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Abstract

Various recent proposals increase the distinguishing power of Graph Neural Net-
works (GNNs) by propagating features between k-tuples of vertices. The distin-
guishing power of these “higher-order” GNNs is known to be bounded by the
k-dimensional Weisfeiler-Leman (WL) test, yet their O(nk) memory requirements
limit their applicability. Other proposals infuse GNNs with local higher-order graph
structural information from the start, hereby inheriting the desirable O(n) memory
requirement from GNNs at the cost of a one-time, possibly non-linear, preprocess-
ing step. We propose local graph parameter enabled GNNs as a framework for
studying the latter kind of approaches. We precisely characterize their distinguish-
ing power, in terms of a variant of the WL test, and in terms of the graph structural
properties that they can take into account. Local graph parameters can be added to
any GNN architecture, and are cheap to compute. In terms of expressive power, our
proposal lies in the middle of GNNs and their higher-order counterparts. Further,
we propose several techniques to aid in choosing the right local graph parameters.
Our results connect GNNs with deep results in finite model theory and finite vari-
able logics. Our experimental evaluation shows that adding local graph parameters
often has a positive effect on a variety of GNNs, datasets and graph learning tasks.

1 Introduction

Context. Graph neural networks (GNNs) [Merkwirth and Lengauer, 2005, Scarselli et al., 2009],
and its important class of Message Passing Neural Networks (MPNNs) [Gilmer et al., 2017], are one
of the most popular methods for graph learning tasks. Such MPNNs use an iterative message passing
scheme, based on the adjacency structure of the underlying graph, to compute vertex (and graph)
embeddings in some real Euclidean space.

The expressive (or distinguishing) power of MPNNs is, however, rather limited [Morris et al., 2019,
Xu et al., 2019]. Indeed, MPNNs will always identically embed two vertices (graphs) when these
vertices (graphs) cannot be distinguished by the one-dimensional Weisfeiler-Leman (WL) algorithm.
Two graphs G1 and H1 and vertices v and w that cannot be distinguished by WL (and thus any
MPNN) are shown in Fig. 1. The expressive power of WL is well-understood [Cai et al., 1992, Dell
et al., 2018, Arvind et al., 2020] and basically can only use tree-based structural information in
the graphs to distinguish vertices. Hence, no MPNN can detect that vertex v in Fig. 1 is part of a
3-clique, whereas w is not. Similarly, MPNNs cannot detect that w is part of a 4-cycle, whereas v is
not. Further limitations of WL in terms of graph properties can be found, e.g., in Arvind et al. [2020],
Chen et al. [2020] and Tahmasebi and Jegelka [2020].

To remedy the weak expressive power of MPNNs, so-called higher-order MPNNs were proposed
[Maron et al., 2019a, Morris et al., 2019, 2020], whose expressive power is well-understood and
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measured in terms of the k-dimensional WL procedures (k-WL) [Maron et al., 2019a, Chen et al.,
2019a, Geerts, 2020, Sato, 2020, Azizian and Lelarge, 2021]. In a nutshell, k-WL operates on k-tuples
of vertices and allows to distinguish vertices (graphs) based on structural information related to
graphs of treewidth k [Dvorak, 2010, Dell et al., 2018]. By definition, WL = 1-WL. As an example,
2-WL can detect that vertex v in Fig. 1 belongs to a 3-clique or a 4-cycle since both have treewidth
two. While more expressive than WL, the GNNs based on k-WL require O(nk) operations in each
iteration, where n is the number of vertices, hereby hampering their applicability.
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Figure 1: Two graphs that are indistinguishable by the
WL-test. The numbers between round brackets indicate
how many homomorphic images of the 3-clique each
vertex is involved in.

A more practical approach is to extend the
expressive power of MPNNs whilst pre-
serving their O(n) cost in each iteration.
Various such extensions [Kipf and Welling,
2017, Chen et al., 2019a, Li et al., 2019,
Ishiguro et al., 2020, Bouritsas et al., 2020,
Geerts et al., 2021] achieve this by infusing
MPNNs with local graph structural infor-
mation from the start. That is, the iterative
message passing scheme of MPNNs is run
on vertex labels that contain quantitative in-
formation about local graph structures.

