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Abstract
This paper presents Retrieval-Augmented Fore-
casting (RAF), a novel framework for tabu-
lar time-series prediction that dynamically re-
trieves and integrates relevant historical table
slices. RAF addresses three key limitations of
existing methods: 1) schema rigidity through
dynamic hashing of column metadata, 2) tem-
poral myopia via cross-attention with learned
decay, and 3) pipeline sub-optimality via end-
to-end retriever-forecaster co-training. Exper-
iments across macroeconomic (FRED-MD),
financial (Yahoo Finance), and development
(WorldBank) benchmarks demonstrate RAF’s
superiority over six baselines, reducing sMAPE
by 19.1-26.5% while maintaining robustness
to schema changes (+3.2% sMAPE increase
vs. +6.7-12.7% for alternatives). The archi-
tecture’s computational overhead (1.8 vs. 1.2
hours/epoch vs. TFT) is justified by significant
accuracy gains in critical scenarios like market
shocks (61.7% vs. 55.1% directional accuracy).

1 Introduction

Forecasting economic and financial indicators us-
ing tabular time-series data is a high-stakes chal-
lenge. Consider a hedge fund analyst predicting
next-quarter earnings for a portfolio of tech compa-
nies: they must synthesize historical financial state-
ments (e.g., Apple’s quarterly revenue), macroeco-
nomic trends (e.g., interest rates), and unstructured
signals (e.g., news about supply chains). Current
approaches fall short in two key ways. First, tradi-
tional time-series models like ARIMA (Box et al.,
2015) or Prophet (Taylor and Letham, 2018) ig-
nore cross-series dependencies—for instance, they
cannot leverage the fact that NVIDIA’s GPU sales
may lag TSMC’s wafer production by 3 months.
Second, while modern deep learning methods (e.g.,
Temporal Fusion Transformers (Lim et al., 2021))
handle multivariate inputs, they treat tables as static
matrices, failing to retrieve and contextualize rel-
evant historical patterns. For example, during the

2022 oil crisis, a model unaware of analogous 2008
price shock dynamics would miss critical risk sig-
nals.

This gap is exacerbated in retrieval-augmented
generation (RAG) systems, which excel in text-
based QA (Lewis et al., 2020) but struggle with
structured data. Financial tables demand schema-
aware retrieval (e.g., matching “EBITDA” across
filings with differing column names) and tempo-
ral alignment (e.g., retrieving Q3 2020 data when
forecasting Q3 2023). We propose Retrieval-
Augmented Forecasting (RAF) for tabular time
series, which: (1) dynamically retrieves semanti-
cally and temporally relevant table slices (e.g., past
oil price surges when predicting energy stocks),
and (2) fuses them with neural forecasts via a
schema-guided attention mechanism. Our work
is grounded in real-world needs, from Bloomberg
terminal users querying correlated assets to central
banks simulating policy impacts across historical
regimes.

2 Related Work

2.1 Time-Series Forecasting

Recent advances in deep learning for time-series
forecasting fall into three camps. Transformer-
based methods like PatchTST (Nie et al., 2023)
segment series into patches but ignore cross-table
relationships (e.g., linking GDP to unemployment).
Graph-based approaches (Cao et al., 2020) model
variable dependencies but assume static schemas,
failing when new columns (e.g., “AI Revenue”)
emerge. Hybrid models like Temporal Latent
Graph (Chen et al., 2023) combine text and tables
but lack explicit retrieval, limiting their ability to
“look up” analogous historical contexts. Other time-
series related forecasting can be found in (Wang
et al., 2024; Peng et al., 2025).



2.2 Retrieval-Augmented Models
While RAG systems excel in NLP (Lewis et al.,
2020), their adaptation to tables is nascent. TURL
(Deng et al., 2020) retrieves entity-linked tables
for QA but cannot handle time-varying schemas.
TABERT (Yin et al., 2020) pretrains on static ta-
bles, missing temporal shifts (e.g., inflation recal-
culations). FinRAG (Wu et al., 2023) retrieves
financial text but not tabular history. These gaps
are critical: without temporal retrieval, a model
analyzing 2023 bank failures cannot retrieve 2008
crisis data despite similar liquidity patterns. We
also try to leverage on techniques used in (Zhang
and Sen, 2024; He et al., 2024; Liang et al., 2024)
to improve Retrieval-Augmented models.

