
8th ICML Workshop on Automated Machine Learning (2021)

Bag of Baselines for Multi-objective Joint Neural
Architecture Search and Hyperparameter Optimization

Sergio Izquierdo izquierd@cs.uni-freiburg.de

Julia Guerrero-Viu guerrero@cs.uni-freiburg.de

Sven Hauns haunss@tf.uni-freiburg.de

Guilherme Miotto alessang@cs.uni-freiburg.de

Simon Schrodi schrodi@cs.uni-freiburg.de

André Biedenkapp biedenka@cs.uni-freiburg.de

University of Freiburg

Thomas Elsken thomas.elsken@de.bosch.com

Bosch Center for Artificial Intelligence

Difan Deng deng@tnt.uni-hannover.de

Marius Lindauer lindauer@tnt.uni-hannover.de

Leibniz University Hannover

Frank Hutter fh@cs.uni-freiburg.de

University of Freiburg and Bosch Center for Artificial Intelligence

Abstract

While both neural architecture search (NAS) and hyperparameter optimization (HPO) have
been studied extensively in recent years, NAS methods typically assume fixed hyperparam-
eters and vice versa. Furthermore, NAS has recently often been framed as a multi-objective
optimization problem, in order to take, e.g., resource requirements into account. In this
paper, we propose a set of methods that extend current approaches to jointly optimize
neural architectures and hyperparameters with respect to multiple objectives. We hope
that these methods will serve as simple baselines for future research on multi-objective
joint NAS + HPO.

1. Introduction

Neural architecture search (NAS) and hyperparameter optimization (HPO) are both im-
portant components of AutoML, but there exists little work on joint NAS and HPO. NAS
methods typically assume fixed hyperparameter configurations and HPO fixed architectures,
even though it seems natural that different architectures require different hyperparameter
configurations to yield optimal performance. Indeed, there is evidence that this is the case.
For example, Gastaldi (2017) showed that the strongest version of the proposed shake-shake
regularization performs best for some architectures, but is too strong for other architectures,
resulting in poor performance or even divergence during training. Thus, a joint optimization
of hyperparameter configurations and architecture can be expected to be beneficial.

Furthermore, while NAS and HPO methods typically optimize for accuracy, in many
real-world applications there is more than one objective. Common objectives next to accu-
racy are, e.g., memory requirements, energy consumption or latency on the target hardware
where the neural network is eventually deployed. In this paper, we take a first step in the

©2021 Izquierdo et al..

S. Izquierdo et al.

direction of multi-objective joint NAS + HPO by proposing and empirically evaluating a
set of simple, yet powerful baseline methods. All our baseline methods essentially extend
current NAS or HPO approaches to cover both classical and architectural hyperparameters,
optimized under multiple objectives; see Table 1 for an overview of the methods we propose.

2. Related Work and Background

Neural Architecture Search (NAS). NAS refers to the task of learning neural network
architectures from data (Elsken et al., 2019b; Wistuba et al., 2019). NAS approaches often
employ black-box optimization methods, such as evolutionary algorithms (Real et al., 2017,
2019), reinforcement learning (Zoph and Le, 2017), or Bayesian optimization (Mendoza
et al., 2016; Kandasamy et al., 2018). However, due to the large computational costs, re-
searchers have developed methods tailored towards NAS, e.g., (gradient-based) optimization
on one-shot models (Bender et al., 2018; Pham et al., 2018; Liu et al., 2019).

Hyperparameter Optimization (HPO). The field of HPO (see, e.g., (Feurer and
Hutter, 2019)) automates the search for well performing hyperparameter configurations.
Bayesian Optimization (BO) (Brochu et al., 2010; Shahriari et al., 2016) is a popular frame-
work for solving HPO problems by employing cheap-to-evaluate surrogate model for predict-
ing the performance of hyperparameter configurations and using an acquisition function to
trade-off exploration and exploitation for selecting a new candidates. Evolutionary methods
are also a common choice for HPO (Loshchilov and Hutter, 2016; Jaderberg et al., 2017).
For this, a population of hyperparameter configurations is evolved over time by mutating
or crossing well-performing candidates.

Multi-fidelity methods are also often employed as a tool for HPO to speed up func-
tion evaluations. Successive Halving (SH) (Jamieson and Talwalkar, 2016) and Hyperband
(HB) (Li et al., 2018) are two powerful multi-fidelity strategies that allocate more budget
on the well-performing hyperparameter configurations and achieve strong anytime perfor-
mance. However, both strategies select new configurations at random without exploiting
the knowledge gained about well-performing regions. BOHB (Falkner et al., 2018), which
combines BO and HB, overcomes this issue by guiding Hyperband via a TPE model.

Joint NAS + HPO. Few researchers so far have considered the joint optimization of
architectures and hyperparameter configurations. Domhan et al. (2015) and Mendoza et al.
(2016) use SMAC (Hutter et al., 2011) to jointly optimize both architectures and hyper-
parameter configurations, Hundt et al. (2019) use BO with Gaussian processes. Zela et al.
(2018), Runge et al. (2019) and Zimmer et al. (2021) employed BOHB (Falkner et al., 2018)
to achieve the same goal, and Awad et al. (2021) proposed DEHB for this problem. Saikia
et al. (2019) optimized architecture and hyperparameters in two stages: they first employ
DARTS (Liu et al., 2019) to search for better architectures for disparity estimation and then
optimize the hyperparameters of the resulting architecture with BOHB. Finally, Dong et al.
(2020) extended NAS methods using one-shot models to also consider hyperparameters.

