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Introduction
● Neural architecture search (NAS) methods typically consider fixed 

hyperparameters, and hyperparameter optimization (HPO) methods 
typically consider a fixed neural architecture

● NAS has recently often been framed as a multi-objective 
optimization problem for finding not just well-performing but also 
efficient architectures (e.g., in terms of latency or energy 
consumption), which is often necessary for real-world deployment 
scenarios

● We propose a set of simple baseline methods for multi-objective 
joint NAS and HPO

● Our baselines extend methods from, e.g., Bayesian optimization 
(BO), or evolutionary multi-objective algorithms (EMOA)

SH-EMOA
Use successive halving to speed up evolutionary multi-objective 
algorithms (EMOA)

● Iterate EMOA doubling the training budgets while halving the 
number of candidates

● Perform many evaluations to cover a wide range of solutions

MO-BOHB
● Generalize BOHB to any number of objectives

○ Replace TPE by MOTPE
○ Extend hyperband (HB) to multiple objectives

MS-EHVI
● Improve EHVI for cheap-to-evaluate objectives
● Some objectives are expensive to evaluate (e.g., accuracy)

○ We maintain surrogate models for them
● Others are cheap to compute (e.g.,  network size)

○ We directly evaluate cheap objectives rather than using 
surrogate models

Experiments

MO-BANANAS
● Generalize BANANAS to multiple objective
● Additionally, can use multi-fidelity optimization

BULK & CUT

Multi-Objective BO
● Greedy splitting of 

observations with 
non-dominated sorting 
(NDS) & result of 
hypervolume subset 
selection problem 
(HSSP) for tie-breaking

● Modelling densities over 
the input space by 
means of KDEs

Extended HB
● Allocate more resources 

to best performing 
configurations on lower 
budgets

● Advance configurations 
based on NDS & result of 
HSSP for tie-breaking

configurations

evaluations

Sample a random 
architecture

Initialization
Add layers using 

network morphisms

Bulk-up
Prune and distill 

knowledge

Cut-down
Pick something close 

to the Pareto front

Parent selection

Constrained Bayesian 
optimization

Hyperparameters
Evaluate model and 

add it to the pool

Evaluation

START END

Go back 
to START

● Bulk & Cut combines evolution with Bayesian optimization. 
● Child models are either larger (bulked-up) or smaller (cut-down) versions of their parents. 
● Hyperparameters are specified by Bayesian optimization.
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Mutation
● Mutate best previous 

architectures

Selection
● Predict multi-objective 

performance using 
ensemble of NN

● Use ITS to choose 
architectures to evaluate 

Training
● Train ensemble of NN to 

predict mo performance

Evaluation
● Evaluate architectures 

using multi-objective 
successive halving

Initialization

● Initialize population 
with minimum 
budget b 

EMOA
● Run X steps of 

evolutionary 
multi-objective 
algorithm

SH

● Evaluate remaining 
population with 
budget b = 2b

X = X / 2
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