2.3 Deficiencies and Our Improvements
Current methods share four key limitations:

1. Schematic Rigidity: Models like TAPAS
(Herzig et al., 2020) hardcode column embed-
dings, breaking when schemas evolve (e.g.,
new SEC reporting standards). We introduce
dynamic schema hashing to align columns
across time.

2. Temporal Myopia: Retrievers like DPR
(Karpukhin et al., 2020) optimize for text sim-
ilarity, not time-aware relevance. We propose
a dual-time attention scorer that prioritizes
both semantic and lagged correlations (e.g.,
oil prices → airlines with a 6-month lag).

3. Modality Bias: Hybrid models (Ding et al.,
2021) process text and tables separately. Our
retriever jointly embeds text-table pairs (e.g.,
earnings calls + balance sheets) via contrastive
alignment.

4. Benchmark Gaps: Existing evaluations (e.g.,
M4 (Makridakis et al., 2020)) focus on univari-
ate series. We curate a multi-table benchmark
(FRED-MD + Yahoo Finance) with schema-
shift challenges.

Our RAF framework addresses these by unify-
ing retrieval with schema-temporal grounding, en-
abling forecasts that adapt to both data evolution
and regime shifts.

3 Methodology

3.1 Problem Formulation
Given a tabular time-series dataset D = {Xt}Tt=1,
where each Xt ∈ RN×d (N variables, d features),

and an optional text corpus C (e.g., earnings re-
ports), our goal is to forecast Xt+1:t+H by: 1) Re-
trieving relevant historical slices {Xt−k}k∈K using
a schema-temporal retriever, and 2) Fusing them
with the current state Xt via a forecaster.

3.2 Retriever Design
Our dual-encoder retriever computes relevance
scores between query Xt and candidate Xt′ as:

Score(Xt,Xt′) = sim(Eϕ(Xt),Eϕ(Xt′))︸ ︷︷ ︸
schema alignment

+ λ · exp
(
−|t− t′|

τ

)
︸ ︷︷ ︸

temporal decay

, (1)

where Eϕ is a schema-aware encoder (details be-
low), λ controls temporal weight, and τ is a decay
rate.

Schema-Aware Encoder For variable i in Xt,
we embed its name (e.g., "GDP"), type (e.g.,
"float"), and temporal statistics (mean/variance
over a sliding window) as:

ei = MLP([Embed(namei)⊕Embed(typei)⊕si]),

where si ∈ R2 contains normalized statistics. The
table embedding Eϕ(Xt) is the mean of {ei}Ni=1.

3.3 Forecaster with Retrieved Context
The forecaster uses a Transformer with retrieved
tables {X(1)

t′ , . . . ,X
(K)
t′ } as cross-attention inputs:

ht = TransformerLayer(Xt, {X(k)
t′ }) (2)

X̂t+1 = MLP(ht). (3)

In our RAF framework as illustrated in Figure
1, the retriever selects schema-aligned historical
tables through dynamic hashing, which the fore-
caster integrates via temporal cross-attention. Solid
arrows show primary data flow, while dashed lines
indicate gradient propagation during end-to-end
training.

Our RAF framework advances beyond existing
approaches through fundamental architectural in-
novations that address three key limitations in tab-
ular forecasting systems. Where prior work either
focused exclusively on static table structures or
treated retrieval as a separate preprocessing step,
we unify schema-aware retrieval with temporal
forecasting in an end-to-end differentiable frame-
work. This integration enables several critical im-
provements over state-of-the-art methods:



• vs. TAPAS (Herzig et al., 2020): While
TAPAS relies on fixed column embeddings
pretrained on Wikipedia tables, our en-
coder dynamically adapts to domain-specific
schemas through online learning of statisti-
cal features (mean, variance, kurtosis). This
proves essential for financial forecasting
where reporting standards evolve quarterly.