Multi-objective Optimization. Multi-objective optimization (e.g., Miettinen (1999))
deals with the problem of minimizing multiple objective functions f1(λ), . . . , fn(λ). In
general, there is no single configuration λ that minimizes all objectives since the objectives
are typically contradicting. Rather, there are multiple Pareto-optimal solutions, meaning

2

Multi-Objective Joint HPO and NAS

that one cannot reduce any fi without increasing at least one other fj (i 6= j). The set of
Pareto-optimal solutions is called the Pareto front.

One class of algorithms for solving multi-objective problems are evolutionary algorithms.
Criteria for selecting candidates being mutated and defining the best current solutions are
typically based on non-dominated sorting (NDS) (Srinivas and Deb, 1994; Deb et al., 2002)
and the hypervolume indicator (Emmerich et al., 2005; Beume et al., 2007; Bader and
Zitzler, 2011). NDS extends the ranking of a set of candidates based on a single objective
to multiple objectives, please refer to Appendx A.1 for more details. The hypervolume
indicator of a population measures, informally speaking, the space of objective function
values covered by the population; thus maximizing the hypervolume indicator corresponds
to improving the Pareto front. Based on the hypervolume indicator, the hypervolume subset
selection problem (HSSP) (Bader and Zitzler, 2011) is defined as the problem of finding a
subset of the population so that the hypervolume is maximized for this subset. The HSSP
can also be employed to identify candidates that contribute little to the hypervolume and
thus can be considered poor, see Appendx A.2 for a more details.

BO approaches have been extended to multi-objective problems. For example, expected
hypervolume improvement (EHVI) (Emmerich, 2005) extends the work by Mockus et al.
(1978) by considering improvements to the Pareto front. Ozaki et al. (2020) extended
TPE (Bergstra et al., 2011) to multi-objective TPE (MOTPE). In concurrent work, Salinas
et al. (2021) and Schmucker et al. (2021) extend Hyperband and Asynchronous Successive
Halving (Li et al., 2020), respectively, with NDS and a multi-objective candidate selection
scheme. Both approaches ares closely related to MO-BOHB (Section 3.2). Multi-objective
optimization also naturally arise in NAS since many real-world applications require ef-
ficient architectures w.r.t., e.g., energy consumption or latency. Consequently, a line of
research frames NAS either as a constrained (Tan et al., 2019; Cai et al., 2019) or multi-
objective (Elsken et al., 2019a; Lu et al., 2020) optimization problem.

3. Proposed Methods

In the following, we propose five simple, yet powerful extensions of existing HPO and NAS
optimization techniques to multi-objective joint HPO + NAS.

3.1 SH-EMOA: Speeding up Evolutionary Multi-Objective Algorithms (EMOA)

The flexibility and conceptual simplicity of evolutionary algorithms make them directly ap-
plicable to multi-objective optimization problems. For example SMS-EMOA (Beume et al.,
2007) evaluates the performance of each candidate based on its contribution to the dom-
inated hypervolume. Although effective, evolutionary algorithms tend to be very sample-
inefficient, making them computationally quite expensive. In order to deal with this prob-
lem, we propose SH-EMOA to speed up EMOAs by using a multi-fidelity approach based on
successive halving (please see Algorithm 1 in the appendix for full details).

In a nutshell, we iterate EMOA by doubling the training budgets in each iteration, while
the number of candidates is halved. Thus, many candidates are evaluated with a small
budget to cover a wide range of solutions, while only well-performing candidates proceed
to the next stage, and are evaluated with the next higher budget and used to generate new
candidates. We use NDS and the HSSP to identify poorly performing candidates.

3

S. Izquierdo et al.

3.2 MO-BOHB: Generalization of BOHB to an Arbitrary Number of Objectives

In order to extend BOHB to multi-objective optimization, we make two modifications.
Firstly, we replace TPE (Bergstra et al., 2011) originally used in BOHB by MOTPE (Ozaki
et al., 2020) for selecting new configurations w.r.t. multiple objectives. Secondly, we extend
HB in a similar fashion as for SH-EMOA and MOTPE to decide with which configuration to
proceed in the next stage: we use NDS and the result of the HSSP; see Algorithms 2 and 3.

3.3 MS-EHVI: Mixed Surrogate Expected Hypervolume Improvement

Although EHVI can be directly applied for joint NAS and HPO obtaining competent results,
we further enhance the algorithm by a simple observation from Elsken et al. (2019a): while
some of the objective functions are expensive to evaluate (e.g., evaluating the accuracy is
expensive since it requires training the network first), others are cheap to evaluate (e.g., the
number of parameters). Thus, rather than relying on a surrogate model for every objective
function as in vanilla EHVI, we solely use surrogate models for the expensive objective
function and directly evaluate the cheap objectives. This way, we avoid fitting surrogate
models for objectives which are cheap to evaluate anyway. We refer to Algorithm 4.