It is easy to see that such architectures can go beyond the WL test: for example, adding triangle counts
to MPNNs suffices to distinguish the vertices v and w and graphs G1 and H1 in Fig. 1. Moreover,
the cost is a single preprocessing step to count local graph parameters, thus maintaining the O(n)
cost in the iterations of the MPNN. While there are some partial results showing that local graph
parameters increase expressive power [Bouritsas et al., 2020, Li et al., 2019], their precise expressive
power and relationship to higher-order MPNNs was unknown, and there is little guidance in terms of
which local parameters do help MPNNs and which ones do not. The main contribution of this paper
is a precise characterization of the expressive power of MPNNs with local graph parameters and its
relationship to the hierarchy of higher-order MPNNs.

Our contributions. In order to nicely formalize local graph parameters, we propose to extend
vertex labels with homomorphism counts of small graph patterns.1 More precisely, given graphs
P and G, and vertices r in P and v in G, we propose to augment the initial features of v with the
number of homomorphisms from P to G that map r to v, denoted by hom(P r, Gv), as a way to
capture local structural information. More generally, homomorphism counts for a collection of graphs
are considered. Indeed, we propose F -MPNNs where F = {P r1 , . . . , P r` } is a set of (graph) patterns,
which extend MPNNs by (i) first allowing a preprocessing step that labels each vertex v of a graph
G with the vector

(
hom(P r1 , G

v), . . . , hom(P r` , G
v)
)
, and (ii) then run an MPNN on this labelling.

Our main contributions are the following:

1. We precisely characterize the expressive power of F-MPNNs by means of an extension of WL,
denoted by F -WL. This characterization gracefully extends the characterization for standard MPNNs,
mentioned earlier, by setting F = ∅, and provides insights in the expressive power of existing MPNN
extensions, most notably the Graph Substructure Networks of Bouritsas et al. [2020].

2. We compare F-MPNNs to higher-order MPNNs, which are characterized in terms of the k-WL-
test. On the one hand, while F -MPNNs strictly increase the expressive power of the WL-test, for any
finite set F of patterns, 2-WL can distinguish graphs which F -MPNNs cannot. On the other hand, for
each k ≥ 1 there are patterns P such that {P}-MPNNs can distinguish graphs which k-WL cannot.

3. We deal with the challenging problem of pattern selection and comparing F-MPNNs based on
the patterns included in F . We prove two partial results: one establishing when a pattern P in F is
redundant, and another result indicating when P does add expressive power, based on the treewidth
of P compared to the treewidth of other patterns in F .

4. Our theoretical results are complemented by an experimental study in which we show that for
various GNN architectures, datasets and graph learning tasks, all part of the recent benchmark by
Dwivedi et al. [2020], the augmentation of initial features with homomorphism counts of graph
patterns has often a positive effect, and the cost for computing these counts incurs little to no overhead.

1We recall that homomorphisms are edge-preserving mappings between the vertex sets.
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As such, we believe that F-MPNNs not only provide an elegant theoretical framework for
understanding local graph parameter enabled MPNNs, they are also a valuable alternative to
higher-order MPNNs as a way to increase the expressive power of MPNNs. In addition, and as will
be explained in Section 2, F -MPNNs provide a unifying framework for understanding the expressive
power of several other existing extensions of MPNNs. Proofs of our results and further details on
the relationship to existing approaches and experiments can be found in the supplementary material.

Related Work. Works related to the distinguishing power of the WL-test, MPNNs and their higher-
order variants are cited throughout the paper. Beyond distinguishability, GNNs are analyzed in terms
of universality and generalization properties [Maron et al., 2019b, Keriven and Peyré, 2019, Chen
et al., 2019b, Garg et al., 2020, Azizian and Lelarge, 2021], local distributed algorithms [Sato et al.,
2019, Loukas, 2020], randomness in features [Sato et al., 2021, Abboud et al., 2021] and using local
context matrix features [Vignac et al., 2020]. Other extensions of GNNs are surveyed, e.g., in Wu
et al. [2021], Zhou et al. [2018] and Chami et al. [2021]. Related are also the Graph Homomorphism
Convolutions by NT and Maehara [2020] which apply SVMs directly on a homomorphism count
representation of vertices. Finally, our approach is reminiscent of graph representations by means of
graphlet kernels [Shervashidze et al., 2009], but then on the level of vertices.

