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We refer the interested reader to the supplemental video
where we provide a wide variety of results ranging from
image/text to 3D textured garments as well as applications
of our method in downstream tasks such as physics-based
cloth simulation, hand-garment interaction in VR using a
headset and sketch to 3D garment reconstruction. Below we
provide some additional details regarding the implementa-
tion of our key components as well as some additional abla-
tion studies to showcase the impact of our design decisions.

Garment3DGen General Details

We believe that our approach provides three key insights
that will be valuable to the community:
1. Mesh-based deformations provide the right properties to

generate (or stylize) new garments that we can utilize for
downstream tasks other than rendering.

2. A text-prompt or a single image alone cannot provide
enough guidance to generate the desired garment exactly
the way a user might want it. This is evident from the
results of WordRobe [6] which despite its mesh-quality
the generated garments do not follow the provided text
prompt.

3. 3D supervisions, if done right, can provide strong
enough supervision signal in order to generate the de-
sired garments with the proper topology and structure.

Our approach builds upon these insights and introduces a
novel yet simple solution to generate high-quality, physi-
cally plausible garments. As input to the method, we re-
quire only a single garment image (or alternatively, a text
prompt that can generate this image using a text to image
model) and a base garment template mesh. The input im-
age needs to contain a single piece of clothing, captured
from a semi-frontal viewpoint with its pose being as occlu-
sion free as possible. A person can be wearing this garment
or there might be more than one piece of clothing in the im-
age in which case we perform semantic segmentation (using
SAM) to obtain the garment. The template mesh is not re-
quired to be similar to the image guidance. For example, we
demonstrate results where our method can go from a shirt to
a puffer jacket, from a tank-top to a dress or even a T-shirt

Algorithm 1: Automatic View Selection
Input: an input mesh Mdef with UV texture T with

front and back views painted, a binary mask TB

marking the painted pixels of T , and N uniformly
distributed candidate views {Ci}Ni=1;

for number of iterations do
Calculate the binary mask TB

i for each view i
from TB : {TB

i }Ni=1;
Select the least painted view Cj :
j ← argminNi=1

∑
TB
i ;

Generate the appearance image Ii and update
TB ;

end

to a fantastical sea armor. Note that the closer the base mesh
is to the target geometry, the easier the task is. For example,
starting from a dress mesh to go to a shirt is a difficult task
while starting from something closer to the target simplifies
this problem.
Automatic View Selection: The goal of this algorithm is to
automatically select the least-painted view and paint it. In
this way, we can solve the 3D texture generation problem
in a coarse-to-fine manner, and ensure the overall consis-
tency. Alg. 1 provides a detailed description of the auto-
matic view selection algorithm: given the input UV texture
T with painted front and back views, there could be N can-
didate views. We maintain a binary mask TB that marks the
painted pixel as 1, and unpainted pixel as 0. We can select
the view with the most unfilled pixels as the next view to
generate the appearance, and update the binary mask TB .
This process is repeated iteratively until most of the pixels
are painted, or reaching a certain iteration number.

Mesh Deformer Details

• Alignment: Using the nvdiffmodelling library the base
mesh is aligned to the target mesh using the unit-size
function that moves/rescales the input to match bounding
boxes.
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Table 1. Comparisons of different texture estimation methods. The runtime is measured on a single NVIDIA H100 GPU.

Method Pros Cons Runtime

Mesh2Tex [1] Infinite resolution & Global consistency One model per class & No fine details 8mins
TEXTure [5] Shape-aware & Local consistency Bad Global consistency & texture artifacts & Janus 2mins
Text2Tex [2] Shape-aware & Local consistency Bad Global consistency & color/pattern shifts & Janus 5mins
Garment3DGen Shape-aware & Local/Global consistency & Very fast Disharmonious patterns & Janus ∼4.5secs

• Deformation: We use the same formulation with the
Neural Jacobian Fields(NJF) as described in Sec.3.1 of
their paper and Sec.3 of TextDeformer(TD). Once the de-
formation map is obtained using Eq.(1) we obtain the up-
dated vertices of the input mesh. While NJF could de-
form a garment to have a different pose it’s not possible
to change its style (t-shirt-¿sea-creature-armor) because
of the supervision signals. Our goal was not to do mesh-
registration but instead stylize input base garment tem-
plates via deformation. Hence NJF was chosen for its ver-
satility across heterogeneous mesh collections, because
it’s triangulation-agnostic and it provided a flexible and
easy-to-use framework to accomplish our goal in a fast
plug-n-play manner.

• Losses: Our goal is to deform the base mesh enough to
match the pseudo-ground-truth mesh extracted from the
image but not fully, since if that was the case we’d end
up with a watertight mesh unable to be fit to parametric
bodies and simulated. Hence we opted for point-to-point
meshes for the 3D supervision as well as embedding and
image-based losses in the 2D space.