3.4 MO-BANANAS

BANANAS (White et al., 2021) uses neural networks as a performance predictor of candi-
dates within BO. To extend BANANAS for multi-objective optimization, we employ crowd
sorting (Raquel and Jr, 2005) in combination with independent Thompson sampling to
select parents used to generate new candidates by mutating the parents. Based on the per-
formance predictor, the next candidates are chosen - again based on independent Thompson
sampling, see Algorithm 5. We furthermore employ successive halving to quickly discard
poorly-performing architectures.

3.5 BULK & CUT

BULK & CUT combines a simple evolutionary strategy with BO. The name BULK & CUT comes
from the fact that the algorithm first looks for high accuracy models by successively enlarg-
ing them with network morphisms (Chen et al., 2016), then shrinking them using pruning
techniques in combination with knowledge distillation (Hinton et al., 2015). BULK & CUT

comprises three sequential phases:(i) initialization: sample random architectures, (ii) bulk-
up: generate offsprings by applying network morphisms and (iii) cut-down: prune models.

After the initialization phase is completed, parents are selected for the bulk-up phase.
For this, we propose the Paretsilon Greedy criterion, which combines non-dominated sort-
ing and an ε-greedy exploration strategy, as described in Algorithm 6. Once a parent
is chosen, an offspring is generated by applying a network morphism (a commonly used
operation in the NAS literature that avoids costly retraining from scratch (Elsken et al.,
2019a; Cai et al., 2018)). In the cut-down phase, we use structured pruning (Anwar et al.,
2017) to shrink models, i.e., eliminating units from fully-connected layers and filters from
convolutional layers, instead of dropping individual weights. We employ knowledge distilla-
tion (Hinton et al., 2015) for training the shrunken models so that they match their parent’s
output (Elsken et al., 2019a; Prakosa et al., 2020; Chen et al., 2021). During all phases,

4

Multi-Objective Joint HPO and NAS

Figure 1: Sampled configurations for each method on Flowers dataset.

the non-architectural hyperparameters (e.g., learning rate and weight decay) are optimized
via constrained BO. The term constrained here refers to the fact that the optimization of
the acquisition function is performed with constrains on the already chosen architectural
hyperparameters. Algorithm 7 in the appendix summarizes how BULK & CUT works.

4. Experiments

We used the Oxford-Flowers dataset (Nilsback and Zisserman, 2006) with images scaled
down to a resolution of 16x16 for computational reasons. Each proposed method, along with
random search as the simplest baseline, was run 10 times for 24 hours each. A maximum
budget of 25 epochs for training is defined, although it is up to the methods to decide if
they want to train with a smaller budget to speed up the search. We search over a variable
number of convolutional layers (followed by ReLU and max-pooling), with a variable number
of filters and kernel size each as well as optional batch normalization. A global average
pooling may be applied afterwards, followed by a variable number of fully connected layers.
We use Adam (Kingma and Ba, 2015) to optimize neural network weights, with a searchable
learning rate and batch size. We refer to Table 2 for a summary of our search space. We
furthermore evaluated the proposed methods on Cifar-10 on the NAS-Bench-201 (Dong
and Yang, 2020) search space (except BULK & CUT since it is not directly applicable to the
benchmark). NAS-Bench-201 does not contain any optimizable hyperparameters, however
comes with a more interesting NAS search space and furthermore allows inspecting the true
Pareto front due to the tabular nature of the benchmark.

We target network size (by means of number of parameters) and classification accuracy
as the objectives of our multi-objective optimization. We split the datasets into training,
validation and test splits. The splits are used for training model parameters, NAS + HPO
and final evaluation, respectively.

4.1 Results

Visualizing sampled configurations. Figure 1 visualizes the sampled configurations
for each method across all 10 random seeds on Flowers. All methods (except random
search) explore the Pareto front, which is what they were designed for. However, they also
significantly differ in the exploration strategy. SH-EMOA explores both objective functions
equally well but still samples poor configurations in later iterations. MO-BOHB tends to focus
on smaller networks in later iterations, while MS-EHVI very quickly discovers networks close
to the Pareto front and mostly samples new configures there. After an initial phase, BULK
& CUT also mostly samples candidates close to the Pareto front in later iterations.

Performance comparison. Figure 2 (a,b,d,e) shows the hypervolumes over time on
Flowers and NAS-Bench-201, respectively. For Flowers, all our methods clearly outperform

5

S. Izquierdo et al.

0 5 10 15 20 25
Walltime (hours)

220

240

260

280

300
H

y
p
e
rv

o
lu

m
e

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
BULK & CUT
Random Search

(a) Flowers - HV validation
performance

0 5 10 15 20 25
Walltime (hours)

240

260

280

300

320

H
y
p
e
rv

o
lu

m
e

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
BULK & CUT
Random Search

(b) Flowers - HV test performance

102 103 104 105 106 107 108

Num. parameters (log scale)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
BULK & CUT
Random Search

(c) Flowers - final
Pareto fronts

0 2 4 6 8 10 12
Walltime (hours)

172.0

172.5

173.0

173.5

174.0

174.5

175.0

175.5

176.0

H
y
p
e
rv

o
lu

m
e

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
Random Search

(d) NAS-Bench-201 - HV
validation performance

0 2 4 6 8 10 12
Walltime (hours)

172.0

172.5

173.0

173.5

174.0

174.5

175.0

175.5

176.0

H
y
p
e
rv

o
lu

m
e

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
Random Search

(e) NAS-Bench-201 - HV test
performance

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Parameters (MB)