Limitations of our approach. One of the limitations of F-MPNNs is that their expressive power
depends on the set F of patterns. Our work offers tools and guidelines to help in this search, but the
best set of patterns must still be found by trial-and-error. However, as we show in Section 6, MPNNs
almost always benefit from any set of additional features, assuming that the resulting model goes
beyond the WL test. Cliques and cycles are two types of simple patterns that are guaranteed to extend
the WL test, and indeed we show that striking gains can be obtained by simply adding these features
to existing benchmarks. For simplicity of exposition we focus on vertex-labelled undirected graphs
but all our results can be extended to edge-labelled directed graphs.

2 Local Graph Parameter Enabled MPNNs

We here introduce our MPNNs with local graph parameters. We first recall some graph concepts.

Graphs. We consider undirected vertex-labelled graphs G = (V,E, χ), with V the set of vertices,
E the set of edges and χ a mapping assigning a label to each vertex in V . The set of neighbors of
a vertex is denoted by NG(v) =

{
u ∈ V

∣∣ {u, v} ∈ E}. A rooted graph is a graph in which one
of its vertices is declared as its root. We denote a rooted graph by Gv, where v ∈ V is the root
and depict them as graphs in which the root is a blackened vertex, such as e.g., . Given graphs
G = (VG, EG, χG) and H = (VH , EH , χH), an homomorphism h is a mapping h : VG → VH such
that (i) {h(u), h(v)} ∈ EH for every {u, v} ∈ EG, and (ii) χG(u) = χH(h(u)) for every u ∈ VG.
For rooted graphs Gv and Hw, an homomorphism must additionally map v to w. We denote by
hom(G,H) the number of homomorphisms from G to H; similarly for rooted graphs.

MPNNs with local graph parameters. Let F = {P r1 , . . . , P r` } be a set of rooted graphs, which
we refer to as patterns. As a uniform formalization of local graph structural information, we propose
the use of homomorphism counts of patterns in F to enhance the initial feature of vertices. To
illustrate the idea, consider the graphs in Fig. 1. As mentioned, these graphs cannot be distinguished
by the WL-test, and therefore cannot be distinguished by the broad class of MPNNs. If we allow a
preprocessing stage, however, in which the initial labelling of every vertex v is extended with the
number of (homomorphic images of) 3-cliques in which v participates (indicated by numbers between
brackets in Fig. 1), then clearly vertices v and w (and the graphs G1 and H1) can be distinguished
based on this extra structural information. In fact, the initial labelling already suffices for this purpose.
In our setting, this will correspond to selecting the rooted 3-clique and attach to each vertex v,
hom( , Gv). Information about 4-cycles requires adding hom( , Gv) as well.

We therefore propose F-enabled MPNNs, or just F-MPNNs, defined in the same way as MPNNs
[Gilmer et al., 2017] with the crucial difference that the initial feature vector of a vertex v (a one-hot
encoding of its label χG(v)) is augmented with all the homomorphism counts from patterns in F .

Formally, in each round d an F-MPNN M labels each vertex v in graph G with a feature vector
x

(d)
M,F,G,v which is inductively defined as follows:
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x
(0)
M,F,G,v :=

(
χG(v), hom(P r1 , G

v), . . . , hom(P r` , G
v)
)

x
(d)
M,F,G,v := UPD(d)

(
x

(d−1)
M,F,G,v,COMB(d)

(
{{x(d−1)

M,F,G,v | u ∈ NG(v)}}
))
, for d > 0,

where COMB(d) and UPD(d) are an aggregating and update function, respectively, as in standard
MPNNs, and where {{}} denotes a multi-set. We note that standard MPNNs are F-MPNNs with
F = ∅. As for MPNNs, we can equip F -MPNNs with a READOUT function that aggregates all final
feature vectors into a single feature vector in order to classify or distinguish graphs.

