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1 The Proposed Model
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Figure 1: Illustration of the proposed framework, where video signals and language-based annotation will be

used to predict the pedestrian trajectory and intention associated with uncertainty. o o
Given the proposed dataset, we will perform three tasks including pedestrian intent prediction,

corresponding reasoning estimation, and pedestrian trajectory prediction, to demonstrate the potential
tasks that can be completed with the dataset and the use cases of the novel labels.

The proposed eP2P is illustrated in Figure[I} which consists of two modules, Pedestrian Situated
Intent Prediction and Trajectory Distribution Prediction. The intent prediction module consists of
a visual encoder Gy (-) and a text encoder G7(-) to extract the corresponding features from the
input video and textual reasoning annotations with, as well as a global-local context feature fusion
network G(-) to aggregate the global information of the whole scene and local cues from the region
near the target pedestrian. Besides, an intent predictor F;(-) and a reasoning generator F'z(-) are
deployed to predict the crossing intent and the corresponding reason for the prediction, respectively.
For the trajectory prediction module, an encoder E(-) and decoder D(-) are used to integrate the
spatial-temporal information of the observed moving location of the pedestrian and the crossing
intent estimation. Subsequently, the trajectory predictor Fi5(-) predicts the future locations of the
target pedestrian, while the uncertainty predictor Fig(+) estimates hyper-parameters for the model
uncertainty.

To better utilize the PSI benchmark, the lower-level visual annotations and the cognitive annotations
are aggregated to predict pedestrian intention as well as the future pedestrian positions with human
reasoning descriptions and visual scene understanding. Considering the strong relationship between
intention and behaviors
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Mathematically, the goal of the proposed framework eP2P is to estimate the conditional distribution
p(PyT|0}_,,) for each pedestrian i, where 1 < i < N and N is the total number of pedestrians

t—m
in the dataset. Specifically, O}_, consists of the observed sequence of m frames (v’) and the

pedestrian’s trajectory (1) in the time period j € (¢ — m,t]. Besides, P/ includes the target
pedestrian’s situated intent ¢* € {0, 1} estimated at time ¢, where 0 denotes “not crossing” and 1 is
“crossing”, and bounding boxes I = [(z1, 1), (zr, yr)|,] in the future time steps j € [t + 1, + 7].

1.1 Pedestrian Intention and Reasoning Prediction

The crossing intention prediction is addressed as a binary-classification problem. In order to leverage
the rich knowledge of both the global environment (e.g., road conditions, traffic elements, etc.) and
local appearance (e.g., pose, motion, etc.) of the target pedestrian, the local region surrounding the
target pedestrian is cropped out and inputted to a Transformer visual encoder Gy (+), in addition to the
complete observed image, to extract features. The extracted features of the two types of input images
contain the local and global knowledge, respectively, which are then fused through the global-local
knowledge fusion module G(-) to obtain the visual contextual features. With the visual contextual
features and the location coordinates of the pedestrian as input, the situated intent estimation and
the corresponding reasoning for the estimation are predicted by Fy(-) and F'g(+), respectively. The
predicted intent is supervised by the ground-truth crossing intent as:

1 N .
Line =D, (1= di) - BCE(c;, ¢;), e

where BCE(+, -) defines the binary cross-entropy loss, ¢; is the predicted crossing intention for
pedestrian 4, and ¢; is the ground-truth. Specifically, we accept the intention from {“crossing”, “not
crossing” } with the majority agreement by all annotators as the ground-truth ¢;, and the ratio of

observers’ difference with ¢; as the disagreement score d; = ni o 1 22, di € [0, 1], where

n; is the total number annotators for the current case, c¥ is the crossing intention annotated by the
specific annotator 1 < k < n,. Utilizing the disagreement score to reweigh the learning objective can
mitigate the distraction caused by uncertain situations, in which even human drivers struggle to make
decisions effortlessly.

Moreover, we notice that human drivers used to estimate pedestrians’ behavior through visual
observation and some common social knowledge. Thus, we aim to bridge the gap between visual
observation and the human reasoning process. Specifically, based on global-local contextual visual
observation, another reasoning generator module Fz(-) is deployed to generate reasoning for the
crossing intent prediction. This process is guided by ground-truth reasoning annotations. To achieve
this, the ground-truth reasoning annotations from annotators are encoded by a Transformer text
encoder G (+). The output embeddings are then used to supervise reasoning prediction via contrastive
loss. Given the intent and reasoning annotations from multiple annotators, the agreement on intent
is obtained through majority voting. Intent annotations that match the agreement are considered
positive cases, while those differing from the agreement are deemed negative cases. We adhere
to state-of-the-art visual-language model training strategies to align ground-truth and predicted
reasoning embeddings

1.2 Trajectory Prediction

The eventual goal is predicting the future trajectory of the target pedestrian in the following ¢ + 1 ~
t + 7 time steps based on the past ¢ — m ~ ¢ observations. Instead of predicting a deterministic
trajectory as