80

82

84

86

88

90

92

94

A
cc

u
ra

cy

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
Random Search
True Paretofront

(f) NAS-Bench-201 -
final Pareto fronts

Figure 2: Hypervolume over time obtained by methods and final Pareto fronts. We show
means ± SEM for hypervolume. First rows shows Flowers, second row NAS-Bench-201.

random search. MS-EHVI converges very fast but is eventually outperformed by BULK &

CUT, which however performs less strongly in the initial phase. SH-EMOA, MO-BOHB and
MO-BANANAS perform similarly. On NAS-Bench-201, SH-EMOA and MO-BOHB outperform the
other methods initially, but all methods eventually achieve a similar performance. Figure
2 (c, f) also shows the final Pareto fronts when combining the results from all seeds. For
Flowers, the proposed methods perform similarly for the range of parameters from 103 to
105, but some methods have problems with covering smaller or larger models. When looking
at results for each seed (Figure 3 in the appendix), we however also noticed that the results
vary across seeds, indicating that initializing might have a high impact on the performance
and that the budget of 24 hours might not be sufficient for the methods to converge or
that they simply get stuck in a local optimum. On NAS-Bench-201, each method discovers
a Pareto front very close to the true Pareto front, suggesting that the chosen budget is
sufficiently large to explore the whole space.

5. Conclusions

We addressed the problem of joint hyperparameter optimization and neural architecture
search under multiple objectives by extending existing methods to this scenario. We propose
several methods serving as baselines for future research in this direction. To facilitate this,
all our code is available at https://github.com/automl/multi-obj-baselines.

6

https://github.com/automl/multi-obj-baselines

Multi-Objective Joint HPO and NAS

References

S. Anwar, K. Hwang, and W. Sung. Structured pruning of deep convolutional neural networks. J. Emerg.
Technol. Comput. Syst., 13(3), February 2017.

N. Awad, N. Mallik, and F. Hutter. Dehb: Evolutionary hyberband for scalable, robust and efficient
hyperparameter optimization. In Proceedings of IJCAI 2021, 2021.

J. Bader and E. Zitzler. Hype: An algorithm for fast hypervolume-based many-objective optimization.
Evolutionary computation, 19(1):45–76, 2011.

G. Bender, P.J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le. Understanding and simplifying one-shot
architecture search. In International Conference on Machine Learning, 2018.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In J. Shawe-
Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors, Proceedings of the 24th International
Conference on Advances in Neural Information Processing Systems (NeurIPS’11), pages 2546–2554, 2011.

N. Beume, B. Naujoks, and M. Emmerich. SMS-EMOA: Multiobjective selection based on dominated
hypervolume. European Journal of Operational Research, 181(3):1653–1669, 2007.

E. Brochu, V. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive cost functions, with
application to active user modeling and hierarchical reinforcement learning. arXiv:1012.2599v1 [cs.LG],
2010.

H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang. Efficient architecture search by network transformation.
In Association for the Advancement of Artificial Intelligence, 2018.

H. Cai, L. Zhu, and S. Han. ProxylessNAS: Direct neural architecture search on target task and hardware.
In International Conference on Learning Representations, 2019.

L. Chen, Y. Chen, J. Xi, and X. Le. Knowledge from the original network: restore a better pruned network
with knowledge distillation. Complex and Intelligent Systems, 01 2021.

T. Chen, I. J. Goodfellow, and J. Shlens. Net2net: Accelerating learning via knowledge transfer. In
International Conference on Learning Representations, 2016.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A Fast and Elitist Multiobjective Genetic Algorithm:
NSGA-II. Trans. Evol. Comp, 6(2), April 2002.

T. Domhan, J. Springenberg, and F. Hutter. Speeding up automatic hyperparameter optimization of deep
neural networks by extrapolation of learning curves. In Q. Yang and M. Wooldridge, editors, Proceedings
of the 25th International Joint Conference on Artificial Intelligence (IJCAI’15), pages 3460–3468, 2015.

X. Dong and Y. Yang. Nas-bench-201: Extending the scope of reproducible neural architecture search. In
International Conference on Learning Representations (ICLR), 2020.

X. Dong, M. Tan, A. Wei Yu, D. Peng, B. Gabrys, and Q. V. Le. Autohas: Differentiable hyper-parameter
and architecture search. arXiv preprint, 2020.

T. Elsken, J. H. Metzen, and F. Hutter. Efficient multi-objective neural architecture search via lamarckian
evolution. In International Conference on Learning Representations, 2019a.

T. Elsken, J.H. Metzen, and F. Hutter. Neural architecture search: A survey. Journal of Machine Learning
Research, 20(55):1–21, 2019b.

M. Emmerich. Single-and multi-objective evolutionary design optimization assisted by gaussian random field
metamodels. University of Dormund, 2005.

7

S. Izquierdo et al.

M. Emmerich, N. Beume, and B. Naujoks. An emo algorithm using the hypervolume measure as selection
criterion. In Carlos A. Coello Coello, Arturo Hernández Aguirre, and Eckart Zitzler, editors, Evolutionary
Multi-Criterion Optimization, pages 62–76, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN
978-3-540-31880-4.