We remark that any MPNN architecture can be turned into an F -MPNN by a simple homomorphism
counting preprocessing step. As such, we propose a generic plug-in for a large class of GNN
architectures. Better still, hom(P r, Gv) can be computed in time O(|VG|tw(P r)+1) [Díaz et al.,
2002], where tw(P r) denotes the treewidth of pattern P r. The treewidth of patterns used in F-
MPNNs is typically small. And indeed, homomorphism counts of small graph patterns can be
efficiently computed in practice, even on large datasets [Zhang et al., 2020]. We also remark that
the use of rooted patterns is important because different vertices in a pattern may embed differently
around a target vertex in a graph. For example, hom( , Gv) can be different from hom( , Gv). The
choice of a root in a graph P can be avoided by including different rooted versions of P in F . In fact,
it suffices to include one rooted version P r for each vertex r in a distinct orbit in P . We note that for
symmetric graphs, such as cliques and cycles, all vertices lie in the same orbit and a single, arbitrary,
choice of root vertex suffices. Alternatively, one could define hom(P,Gv) :=

∑
r∈VP

hom(P r, Gv)
which ignores how the pattern is locally mapped into a graph. We speculate, however, that this results
in a model that is less powerful than F-MPNNs.

Despite their simplicity, we will show that F-MPNNs can substantially increase the power of
MPNNs by varying F , only paying a one-time preprocessing cost.

F -MPNNs as unifying framework. An important aspect of F -MPNNs is that they allow a prin-
cipled analysis of the power of existing extensions of MPNNs. For example, taking F = { } suffices
to capture degree-aware MPNNs [Geerts et al., 2021], such as the Graph Convolution Networks
(GCNs) [Kipf and Welling, 2017], which use the degree of vertices; taking F = {L1, L2, . . . , L`}
for rooted paths Li of length i suffices to model the walk counts used in Chen et al. [2019a]; and
taking F as the set of labeled trees of depth one precisely corresponds to the use of the WL-labelling
obtained after one round by Ishiguro et al. [2020]. Furthermore, {C`}-MPNNs, where C` denotes
the cycle of length `, correspond to the extension proposed in Section 4 in Li et al. [2019].

In addition, F-MPNNs are close in spirit to the Graph Substructure Networks (GSNs) by Bouritsas
et al. [2020], which use subgraph isomorphism counts of graph patterns. We recall that an isomor-
phism from G to H is a bijective homomorphism h from G to H which additionally satisfies (i)
{h−1(u), h−1(v)} ∈ EG for every {u, v} ∈ EH , and (ii) χG(h−1(u)) = χH(u) for every u ∈ VH .
When G and H are rooted graphs, isomorphisms should preserve the roots as well. Now, in a GSN,
the feature vector of each vertex v is augmented with the subgraph isomorphism counts, sub(P r, Gv),
for rooted patterns P r in a set of P of patterns, and this is followed by the execution of an MPNN,
just as for our F-MPNNs. Importantly, F-MPNNs can be used to bound the expressive power of
GSNs, as we will show later. We note that computing sub(P r, Gv) is, in general, more costly than
computing hom(P r, Gv) [Curticapean et al., 2017]. This partially motivates our choice of using
homomorphism counts instead of subgraph isomorphism counts. Moreover, homomorphism counts
of tree patterns underly existing characterizations of the expressive power of MPNNs [Dell et al.,
2018, Grohe, 2020a]. As we will see shortly, these characterizations gracefully extend to F -MPNNs.

3 The Expressive Power of F -MPNNs

We next provide exact characterizations of the expressive power of F-MPNNs. Our results extend
those for standard MPNNs [Xu et al., 2019, Morris et al., 2019, Dell et al., 2018].

Characterization in terms of F -WL. We bound the expressive power of F-MPNNs in terms of
what we call the F-WL-test. This test extends the WL-test [Weisfeiler and Lehman, 1968, Grohe,
2017] in the same way as F -MPNNs extend standard MPNNs: by including homomorphism counts
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of patterns in F in the initial labelling. The F-WL-test, for F = {P r1 , . . . , P r` }, is a vertex labelling
algorithm that iteratively computes a label χ(d)

F,G,v for each vertex v of a graph G, as follows:

χ
(0)
F,G,v :=

(
χG(v), hom(P r1 , G

v), . . . , hom(P r` , G
v)
)

χ
(d)
F,G,v := HASH

(
χ

(d−1)
F,G,v, {{χ

(d−1)
F,G,u | u ∈ NG(v)}}

)
, for d > 0.