Moreover, we define the position of a target pedestrian at every time step as the center of the bounding
box, which is denoted as 1. = (I;,[,), and I, = %, l, = UH'TU’" To model the prediction
uncertainty, we assume 1. is drawn from a bivariate Gaussian distribution 1, ~ N (p, X)), where
p = (Ha; f1y) is the mean and 3 = diag(o2, 07) is the variance. Since only a single sample is
provided in the training data while the ground-truth distribution of the target trajectory is unknown
and unobservable, we place evidential priors to model the prediction uncertainty. Specifically, for

each prediction of I, ~ N (e, 0%) and I, ~ N (py, 02) of the pedestrian center position, we follow

To simultaneously maximize the model evidence in support of the observations in the training data
and inflating uncertainty when the prediction is wrong, the model is optimized with the learning



objective as:

Leyi(w) = Lypr(w) + Lr(w), (2)
where Ly 1, (w) = § log(%) —a log(Q) + (a+ 3) log (1 —7)?v+0) +log (7

2

logarithm of model evidence, Lr(w) = |l — 7| - (2v 4 «) is the evidence regularizer which imposes
an incorrect evidence penalty to minimize evidence on incorrect predictions, in which Q = 26(1 +v),
and [ is short for [, /1, for x and y dimensions, respectively. We apply Eq. [2to estimate x and y
independently and define the pedestrian trajectory prediction objective with evidential uncertainty as:

) is the negative

N  t+1

ﬁtraj = ﬁ Z Z (ﬁevi (w;j) + Levi(“’?j))a (3)

i=1 j=t+1

where W,/ = {Vz/ys Va/ys Oy, Bejy } are the estimated parameters for the NIG distribution on
and y dimensions, respectively. {vg/y, Qs /y, Bz/y } are estimated by a neural network F(-), and

VYo)y = I, /y is calcualted based on the bounding boxes predicted by F'p(-), where (I, Zy) is the
center of the predicted bounding box.

1.3 Overall Objective

To sum up, we integrate all objectives to formulate our overall loss function for the proposed model
as L = »Cint + »Crsn + »Cbbaz + »Ctraj-

2 Comparison with Existing Datasets

Several recent datasets have advanced behavior understanding in autonomous driving, but key gaps
remain. JRDB-Act [2] extends JRDB [[7] with fine-grained activity labels for 3D behavior recognition,
but focuses on classification and detection without modeling reasoning.

Large-scale datasets like Waymo Open Motion v2 [3] and nuPlan [1]] support long-horizon planning
but do not capture subjective or interpretable human intent. Language-based datasets such as
Reason2Drive [9], DriveLMM [5]] and DrivelLM [11] explore reasoning in driving scenarios, but
often rely on synthetic data and structured tasks, targeting lower-level inferences.

In contrast, PSI focuses on the socially complex challenge of pedestrian intent understanding, offering
real-world video with 10-24 annotators per scenario to capture inter- and intra-human variability.
By modeling multi-human reasoning chains, disagreement, and contextual cues, PSI fills a critical
gap in the current landscape. PSI provides real-world video data with rich, free-text reasoning from
10-24 annotators per scenario. It captures inter- and intra-human variability, enabling research into
ambiguity, consensus, and social cognition—critical for human-aligned autonomous systems.

More of recent advances in explainable autonomous driving, particularly those integrating vision-
language reasoning and human interaction understanding. For example, 3D-LLM-Autonomous-
Driving (OmniDrive) [12]] enables multimodal reasoning and counterfactual queries in 3D driving
scenes, while Awesome-LLM4AD [13]] curates a broad collection of LLLM-based research across
perception, planning, and decision-making. The HRI Advice Dataset (HAD) [6] focuses on natural
language guidance for AVs, enhancing transparency in control. nuScenes-QA [10] extends nuScenes
with over 460K visual QA pairs for evaluating perception and reasoning in complex urban environ-
ments. Additionally, works like PedVLM [8] and [4]] explore vision-language models for pedestrian
behavior prediction, highlighting the potential of language-grounded reasoning.

In contrast, our dataset uniquely captures both driver and pedestrian intentions, includes explicit
reasoning annotations, and models annotator disagreement—offering a rich lens into the subjective
and interactive nature of road user behavior. This enables more nuanced modeling of intent and
decision-making, especially in ambiguous or contested scenarios.

3 Distrubtion of the Annotators

Our annotator pool includes 74 individuals (44 male, 30 female), aged 19-77, evenly distributed
across three age groups (19-30, 31-54, 55+). All hold valid U.S. driver’s licenses and represent a



range of driving experience: 25% drive 5,000 miles/year, 40% 10,000 miles/year, and the rest over
15,000 miles/year.

This diversity in age, gender, and driving experience provides a broad range of perspectives in
pedestrian intent estimation and reasoning. However, we acknowledge the U.S.-centric nature of the
dataset, which may limit generalizability to other cultural contexts.
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