• vs. Temporal Fusion Transformer (Lim
et al., 2021): TFT’s static metadata inputs
cannot leverage historical context beyond the
fixed input window. Our cross-attention mech-
anism actively retrieves and incorporates rel-
evant table slices from the entire history, en-
abling true long-range dependency modeling.

• vs. FinRAG (Wu et al., 2023): Where Fin-
RAG retrieves textual financial reports, our
system operates directly on tabular slices, pre-
serving numerical relationships that get lost
in text serialization. This proves crucial for
precise quantitative forecasting tasks.

3.4 Parameter Settings

The RAF architecture incorporates several carefully
tuned hyperparameters that balance model capacity
with computational efficiency. These values were
determined through extensive ablation studies on
our validation sets, considering both forecasting
accuracy and resource constraints:

Parameter Value
Retrieval top-K 5
Temporal decay τ 12 (months)
λ (retrieval weight) 0.7
Transformer layers 4
Embedding dim 128

The K = 5 retrieval setting provides suffi-
cient context diversity while avoiding noise from
marginal matches. The 12-month temporal decay
(τ ) aligns with typical macroeconomic cycles, au-
tomatically downweighting older data while pre-
serving structural patterns. Our 4-layer transformer
with 128D embeddings offers the best accuracy-
efficiency tradeoff, achieving 98% of the perfor-
mance of larger models (8L, 256D) at half the com-
putational cost.

3.5 Model Innovations

Our framework introduces three key innovations
over prior work (Lim et al., 2021; Herzig et al.,
2020):

Input Table X_t

Schema-Temporal Retriever

Transformer Forecaster

Top-K Retrieved Tables

Forecast X_{t+1}

Figure 1: Retrieval-Augmented Forecasting (RAF)
pipeline

• Dynamic Schema Hashing: Column embed-
dings adapt to naming variations (e.g., "Rev-
enue" vs. "Sales") through statistical normal-
ization of metadata features, solving the vo-
cabulary mismatch problem in (Herzig et al.,
2020).

• Temporal Cross-Attention: The forecaster
attends to both current data and retrieved
tables using learned position biases for
time-warped alignment, addressing the fixed-
window limitation of (Lim et al., 2021).

• End-to-End Retrieval Tuning: The re-
triever’s parameters are updated through the
forecaster’s gradients via Gumbel-Softmax re-
laxation (Jang et al., 2016), overcoming the
pipeline suboptimality noted in (Wu et al.,
2023).

3.6 Dynamic Schema Hashing

Building on the schema-aware pretraining concepts
from (Eisenschlos et al., 2021), we develop a learn-
able hashing mechanism that maps variable meta-
data (names, types, statistical properties) to a uni-
fied embedding space. For variable vi at time t, the
hash is computed as:

hti = MLP([Embed(namei)⊕ σ(statsti)

⊕ Embed(uniti)]) (4)



where statsti contains rolling window statistics
(mean, variance, kurtosis) over the previous k
timesteps. This allows the model to recognize that
"Unemployment Rate (%)" and "Jobless Population
(% Labor Force)" represent equivalent concepts de-
spite naming differences, addressing the schema
rigidity problem noted in (Borisov et al., 2023).

3.7 Temporal Cross-Attention
The forecaster module extends the standard Trans-
former architecture (Vaswani et al., 2017) with two
attention mechanisms:

• Intra-table Attention: Standard self-
attention within the current table Xt

• Cross-table Attention: Between Xt and re-
trieved tables {X(k)

t′ }Kk=1

Each attention head computes modified energy
scores incorporating temporal distance:

eij =
(Wqxi)

T (Wkxj)√
d

− λ
|ti − tj |

τ
(5)

where λ and τ are learned parameters control-
ling temporal decay. This architecture directly ad-
dresses the temporal myopia limitation identified
in (Cao et al., 2020).

3.8 End-to-End Retrieval Tuning
Unlike pipeline approaches in (Wu et al., 2023), our
retriever is trained jointly with the forecaster us-
ing Gumbel-Softmax relaxation (Jang et al., 2016).
The training objective combines:

L = Lforecast + αLretrieval + βLschema (6)

where α and β control the contribution of re-
trieval accuracy and schema consistency losses re-
spectively. This end-to-end approach, visualized in
Figure 2, enables the retriever to specialize for fore-
casting tasks rather than generic similarity match-
ing.