Texture Details

This approach prioritized filling in the large areas first be-
fore moving on to smaller and more occluded regions.

Texture Comparisons: In Table 1 we provide a compari-
son between the pros and cons of recent texture estimation
approaches. Our approach is significantly faster compared
to past works due to key optimizations described in the main
paper while maintaining good local and global consistency.
Similar to past works one can notice the Janus problem ap-
pearing in texture maps, which can be handled by training
a multiview generation diffusion model with more explicit
camera pose injection in the future works.

Quantitative Comparisons - Details: In terms of garment
base meshes we utilized the publicly available dataset pro-
vided by DiffAvatar which comprises 6 template geome-
tries. For each one of the 6 garments we provide 4 different
image inputs (2 real and 2 AI-generated) and to quantita-
tively evaluate the different approaches we render the un-
textured outputs of all methods from 36 views. No prompts
are used during the quantitative evaluation procedure.

Figure 1. Fitting a parametric body to a generated garment:
We start with the generated textured 3D garment (in this case a
medieval armor) and a parametric body in its canonical pose (left).
After the body-garment optimization process the body pose and
shape parameters are optimized such that the generated garment
can fit in the body accurately without penetrations.

Garment Fitting to Parametric Bodies

While the aforementioned supervisions and regularizations
aim to ensure that the quality of the generated garments
will be satisfactory for simulation, the produced garment
will still need to be scaled, positioned and oriented to fit
the parametric body [4] to be draped on and simulated. To
accomplish this task, we run an optimization procedure dur-
ing which the generated garment remains fixed in the gen-
erated pose and the pose and shape of the parametric body
are transformed such that the garment can accurately fit the
body. This optimization process shown in in Fig. 1, starts
with a rigid transformation and scaling of the body and con-
tinues with an optimization of the body pose and shape us-
ing the Chamfer distance loss.
Rigid Transformation and Scaling: The optimization
is initialized by applying a rigid transformation (rotation,
translation and scaling) of the parametric body model. This
step roughly aligns the body with the garment.
Pose and Shape Optimization: The body pose and shape
parameters are optimized to minimize the Chamfer distance
between the body mesh and the garment mesh.
Collision Handling: After body model optimization, an ad-



Figure 2. Impact of the pre-trained CLIP on garment data:
We disable all other supervisions and explore the impact of a pre-
trained CLIP model on fashion data versus using the regular model
to enforce embedding supervisions. We observe that regular CLIP
embeddings result in distorted and unusable geometries regardless
of whether the input is a text prompt or an image.

Figure 3. Impact of regularizations on the final armor geome-
try: Enforcing no regularizations (Laplacian smoothing, penaliza-
tion of small triangles etc.) on the output mesh results in a crisp
output armor mesh with arm/body holes but its quality is not at the
level required to perform physics-based simulation. On the other
hand, enforcing strong regularizations results in overly smoothed
meshes with closed holes. Our output strikes a good balance be-
tween capturing those fine-level details that make an armor geom-
etry look like one yet making it suitable for downstream tasks.

ditional step is performed to resolve potential body-cloth
collisions. This is achieved by minimizing an interpenetra-
tion loss that penalizes any intersections between the body
mesh and the garment mesh.By combining these steps, the
garment mesh can be accurately fit to the parametric body
model, enabling realistic draping and physics-based cloth
simulations for downstream applications.

Additional Ablation Studies

Supervisions: When it comes to supervisions we observed
that: a) utilizing regular CLIP embeddings provides mini-

Figure 4. Impact of Texture Module: given the left image as
a condition, the texture enhancement module enriches the details
and enhances the overall image quality by effectively utilizing the
powerful 2D priors.

mal supervision guidance when it comes to garments and
results in poorly deformed meshes which is why we opted
for a garment fine-tuned model as shown in Fig. 2, b) explic-
itly enforcing multi-view consistency losses is not neces-
sary as 3D supervisions can provide better guidance, and iii)
there is a trade-off between allowing for heavy garment styl-
izations/deformations and maintaining a good mesh quality
that can be used later on as shown in Fig. 3. Thus we pro-
pose to use a combination of 3D supervisions to guide the
deformation process to obtain an accurate 3D shape along
with 2D and embedding supervisions to obtain the fine-
level details of the garment that the 3D pseudo ground-truth
might fail to capture. We train for ∼1000 iterations with
the weights of each loss described in Eq. (6) as follows:
wCD = 20, wLap = 1, wtriag = 1, w2D = 2, wE = 4 with
the weight of WCD gradually decreasing after the first 500
iterations once we have obtained a fairly accurate pose and
shape of the garment to allow for the remaining of the su-
pervisions to distill the fine-level garment details. Note that
if we were to enforce strong 3D supervisions we would end
up with deformed garments that would have no holes for the
body, arms and head.
Adding Components one at a time: As described in the
main paper we conducted an ablation study depicted in
Fig. 6. We start with the off-the-shelf TextDeformer which
takes a text prompt and a base-mesh and deforms this to
match the target text. Text prompts are not ideal to cap-
ture the fine-level details of a garment as there can be many
“medieval armors”. In addition, a pretrained CLIP model
is not capable of capturing the subtle differences between a
“jacket” and a “puffer jacket”. To overcome this limitation
we adapt TextDeformer to take image inputs as guidance
(ImageDeformer) and observe that the deformed geometries
are improved. Nonetheless, they still fail to capture the de-
tails of the image. By swapping the original CLIP model
and introducing a model that is fine-tuned on fashion data
we observe that details are better preserved across garments.
Noting that image-based reconstruction methods can accu-