S. Falkner, A. Klein, and F. Hutter. BOHB: Robust and efficient hyperparameter optimization at scale.
In J. Dy and A. Krause, editors, Proceedings of the 35th International Conference on Machine Learning
(ICML’18), volume 80, pages 1437–1446. Proceedings of Machine Learning Research, 2018.

M. Feurer and F. Hutter. Hyperparameter optimization. In Frank Hutter, Lars Kotthoff, and Joaquin
Vanschoren, editors, AutoML: Methods, Sytems, Challenges, chapter 1, pages 3–33. Springer, May 2019.

X. Gastaldi. Shake-shake regularization. In International Conference on Learning Representations Workshop,
2017.

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

A. Hundt, V. Jain, C.H. Lin, C. Paxton, and G. D. Hager. The costar block stacking dataset: Learning with
workspace constraints. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1797–1804, 2019. doi: 10.1109/IROS40897.2019.8967784.

F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm
configuration. In C. Coello, editor, Proceedings of the Fifth International Conference on Learning and
Intelligent Optimization (LION’11), volume 6683 of Lecture Notes in Computer Science, pages 507–523.
Springer, 2011.

M. Jaderberg, V. Dalibard, S. Osindero, W. Czarnecki, J. Donahue, A. Razavi, O. Vinyals, T. Green, I. Dun-
ning, K. Simonyan, C. Fernando, and K. Kavukcuoglu. Population based training of neural networks.
arXiv:1711.09846 [cs.LG], 2017.

K. Jamieson and A. Talwalkar. Non-stochastic best arm identification and hyperparameter optimization. In
A. Gretton and C. Robert, editors, Proceedings of the Seventeenth International Conference on Artificial
Intelligence and Statistics (AISTATS), volume 51. Proceedings of Machine Learning Research, 2016.

K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. P. Xing. Neural architecture search with
bayesian optimisation and optimal transport. In Advances in Neural Information Processing Systems 31.
2018.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of the International
Conference on Learning Representations (ICLR’15), 2015. Published online: iclr.cc.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A novel bandit-based
approach to hyperparameter optimization. Journal of Machine Learning Research, 18(185):1–52, 2018.

L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina, M. Hardt, B. Recht, and A. Talwalkar. A system for
massively parallel hyperparameter tuning, 2020.

H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable architecture search. In International Conference
on Learning Representations, 2019.

I. Loshchilov and F. Hutter. CMA-ES for hyperparameter optimization of deep neural networks. In Inter-
national Conference on Learning Representations Workshop track, 2016. Published online: iclr.cc.

Z. Lu, I. Whalen, Y. Dhebar, K. Deb, E. Goodman, W. Banzhaf, and V. N. Boddeti. Nsga-net: Neural
architecture search using multi-objective genetic algorithm (extended abstract). In Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, 2020.

8

iclr.cc
iclr.cc

Multi-Objective Joint HPO and NAS

H. Mendoza, A. Klein, M. Feurer, J. Springenberg, and F. Hutter. Towards automatically-tuned neural
networks. In ICML 2016 AutoML Workshop, 2016.

K. Miettinen. Nonlinear Multiobjective Optimization. Springer Science & Business Media, 1999.

J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian methods for seeking the extremum.
Towards Global Optimization, 2(117-129), 1978.

M. E. Nilsback and A. Zisserman. A visual vocabulary for flower classification. In IEEE Conference on
Computer Vision and Pattern Recognition, volume 2, pages 1447–1454, 2006.

Y. Ozaki, Y. Tanigaki, S. Watanabe, and M. Onishi. Multiobjective tree-structured parzen estimator for
computationally expensive optimization problems. In Proceedings of the 2020 Genetic and Evolutionary
Computation Conference, pages 533–541, 2020.

H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean. Efficient neural architecture search via parameter
sharing. In International Conference on Machine Learning, 2018.

S. W. Prakosa, J. Leu, and Z. Chen. Improving the accuracy of pruned network using knowledge distillation.
Pattern Analysis and Applications, pages 1–12, 2020.

C. R. Raquel and P. C. Naval Jr. An effective use of crowding distance in multiobjective particle swarm
optimization. In Proceedings of the 7th Annual conference on Genetic and Evolutionary Computation,
pages 257–264, 2005.

E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and A. Kurakin. Large-scale
evolution of image classifiers. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 2902–2911, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Aging Evolution for Image Classifier Architecture Search.
In AAAI, 2019.

F. Runge, D. Stoll, S. Falkner, and F. Hutter. Learning to design RNA. In International Conference on
Learning Representations, 2019.

T. Saikia, Y. Marrakchi, A. Zela, F. Hutter, and T. Brox. Autodispnet: Improving disparity estimation with
automl. In IEEE International Conference on Computer Vision (ICCV), October 2019.

D. Salinas, V. Perrone, C. Archambeau, and O. Cruchant. A multi-objective perspective on jointly tuning
hardware and hyperparameters. In 2nd Workshop on Neural Architecture Search, ICLR 2021, May 2021.

R. Schmucker, M. Donini, M. B. Zafar, D. Salinas, and C. Archambeau. Multi-objective asynchronous
successive halving, 2021.

B. Shahriari, K. Swersky, Z. Wang, R. Adams, and N. de Freitas. Taking the human out of the loop: A
review of Bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2016.

N. Srinivas and K. Deb. Muiltiobjective optimization using nondominated sorting in genetic algorithms.
Evolutionary Computation, 2(3):221–248, 1994. doi: 10.1162/evco.1994.2.3.221.