4 Experiments and Results

Building on the methodological foundations estab-
lished in Section 3, we now evaluate RAF’s perfor-
mance across diverse forecasting scenarios. The
experiments are designed to validate each compo-
nent of our architecture while assessing practical
utility in real-world conditions.

Figure 2: Example of RAF’s end-to-end architecture
showing the interaction between retrieval and forecast-
ing components.

4.1 Datasets and Baselines

We evaluate on three carefully curated benchmarks:
FRED-MD (McCracken and Ng, 2016) com-

prises 107 monthly US macroeconomic indica-
tors from 1959-2023, including GDP, unemploy-
ment, and industrial production. This dataset tests
RAF’s ability to handle long-range dependencies
and structural breaks (e.g., 2008 financial crisis).
The variables exhibit complex cross-correlations -
for instance, interest rates typically lag inflation by
6-18 months (Stock and Watson, 2002).

Yahoo Finance-Volatility aggregates daily
stock returns and 10-K filing texts for S&P 500
companies (2010-2023). Unlike FRED-MD’s fixed
schema, this dataset contains evolving financial
reporting standards, challenging models to align
historical data with current metrics. We focus on
volatility forecasting, where textual context (e.g.,
"supply chain disruption" in filings) complements
numerical trends (Ding et al., 2021).

WorldBank Open Data provides 50+ years
of cross-country development indicators with fre-
quent schema changes. The 2021 revision added



SDG-related variables like "Renewable Energy
Share", testing RAF’s schema adaptation capabili-
ties. Missing data (30% of entries) further stresses
the model’s robustness (Group, 2023).

Baselines include:

• Temporal Fusion Transformer (TFT) (Lim
et al., 2021): State-of-the-art neural forecaster
with static metadata handling.

• TAPAS-RAG: Our adaptation of (Herzig
et al., 2020) using its table retriever with
Prophet (Taylor and Letham, 2018) as fore-
caster.

• Schema-Adaptive GNN (Cao et al., 2020):
Graph neural network with manual schema
alignment rules.

4.2 Evaluation Metrics

We prioritize sMAPE (Symmetric Mean Absolute
Percentage Error) for three domain-specific rea-
sons:

• Scale Invariance: Critical for comparing fore-
casts across diverse economic indicators (e.g.,
GDP in billions vs. unemployment rates in
percentages) (Hyndman and Koehler, 2006).

• Directional Balance: Unlike MAE/MSE,
sMAPE equally penalizes over- and under-
predictions (Armstrong, 2001), essential for
financial decision-making.

• Established Benchmarking: Standard in
macroeconomic forecasting (McCracken and
Ng, 2016) and aligns with M4 competition
metrics (Makridakis et al., 2020).

4.3 Datasets Running Results

Table 1: Forecasting Accuracy (sMAPE) on FRED-MD

Model 1-Month 6-Month 12-Month
TFT 9.8 14.2 19.5
TAPAS-RAG 8.9 13.1 17.8
RAF (Ours) 7.2 11.4 15.3

As shown in Table 3, RAF reduces sMAPE by
26.5% versus TFT at 1-month horizons, with gains
persisting at longer forecasts. The improvement
stems from retrieving analogous historical regimes
- for example, RAF automatically links 2022 infla-
tion patterns to 1970s stagflation episodes through

schema-agnostic column matching. TAPAS-RAG’s
fixed embedding strategy fails to recognize that
"CPI All Items" and "Consumer Price Index" repre-
sent identical metrics across different time periods.

Table 2: Schema Shift Robustness (WorldBank)

Model sMAPE Increase
TAPAS-RAG +9.1
Schema-GNN +6.7
RAF +3.2

Table 2 demonstrates RAF’s superiority when
new variables are introduced. The 2021 WorldBank
revision added 17 SDG-related columns - while
TAPAS-RAG’s performance degraded significantly
due to frozen embeddings, RAF’s dynamic hash-
ing maintained accuracy by inferring relationships
(e.g., "Renewable Energy %" ≈ "Clean Energy
Share" with seasonal adjustments).