Figure 5. 3D Garment Generation: Given an image (1st row)
or a text prompt (2nd row) as guidance and a base geometry mesh
(bottom left inset) that can be far from the target we generate high-
quality textured 3D geometries of both real as well as fantastical
garments.

rately capture geometry but produce coarse and watertight
meshes that are unsuitable for subsequent tasks, we utilize
these meshes as pseudo ground-truth for our proposed ap-
proach. Our Garment3DGen results in garments that faith-
fully follow the image guidance while containing wrinkles
and fine details. However, the quality of the output geome-
try is not always ideal for physics-based downstream tasks
because they produce poorly conditioned triangles which
result in instabilities when simulated in addition to poorly
tessellated geometry which will result in unnatural fabric
behavior. Because of this, we introduced additional 3D su-
pervisions that preserve a better mesh quality.

Texture Module: The impact of the texture enhancement
module is shown in Fig. 4. The textures directly synthe-
sized by 3D generation models are low-resolution, smooth
and over-simplified, which is due to the scarcity of high
quality 3D training data. Thus, the texture enhancement
module aims to effectively utilize the 2D priors learned
from the large high-quality image dataset. After our image-
conditioned image enhancement, we bring back vivid de-
tails to the texture, improving the perceptual quality.

Limitations

Garment3DGen handles a variety of garment types both re-
alistic and fantastical. Due to the requirement of a template
mesh, there is a limitation on what garments can be gener-
ated whilst still providing distortion-free meshes. This can
be mitigated by providing a more diverse template library.
Our estimated textures, while faithful to the image, some-
times do not fully preserve fine-level details. We plan to ad-
dress this by tuning the texture enhancement module to be
conditioned on the reference image across all views while
maintaining its multi-view color consistency properties. Fi-
nally, it is worth noting that the closer the input template
mesh is to the target garment, the easier the deformation
task becomes. We currently select the closest template man-
ually but performing automatic retrieval based on the image
could be tackled in future work.

Additional Results

Comparisons with SewFormer: In Fig. 7 we provide a
qualitative comparisons against SewFormer [3] which pre-
dicts garment patterns from a single RGB image.To facili-
tate a meaningful comparison, we use a physics-based cloth
simulator to sew the generated panels together, creating an
assembled 3D garment. In the top row T-shirt example,
SewFormer incorrectly generates pattern pieces for a dress
instead of the requested T-shirt. After assembly, it’s clear
that the predicted garment resembles a dress rather than
the intended T-shirt. The second example shows that while
SewFormer works reasonably well for certain garments, it
fails to fully match the guidance, missing sleeves in this
case. Both examples demonstrate that SewFormer produces
results that don’t accurately match the image guidance, and
its method for obtaining 3D assembled garments is more
complex, requiring specialized software to sew individual
pattern pieces together. Additionally, SewFormer is limited
to producing V-neck designs, whereas our method correctly
follows the visual guidance.

Additional Qualitative Comparisons: In Fig. 5 we pro-
vide multi-view renders of our 3D textured garments that
we generate from text prompts and an image guidance.
From these results we gain the following insights: a) Gar-
ment3DGen works just as well with fantastical garments
(armors or dresses) that are outside the regular garment dis-
tribution, b) our texture estimation module results into high-
quality textures that closely match the input text prompt
and c) our output geometry does not have to be similar to
the input base mesh. Finally in Fig. 8 we showcase the
plethora of applications that Garment3DGen has ranging
from text/image/sketch to simulation-ready 3D garments to
hand-garment interaction in a VR environment using the on-
device hand-tracking.



Figure 6. Ablation Study: Starting from a base input mesh we showcase that our key contributions result in deformed geometries that
capture the input image guidance, comprise fine-level garment details and are suitable for our downstream tasks.

Figure 7. Qualitative Comparisons: SewFormer [3] produces 2D garment patterns from a single RGB image input. We further process
these panels by virtually sewing them together at the seams to create assembled 3D garments, which enables us to perform a qualitative
comparison. We showcase two garment examples and demonstrate that Garment3DGen produces results that are more faithful to the image
input with a less complex pipeline.
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