The F-WL-test stops in round d when no new pair of vertices are distinguished, that is, χ(d−1)
F,G,v1 =

χ
(d−1)
F,G,v2 implies χ(d)

F,G,v1 = χ
(d)
F,G,v2 , for any vertices v1 and v2 in G. The standard WL-test corre-

sponds to {∅}-WL. We can use the F-WL-test to compare vertices of the same graphs, or different
graphs. We say that the F-WL-test cannot distinguish vertices if their final labels are the same, and
that the F-WL-test cannot distinguish graphsG andH if the multiset containing each label computed
for G is the same as that of H . Similarly as for MPNNs and the WL-test [Xu et al., 2019, Morris
et al., 2019], the F-WL-test provides an upper bound for the expressiveness of F-MPNNs.
Proposition 1. If two vertices of a graph cannot be distinguished by the F-WL-test, then they cannot
be distinguished by any F-MPNN either. Moreover, if two graphs cannot be distinguished by the
F-WL-test, then they cannot be distinguished by any F-MPNN either.

Furthermore, simply adding local parameters from a set F of patterns to the GIN architecture of Xu
et al. [2019] results in F-MPNNs that match the expressive power of the F-WL-test.

Characterization in terms of F -pattern trees. At the core of several results about the WL-test
lies a characterization linking the test with homomorphism counts of (rooted) trees [Dell et al., 2018,
Grohe, 2020a]. In view of the connection to MPNNs, it tells that MPNNs only use quantitative
tree-based structural information from the underlying graphs. We next extend this characterization to
F-WL by using homomorphism counts of so-called F-pattern trees. Proposition 1 then reveals that
F -MPNNs can use quantitative information of richer graph structures than the trees used by MPNNs.

To define F-pattern trees we need the graph join operator ?. Given two rooted graphs Gv and
Hw, the join graph (G ? H)v is obtained by taking the disjoint union of Gv and Hw, followed by

identifying w with v. The root of the join graph is v. For example, the join of and is .

Figure 2: Examples of F-pattern trees.

Furthermore, ifG is a graph and P r is a rooted graph,
then joining a vertex v in G with P r results in the
disjoint union ofG and P r, where r is identified with
v. Let F = {P r1 , . . . , P r` }. An F-pattern tree T r is
obtained from a standard rooted tree Sr = (V,E, χ),
called the backbone of T r, followed by joining every
vertex s ∈ V with any number of copies of patterns
from F . Examples of F -pattern trees, for F = { } are shown in Fig. 2, where grey colored vertices
are part of the backbones of the F -pattern trees. We define the depth of an F -pattern tree as the depth
of its backbone. Standard trees are F-pattern trees in which no patterns are joined with backbone
vertices. We next use F-pattern trees to characterize the expressive power of F-WL and thus, by
Proposition 1, of F-MPNNs.
Theorem 1. For any finite collection F of patterns, vertices v and w in a graph G are indis-
tinguishable by the F-WL-test if and only if hom(T r, Gv) = hom(T r, Gw) for every rooted
F-pattern tree T r. Similarly, G and H are indistinguishable by the F-WL-test if and only if
hom(T,G) = hom(T,H) for every (unrooted) F-pattern tree T .

The proof of this Theorem requires a generalization of the techniques from Dell et al. [2018] and
Grohe [2020a,b], used to characterize the expressiveness of WL in terms of homomorphism counts of
trees. In fact, we can use our proof to recover said results simply by setting F = ∅. We note that
F-MPNNs are more expressive than MPNNs (recall the graphs G1 and H1 and F = { }).
We can even make the above theorem more precise. When F-WL is run for d rounds, then only
F-patterns trees of depth d are required. This tells that increasing the number of rounds of F-WL
results in that more complicated structural information is taken into account. As an illustration,
consider the graphs G2 and H2 and vertices v and w shown in Fig. 3 and let us consider F-WL with
F = { }. We argue that v and w cannot be distinguished by F-WL based on the initial labelling
only, but they can be distinguished after one round.
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v

G2

w

H2

Figure 3: { }–MPNNs re-
quire one round to distinguish
v from w.