Table 3: Forecasting Accuracy (sMAPE) on FRED-MD

Model 1-Month 6-
Month

12-
Month

DeepAR 11.2 16.8 22.1
N-BEATS 10.4 15.3 20.7
TFT 9.8 14.2 19.5
TSMixer 9.1 13.5 18.9
TAPAS-RAG 8.9 13.1 17.8
RAF (Ours) 7.2 11.4 15.3

In Table 3, RAF reduces sMAPE by 19.1% com-
pared to TFT at 1-month horizons, with consis-
tent gains at longer forecasts. The improvement
stems from its ability to retrieve and align historical
regimes – for example, linking 2022 inflation pat-
terns to 1970s stagflation through dynamic schema
matching. While TAPAS-RAG shows competitive
results, its performance degrades when variables
are renamed (e.g., "Unemployment Rate" vs. "Job-
less Rate"). DeepAR and N-BEATS, though com-
putationally efficient, fail to capture cross-variable
dependencies critical for macroeconomic forecast-
ing. TSMixer’s MLP-based approach performs
well but lacks interpretability in retrieved contexts.
RAF’s superiority is most pronounced at 12-month
horizons (15.3 vs. 17.8 sMAPE), demonstrating its
capacity for long-term structured reasoning.

4.4 Financial Market Prediction
With data from Table 4, RAF achieves 65.4% di-
rectional accuracy in tech stocks, outperforming



Table 4: Directional Accuracy (%) on Yahoo Finance

Model Tech Energy Healthcare
DeepAR 54.3 52.1 53.8
N-BEATS 56.7 54.9 55.2
TFT 58.7 57.2 56.9
TSMixer 59.4 58.1 57.3
TAPAS-RAG 60.2 58.8 58.1
RAF (Ours) 65.4 63.1 62.8

TAPAS-RAG by 5.2 percentage points. This results
from sector-specific retrievals - for instance, match-
ing current semiconductor inventories to 2018
shortage patterns. Energy sector predictions bene-
fit similarly from retrieving past oil glut scenarios
(63.1% DA). TFT and TSMixer show respectable
performance but lack explicit retrieval mechanisms,
leading to inconsistent responses during market
shocks.

4.5 Schema Shift Robustness

Table 5: Schema Shift Impact (sMAPE Increase)

Model sMAPE Increase (%)
DeepAR +12.7
N-BEATS +10.3
TFT +8.5
TSMixer +7.9
TAPAS-RAG +9.1
Schema-GNN +6.7
RAF (Ours) +3.2

After WorldBank’s 2021 schema update (adding
17 SDG variables), RAF maintains robustness with
only 3.2% sMAPE increase. Its dynamic hashing
correctly links new variables like "Renewable En-
ergy Share" to legacy columns through statistical
feature matching. TAPAS-RAG’s frozen embed-
dings cause a 9.1% degradation, while Schema-
GNN’s manual rules require retuning (+6.7%).
This confirms RAF’s superiority in real-world set-
tings where reporting standards evolve frequently.

4.6 Ablation Study
Removing retrieval causes the largest performance
drop (28%), validating its necessity for contextual
forecasting. Disabling temporal decay leads to 12.9
sMAPE as the model attends to irrelevant historical
periods. Schema hashing ablation degrades accu-
racy to 13.1, showing its importance for handling
variable renaming. The full model’s 11.4 sMAPE

Table 6: Component Analysis (6-Month sMAPE)

Variant sMAPE
RAF w/o retrieval 14.6
RAF w/o temporal decay 12.9
RAF w/o schema hashing 13.1
RAF full 11.4

confirms all components synergistically improve
forecasting.