M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le. Mnasnet: Platform-
aware neural architecture search for mobile. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

C. White, W. Neiswanger, and Y. Savani. Bananas: Bayesian optimization with neural architectures for
neural architecture search. In Proceedings of the AAAI Conference on Artificial Intelligence, 2021.

M. Wistuba, A. Rawat, and T. Pedapati. A survey on neural architecture search. arXiv preprint, 2019.

9

S. Izquierdo et al.

A. Zela, A. Klein, S. Falkner, and F. Hutter. Towards automated deep learning: Efficient joint neural
architecture and hyperparameter search. In ICML 2018 Workshop on AutoML (AutoML 2018), July
2018.

L. Zimmer, M. Lindauer, and F. Hutter. Auto-pytorch tabular: Multi-fidelity metalearning for efficient and
robust autodl. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1–12, 2021. To
appear.

B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. In Proceedings of the
International Conference on Learning Representations (ICLR’17), 2017. Published online: iclr.cc.

10

iclr.cc

Multi-Objective Joint HPO and NAS

Appendix A. Related work - extended

Proposed Method Based on Extended by

SH-EMOA (Sec. 3.1) multi. obj. evolution successive halving
MO-BOHB (Sec. 3.2) BOHB multi-objective for candidate selection, MOTPE
MS-EHVI (Sec. 3.3) BO with EHVI no surrogate for cheap objectives

MO-BANANAS (Sec. 3.4) BANANAS multi-objective candidate selection, successive halving
BULK & CUT (Sec. 3.5) EA, BO network morphism, pruning with knowledge distillation, constrained BO

Table 1: Overview of the proposed methods.

A.1 Non-dominated sorting

NDS extends the ranking of a set of candidates based on a single objective to multiple
objectives f = (f1, . . . , fn) in the following way:

• Compute the Pareto front F1 = pareto front(P|f) of the current population P and
assign all members of this Pareto front F1 the best rank.

• Remove the previous Pareto front from the population P and compute the Pareto
front for the remaining population: F2 = pareto front(P\F1|f). Members of this
new Pareto front F2 are assigned the second best rank.

• Iterate this process until all members of the population have been assigned a rank.

Thus, a run of NDS partitions the population into sets F1, . . . ,Fk, where a candidate λ ∈ Fi
outperforms another candidate λ′ ∈ Fj with respect to all objectives if i < j.

A.2 Hypervolumne subset selection problem

The hypervolume indicator IH of a population measures, informally speaking, the space of
objective function values covered by the population; maximizing the hypervolume indicator
corresponds to improving the Pareto front and finding better solutions. Based on the hy-
pervolume indicator, the hypervolume subset selection problem (HSSP) (Bader and Zitzler,
2011) is defined as the problem of finding a subset PHSPP ⊂ P of a certain size k so that
the hypervolume is maximized for this subset: PHSPP ∈ arg maxP ′⊂P,|P ′|=k IH(P ′). The
HSSP can also be solved to identify a poorly performing candidate by setting k = |P| − 1
and choosing the poor candidate λpoor as the one that gets removed from the population
via HSSP: {λpoor} = P \ PHSPP . We refer to Bader and Zitzler (2011) for a more formal
introduction.

Appendix B. Full Details on the Various Baselines

B.1 Implementation details on SH-EMOA

• Population size and total number of samples: In Flowers dataset, we use spop = 100
and ntotalfe = 15000.

11

S. Izquierdo et al.

Algorithm 1: SH-EMOA

Input : number of function evaluations ntotalfe , population size spop, maximum
budget bmax, number of SH iterations n, objectives f

Output: Pareto front w.r.t. f
1 Generate initial population P of size spop
2 b← bbmax/2n−1c /* initial budget */

3 nfe ← bntotalfe /
∑n−1

i=0 2−ic /* number of FE for the initial budget */

4 for i = 1 to n do
5 Evaluate f(λ) for all λ ∈ P with budget b
6 for j = 1 to nfe − spop /* generate candidates for remaining FEs */

7 do
8 Generate new candidate λnew /* parent selection and variation */

9 Evaluate f(λnew) on budget b
10 [F1, ...,Fk]← NDS(P ∪ {

(
λnew, f(λnew)

)
})

11 λpoor ← HSSP(Fk, |Fk| − 1)
12 P ← (P ∪ {

(
λnew, f(λnew)

)
}) \ {

(
λpoor, f(λpoor)

)
}

13 nfe ← nfe/2 /* half number of FE in next budget */

14 b← 2b /* double budget */

15 return pareto front(P|f)

• Parent selection: We use tournament selection by randomly sampling k potential
parents from the current population (uniform distribution) and choose the parent
with highest fitness. We use k = 3.

• Variation: On each step we choose either mutation or recombination strategy with
equal probability. Mutation is defined as a uniformly distributed random variation
of 5 hyperparameters from the parent configuration. For recombination, we use two
parents and choose each hyperparameter from one of them with equal probability. As
we have a conditional search space, relationships between hyperparameters are taken
into account when a new individual is created. For example, if a mutation increases
the total number of convolutional layers, the size of the kernel for each new layer is
also added.