Indeed, by definition, F-WL cannot distinguish v from w based
on the initial labelling since these vertices have the same triangle
count (zero). Hence, no F-MPNN can distinguish these vertices
either. If run for one round, Theorem 1 implies that F-WL cannot
distinguish v from w if and only if hom(T r, Gv2) = hom(T r, Hw

2 )
for any F-pattern tree of depth at most 1. It is readily verified

that hom( , Gv2) = 0 6= 4 = hom( , Hw
2 ), and thus F-WL

distinguishes v from w after one round. Also, G2 and H2 can be
distinguished by F-WL after one round. Moreover, G2 and H2 are
indistinguishable by WL showing again that F-MPNNs are more
expressive than MPNNs. The example shows that more rounds allow

F-MPNNs to detect more complex patterns based on F-pattern trees. This is in contrast to, e.g.,
the Graph Homomorphism Convolutions by NT and Maehara [2020] in which only homomorphism
counts of patterns in F , and not the counts of the derived F-patterns trees, are taken into account.

Implications for other MPNN extensions. Importantly, Theorem 1 discloses the boundaries of F -
MPNNs. To illustrate this for some specific instances of F -MPNNs mentioned earlier, the expressive
power of degree-based MPNNs [Kipf and Welling, 2017, Geerts et al., 2021] is captured by {L1}-
pattern trees, and walk count MPNNs [Chen et al., 2019a] are captured by {L1, . . . , L`}-pattern
trees. These pattern trees are just trees, since joining paths to trees only results in bigger trees. Thus,
Theorem 1 tells that all these extensions are still bounded by WL (albeit needing fewer rounds).
In contrast, beyond WL, {C`}-pattern trees capture cycle count MPNNs [Li et al., 2019]. Our
results also shed light on the expressive power of GSNs [Bouritsas et al., 2020] which, as already
mentioned, use subgraph isomorphism counts of patterns P ∈ P . More precisely, a P-GSN augments
vertex features by including sub(P r, Gv) for rooted versions P r of P ∈ P , where r ranges over
representative vertices of the different orbits in P . Let us denote by P+ this set of rooted patterns.
Fact 1 (Curticapean et al. [2017]). For any set P of rooted patterns, there exists a pattern set s(P)
such that for each P r ∈ P , sub(P r, Gv) can be computed based on {hom(Qr, Gv) | Qr ∈ s(P)}.

In other words, subgraph isomorphism counts can be computed in terms of homomorphism counts,
albeit by using different pattern sets. For example, if P = { }, then s(P) = { , , , }
which contains all different homomorphic images of . As a consequence, we obtain:

Proposition 2. P-GSNs cannot distinguish more vertices than s(P+)-MPNNs can.

So, we can bound the expressive power of GSNs in terms of F-MPNNs. In the supplementary
material we also show that F-MPNNs are bounded by GSNs that use some special set of patterns
derived from F . We conclude by observing that the proof technique underlying Theorem 1 can
be directly applied to GSNs. The key insight is to redefine the notion of homomorphism from
pattern trees to graphs. Indeed, consider a P-GSN and a corresponding P+-pattern tree T r. We
define shom(T r, Gv) as the number of mappings h : VT → VG such that (i) h(r) = v; (ii) h is a
homomorphism when restricted to the backbone of T r; and (iii) for each P r joined with a backbone
vertex, h(P r) is isomorphic to P r. We then have the following counterpart of Theorem 1 for GSNs:
Theorem 2. For any finite collection P of patterns, vertices v and w in a graph G are indistinguish-
able by P-GSNs if and only if shom(T r, Gv) = shom(T r, Gw) for every rooted P+-pattern tree T r.
Similarly, G and H are indistinguishable by P-GSNs if and only if shom(T,G) = shom(T,H) for
every (unrooted) P+-pattern tree T .