4.7 Computational Efficiency

Table 7: Training Time vs. Accuracy

Model Hours/Epoch 1-Month sMAPE
DeepAR 0.8 11.2
N-BEATS 1.1 10.4
TFT 1.2 9.8
TSMixer 0.9 9.1
RAF (Ours) 1.8 7.2

RAF’s retrieval adds 50% training time versus
TFT but achieves 26.5% better accuracy. The over-
head comes from cross-attention over retrieved ta-
bles, justified for high-stakes forecasts. TSMixer
offers the best efficiency-accuracy tradeoff among
baselines but lacks interpretability. In production,
RAF’s faster convergence (3× fewer epochs) off-
sets its per-epoch cost.

4.8 Crisis Period Performance

During market shocks, RAF maintains 61.7% DA
versus TFT’s 55.1% by retrieving analogous crises
(e.g., 2008 recession for COVID-19). Retrieval
logs show it successfully identified relevant histori-
cal patterns - for Ukraine War impacts, it prioritized
2014 Crimea sanctions data and 1990s oil supply
shocks.

4.9 Computational Efficiency

RAF adds modest overhead versus TFT (1.8 vs. 1.2
hours/epoch) but achieves 3× faster convergence
due to retrieved context guiding the optimization
landscape. The retriever’s complexity is O(N log
N) through locality-sensitive hashing (Indyk and
Motwani, 1998).

5 Discussion

Our results demonstrate three key advances over
existing methods in tabular forecasting. First,



Table 8: Market Shock Accuracy (DA %)

Model COVID-19
(2020)

Ukraine War
(2022)

DeepAR 48.1 47.3
N-BEATS 52.6 51.8
TFT 55.1 53.9
TSMixer 56.3 54.7
RAF (Ours) 61.7 59.4

RAF’s dynamic schema handling solves a funda-
mental limitation in prior work (Herzig et al., 2020;
Borisov et al., 2023) by enabling robust match-
ing of variables across different naming conven-
tions and reporting standards. Where traditional
approaches require manual schema alignment or
suffer performance degradation during schema
changes (Table 5), our learned hashing mechanism
maintains accuracy by focusing on statistical pat-
terns rather than surface-level labels. This is par-
ticularly valuable in real-world applications like
financial reporting, where companies frequently
modify their presentation formats while maintain-
ing underlying accounting principles.

Second, the integration of retrieval with fore-
casting addresses the temporal myopia problem
identified in (Cao et al., 2020). While most neural
forecasters focus on recent history, RAF’s ability
to identify and incorporate relevant distant events
(e.g., linking 2022 market conditions to 2008 cri-
sis patterns) provides a more comprehensive con-
text for predictions. This explains the particularly
strong performance during volatile periods (Ta-
ble 8), where conventional models struggle to adapt
quickly to regime shifts. The temporal decay pa-
rameters in our cross-attention mechanism automat-
ically learn the appropriate time scales for different
types of variables - short for high-frequency finan-
cial data, longer for macroeconomic trends.

Finally, our end-to-end training approach over-
comes the suboptimality of pipeline systems noted
in (Wu et al., 2023). By jointly optimizing the re-
triever and forecaster, RAF ensures that retrieved
tables are specifically useful for the forecasting
task, rather than simply being semantically sim-
ilar. The ablation study (Table 6) confirms that
this tight integration contributes significantly to
overall performance. From a practical perspective,
the additional computational overhead (Table 7) is
justified by the accuracy gains in critical applica-
tions like economic policy planning or portfolio

management, where small improvements can have
substantial real-world impact.

These advances suggest promising directions for
future work, including application to multivariate
probabilistic forecasting and integration with large
language models for enhanced textual-table reason-
ing. The consistent outperformance across diverse
benchmarks (Tables 3–8) establishes RAF as a new
state-of-the-art for tabular time-series forecasting
while providing a framework for addressing similar
challenges in other structured data domains.

6 Conclusion

RAF establishes a new state-of-the-art in tabular
forecasting through its schema-aware retrieval and
temporal fusion approach. By unifying dynamic
column hashing, context-aware attention, and end-
to-end training, the framework outperforms special-
ized alternatives in both accuracy and robustness.
Real-world validation confirms its practical value
for financial and economic prediction tasks where
schema evolution and regime shifts are common.
Future work will extend the architecture to prob-
abilistic forecasting and multimodal (table+text)
retrieval scenarios.
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