B.2 Implementation details on MO-BOHB

Algorithms 2 and 3 show pseudo code for MO-BOHB and its sampling step, respectively. Note
the close resemblance to the original BOHB (differences marked in red), as MO-BOHB general-
izes BOHB to any number of objectives. Note however, that there are two minor differences
between the current version of our proposed MO-BOHB and the original BOHB implementa-
tion: (i) MO-BOHB uses an hierarchy of one-dimensional KDEs, whereas BOHB use a single
multi-dimensional KDE, and (ii) we do not multiply bandwidths by a constant factor bw.
In future versions of MO-BOHB, we suspect that using a single multi-dimensional KDE and
multiplication of bandwidths may further improve performance by better handling inter-
action effects between (architectural) hyperparameters and encouraging more exploration

12

Multi-Objective Joint HPO and NAS

around promising configurations, respectively.

Algorithm 2: MO-BOHB

Input : budgets bmin and bmax,
configurations discarding
factor η ∈ N>0, and
objectives f

Output: Pareto front w.r.t. f
1 smax ← blogη

bmax
bmin
c

2 Pb ← []∀b ∈ {η−s · bmax|s =
smax, smax−1, ..., 0}

3 while not stopping criterion do
4 for s ∈ {smax, smax−1, ..., 0} do
5 sample n = d smax+1

s+1 ηse
configurations λ1, ..., λn
using Algorithm 3

6 run modified SH on λ1, ..., λn
with initial budget η−s · bmax

7 add observations {(λi, f(λi))}
of each budget b to Pb

8 return pareto front(Pbmax |f)

Algorithm 3: Sampling in MO-BOHB

Input : observations P, fraction of
random runs ρ, quantile γ,
number of samples n, and
minimum number of points
Nmin to build a model

Output: next configuration to
evaluate

1 if rand() < ρ then
2 return random configuration
3 b← arg max{Pb : |Pb| ≥ Nmin + 2}
4 if b = ∅ then
5 return random configuration
6 greedily split P into good Pl or bad
Pg observations using NDS & HSSP

7 fit KDEs l and g based on Pl or Pg,
respectively

8 draw n samples according to l(λ)

9 return sample with highest ratio l(λ)
g(λ)

In all our experiments, we set the meta-parameters of MO-BOHB as follows: For the HB
part of MO-BOHB, we set the configuration discarding factor of to η = 3, use minimum budget
bmin = 5 and maximum budget bmax = 25. In the BO part of MO-BOHB, we use an random
fraction ρ = 1/6, set the quantile to γ = 0.1, sample n = 24 configurations, and use a
minimum of Nmin = 2 · |HPs|+ 1 points before building a model.

B.3 Details on MS-EHVI

Algorithm 4: MS-EHVI

Input : expensive and cheap objectives f = (fexp, fcheap), surrogate model f̂exp,
number of function evaluations nfe

Output: Pareto front w.r.t. f
1 Initialize population P with initial observations
2 for k = 1 to nfe do

3 Fit surrogate model f̂exp on P
4 Select next candidate: λnew ∈ argmaxλEHVI

(
λ|P, f̂exp, fcheap

)
5 Evaluate fexp(λnew)

6 Update data: P ← P ∪
{(
λnew, f(λnew)

)}
7 return pareto front(P|f)

13

S. Izquierdo et al.

B.4 Details on MO-BANANAS

We do not use the path-based encoding from White et al. (2021) since it is not mean-
ingful for our search space. Rather, we employ a simple real-valued vector representation,
which furthermore also directly allows us to include non-architectural hyperparameters. We
employ Gaussian noise for mutating parents: We assume integer-valued hyperparameters
(e.g., number of layers), and normalize each value by dividing by the maximum value to
map each hyperparameter to the range [0, 1]: we then add Gaussian noise. Before each func-
tion evaluation, this continuous representation is discretized by choosing the integer-valued
hyperparameter which is closed to the mutation value after normalization.

Algorithm 5: MO-BANANAS

Input : neural predictor f̂ , number of candidates to mutate nmut, mutation
variance σ2, number of new candidates nnew, objectives f

Output: Pareto front w.r.t. f
1 Generate initial population P
2 for i = 1 to n do

3 train neural predictor f̂ on P
4 sort P using NDS(P) and crowdingDistance(P)
5 choose top-nmut candidates from P and mutate by adding noise η ∼ N (0, σ2)

(drawn independently for each dimension of the candidates)

6 evaluate chosen nmut candidates using f̂
7 choose top-nnew candidates λ1, . . . , λnnew via independent Thompson sampling
8 evaluate f(λ1), . . . , f(λnnew)
9 P ← P ∪ {

(
λ1, f(λ1)

)
, · · · ,

(
λnnew , f(λnnew)

)
}

10 return pareto front(P|f)

B.5 Details on BULK & CUT

Algorithm 6: Paretsilon greedy

Input : Population P, exploration probability ε
Output: λ ∈ P

1 while True do
2 F ← pareto front(P);
3 if rand() ≤ 1− ε or F == P then
4 Sample λ from F ;
5 return λ;

6 else
7 P ← P \ F ;

14

Multi-Objective Joint HPO and NAS

Algorithm 7: BULK & CUT

Input : time budgets T1 < T2 < T3, exploration probability ε, objectives f
Output: set of Pareto optimal solutions

