 62.34 62.98 35.65 54.42 20.45 68.45

A.9 PERFORMANCE OF HYBRID MULTI-DEFENSE PROMPT ON GRAPH CLASSIFICATION
TASKS

The results for 5-shot and 10-shot scenarios under Graph Classification Tasks. Table 11 shows
the performance of graph prompt tuning under different graph classification tasks.

A.10 PERFORMANCE OF PROPOSED PROMPTS ON TRANSFER TASKS

The results for Proposed Prompts and GPF/GPF-plus on Different Attack Transfer Scenarios.

Table 12 shows the performance of graph prompt tuning under different attack transfer scenarios.
As seen, IA-PT still demonstrates excellent robustness, while MD-PT is slightly less effective, but
still consistently improves the robustness of GPF/GPF-plus. This aligns well with what we describe:
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Table 11: Performance of Hybrid Multi-Defense Prompt and Mainstream Prompts on Graph Classi-
fication Tasks.

Methods
Datasets MUTAG COLLAB PROTEINS IMDB-B

5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

Pre-train & Fine-tune 68.00 68.00 61.28 62.77 53.37 65.51 63.00 67.00
GPPT 64.00 68.67 50.48 51.97 59.55 60.33 51.25 54.48
All-in-one 70.00 66.67 63.60 54.70 62.92 67.22 61.12 66.12
Gprompt 72.67 70.67 64.53 64.25 61.24 58.65 60.50 69.50
GPF 64.67 65.33 61.80 62.45 64.61 66.29 60.17 66.75
GPF-plus 68.00 72.00 62.20 63.75 65.17 63.26 60.75 67.12
*MD-PT 74.67 74.35 65.07 65.63 67.39 66.52 63.13 62.57

avoiding difficulties is often much easier than facing them head-on. This transferability experiment
has been instrumental in helping us validate the scalability and transferability of the designed system.

Table 12: Performance of Proposed Prompts and GPF/GPF-plus on Different Attack Transfer Sce-
narios.

Prompts Attacks Cora Citeseer CoraML
M-0.25 D-0.5 R-0.5 H-0.5 M-0.25 D-0.5 R-0.5 H-0.5 M-0.25 D-0.5 R-0.5 H-0.5

GPF

M-0.25 31.44 32.47 20.23 26.26 20.26 20.85 32.80 35.79 28.99 32.07 33.07 30.42
D-0.5 33.97 23.38 28.21 32.70 36.22 25.37 25.37 20.75 36.75 33.79 34.79 31.71
R-0.5 36.92 36.37 36.24 34.37 25.37 21.96 21.96 21.96 34.63 34.47 39.31 39.95
H-0.5 29.16 35.85 29.30 29.02 31.26 25.37 20.15 19.86 31.39 21.74 34.19 32.54

GPF-plus

M-0.25 35.56 35.51 34.92 36.33 25.37 24.46 38.76 40.48 33.15 35.67 35.15 36.75
D-0.5 37.19 36.87 38.19 37.10 26.98 28.77 29.49 27.40 34.35 33.99 32.31 32.03
R-0.5 42.26 40.35 40.26 44.35 34.29 35.71 35.34 35.68 38.11 37.67 36.03 37.83
H-0.5 33.56 30.79 35.92 32.79 20.20 33.12 34.78 33.07 40.03 40.45 37.11 39.95

*MD-PT

M-0.25 47.06 42.40 43.11 47.89 42.81 39.62 40.46 44.85 53.82 43.57 42.17 47.51
D-0.5 47.08 40.15 42.81 47.13 42.18 36.72 36.32 38.88 43.44 44.55 40.02 51.25
R-0.5 48.04 45.82 50.34 53.52 40.46 37.82 37.77 38.75 52.76 41.57 45.24 50.80
H-0.5 50.15 41.45 44.67 47.48 41.82 38.39 35.55 41.08 41.35 41.34 39.45 52.36

*IA-PT

M-0.25 65.22 49.50 60.16 62.53 55.66 48.76 55.04 58.35 61.61 54.89 59.96 65.57
D-0.5 64.54 52.24 57.60 61.57 57.41 55.34 51.24 53.61 58.19 52.52 53.02 57.56
R-0.5 57.85 48.04 54.69 60.46 56.52 54.03 48.96 54.21 62.19 49.13 54.00 61.92
H-0.5 60.41 53.62 55.13 62.55 57.94 52.73 50.47 58.55 62.10 52.71 59.48 58.77
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