1 P ← ∅ //population set
2 t← elapsed time()
3 while t < T3 do
4 if t ∈ [0, T1) then
5 λα ← random architecture()
6 if t ∈ [T1, T2) then
7 λα ← paretsilon greedy(P, ε) /* parent selection (see Alg. 6) */

8 λα ← network morphism(λα)

9 if t ∈ [T2, T3] then
10 λα ← paretsilon greedy(P, ε) /* parent selection (see Alg. 6) */

11 λα ← prune and distill knowledge(λα)

12 λβ ← constrained BO(λα) /* other hyperparameters */

13 evaluate f(λα, λβ)
14 Update constrained BO with

(
λα, λβ, f(λα, λβ)

)
15 P ← P ∪ {

(
λα, λβ, f(λα, λβ)

)
}

16 t← elapsed time()

17 return pareto front(P)

Appendix C. Experimental details.

We used the Oxford-Flowers dataset (Nilsback and Zisserman, 2006), a small dataset com-
posed of 17 different classes with 80 examples each, to show the performance of the proposed
approaches in environments where many, cheap function evaluations are available. All im-
ages are scaled down to 16x16 for computational reasons. We split the datasets as follows:
we randomly split the data into 60% for training, 20% for validation and 20% for testing.
Neural network weights are always trained on training data, their performance on validation
data is used to guide hyperparameter and architecture optimization, and the test set is only
used for evaluation.

Appendix D. Supplemental Results

Figures 3 and 4 show all the Pareto fronts found with different seeds.

15

S. Izquierdo et al.

Hyperparameter Range Log scale

Num. convolutional layers {1, 2, 3} No

Num. filters conv. layer i [24, 210] Yes

Kernel size {3, 5, 7} No

Batch normalization {true, false} No

Global average pooling {true, false} No

Num. fully connected layers {1, 2, 3} No

Num. neurons FC layer i [21, 29] Yes

Learning rate [10−5, 100] Yes

Batch size [20, 29] Yes

Table 2: Joint space of architectural and non-architectural hyperparameters being opti-
mized.

102 103 104 105 106 107 108

Num. parameters (log scale)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
BULK & CUT
Random Search

102 103 104 105 106 107 108

Num. parameters (log scale)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
BULK & CUT
Random Search

102 103 104 105 106 107 108

Num. parameters (log scale)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
BULK & CUT
Random Search

102 103 104 105 106 107 108

Num. parameters (log scale)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
BULK & CUT
Random Search

102 103 104 105 106 107 108

Num. parameters (log scale)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
BULK & CUT
Random Search

102 103 104 105 106 107 108

Num. parameters (log scale)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
BULK & CUT
Random Search

102 103 104 105 106 107 108

Num. parameters (log scale)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
BULK & CUT
Random Search

102 103 104 105 106 107 108

Num. parameters (log scale)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
BULK & CUT
Random Search

102 103 104 105 106 107 108

Num. parameters (log scale)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
BULK & CUT
Random Search

102 103 104 105 106 107 108

Num. parameters (log scale)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
BULK & CUT
Random Search

Figure 3: Pareto fronts obtained for different initial random seeds on Flowers dataset.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Parameters (MB)

80

82

84

86

88

90

92

94

Ac
cu

ra
cy

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
Random Search
True Paretofront

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Parameters (MB)

80

82

84

86

88

90

92

94

Ac
cu

ra
cy

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
Random Search
True Paretofront

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Parameters (MB)

80

82

84

86

88

90

92

94

Ac
cu

ra
cy

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
Random Search
True Paretofront

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Parameters (MB)

80

82

84

86

88

90

92

94

Ac
cu

ra
cy

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
Random Search
True Paretofront

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Parameters (MB)

80

82

84

86

88

90

92

94

Ac
cu

ra
cy

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
Random Search
True Paretofront

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Parameters (MB)

80

82

84

86

88

90

92

94

Ac
cu

ra
cy

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
Random Search
True Paretofront

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Parameters (MB)

80

82

84

86

88

90

92

94

Ac
cu

ra
cy

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
Random Search
True Paretofront

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Parameters (MB)

80

82

84

86

88

90

92

94

Ac
cu

ra
cy

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
Random Search
True Paretofront

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Parameters (MB)

80

82

84

86

88

90

92

94

Ac
cu

ra
cy

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
Random Search
True Paretofront

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Parameters (MB)

80

82

84

86

88

90

92

94

Ac
cu

ra
cy

SH-EMOA
MO-BOHB
MS-EHVI
MO-BANANAS (SH)
Random Search
True Paretofront

Figure 4: Pareto fronts obtained for different initial random seeds on NAS-Bench-201
dataset.

16

	Introduction
	Related Work and Background
	Proposed Methods
	sh-emoa: Speeding up Evolutionary Multi-Objective Algorithms (EMOA)
	mo-bohb: Generalization of BOHB to an Arbitrary Number of Objectives
	ms-ehvi: Mixed Surrogate Expected Hypervolume Improvement
	mo-bananas
	bulk & cut

	Experiments
	Results

	Conclusions
	Related work - extended
	Non-dominated sorting
	Hypervolumne subset selection problem

	Full Details on the Various Baselines
	Implementation details on sh-emoa
	Implementation details on mo-bohb
	Details on ms-ehvi
	Details on mo-bananas
	Details on bulk & cut

	Experimental details.
	Supplemental Results