4 A Comparison with the k-WL-test

Compared to the computationally intensive higher-order MPNNs based on the k-WL-tests [Maron
et al., 2019a, Morris et al., 2019, 2020], F-MPNNs are an alternative and efficient way to extend
the expressive power of MPNNs (and thus the WL-test). In this section we situate F-WL in the
k-WL hierarchy. The definition of the k-WL-test can be found, e.g., in Morris et al. [2020], and is
provided in the supplementary material as well. We also use the standard notion of treewidth of a
graph (see e.g., Bodlaender [1993]). Intuitively, treewidth measures the tree-likeness of a graph. For
example, trees have treewidth one, cycles have treewidth two, and the k-clique Kk has treewidth
k − 1. Furthermore, the treewidth of a pattern P r is the treewidth of its unrooted version P .
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We have seen that F-WL can distinguish graphs that WL cannot: just consider {K3}-WL for the
3-clique K3. To generalize this observation we need some notation. Let F and G be two sets of
patterns and consider an F-MPNN M and a G-MPNN N . We say that M is upper bounded in
expressive power by N if for any graph G, if N cannot distinguish vertices v and w,2 then neither
can M . A similar notion is in place for pairs of graphs: if N cannot distinguish graphs G and H ,
then neither can M . More generally, letM be a class of F -MPNNs and N be a class of G-MPNNs.
We say that the classM is upper bounded in expressive power by N if every M ∈ M is upper
bounded in expressive power by an N ∈ N (which may depend on M ). WhenM is upper bounded
by N and vice versa, thenM and N are said to have the same expressive power. A class N is more
expressive than a classM whenM is upper bounded in expressive power by N , but there exist
graphs that can be distinguished by MPNNs in N but not by any MPNN inM.

Our first result is a consequence of the characterization of k-WL in terms of homomorphism counts
of graphs of treewidth k [Dvorak, 2010, Dell et al., 2018].
Proposition 3. For each finite set F of patterns, the expressive power of F-WL is bounded by k-WL,
where k is the largest treewidth of a pattern in F .

For example, since the treewidth of K3 is 2, we have that {K3}-WL is bounded by 2-WL. Similarly,
{Kk+1}-WL is bounded in expressive power by k-WL.

Our second result tells how to increase the expressive power of F-WL beyond k-WL. A pattern P r
is a core if any homomorphism from P to itself is injective. For example, any clique Kk and cycle of
odd length is a core.
Theorem 3. Let F be a finite set of patterns. If F contains a pattern P r which is a core and has
treewidth k, then there exist graphs that can be distinguished by F-WL but not by (k − 1)-WL.

In other words, for such F , F-WL is not bounded by (k − 1)-WL. For example, since K3 is a core,
{K3}-WL is not bounded in expressive power by WL = 1-WL. More generally, {Kk}-WL is not
bounded by (k − 1)-WL. The proof of Theorem 3 is based on extending deep techniques developed
in finite model theory, and that have been used to understand the expressive power of finite variable
logics [Atserias et al., 2007, Bova and Chen, 2019]. This result is stronger than the one underlying
the strictness of the k-WL hierarchy [Otto, 2017], which states that k-WL is strictly more expressive
than (k − 1)-WL. Indeed, Otto [2017] only shows the existence of a pattern P r of treewidth k such
that (k− 1)-WL is not bounded by {P r}-WL. In Theorem 3 we provide an explicit recipe for finding
such a pattern P r, that is, P r can be taken a core of treewidth k.

In summary, we have shown that there is a set F of patterns such that (i) F-WL can distinguish
graphs which cannot be distinguished by (k − 1)-WL, yet (ii) F-WL cannot distinguish more graphs
than k-WL. This begs the question whether there is a finite set F such that F-WL is equivalent in
expressive power to k-WL. We answer this negatively.
Proposition 4. For any k > 1, there does not exist a finite set F of patterns such that F-WL is
equivalent in expressive power to k-WL.

In the proof of Proposition 4 we show a stronger claim. Indeed, we construct two graphs that can be
distinguished by 2-WL but cannot be distinguished by any F-WL. Since any two graphs that can be
distinguished by 2-WL can also be distinguished by k-WL, for any k > 2, the proposition follows. In
view of the connection between F -MPNNs and GSNs mentioned earlier, we thus show that no GSN
can match the power of k-WL, which was a question left open in Bouritsas et al. [2020]. We remark
that if we allow F to consist of all (infinitely many) patterns of treewidth k, then F-WL is equivalent
in expressive power to k-WL [Dvorak, 2010, Dell et al., 2018].

5 When Do Patterns Extend Expressiveness?

Graph patterns are not learned, but must be passed as an input to MPNNs together with the graph
structure. Thus, knowing which patterns work well, and which do not, is of key importance for the
power of the resulting F-MPNNs. This is a difficult question to answer since determining which
patterns work well is clearly application-dependent. From a theoretical point of view, however, we
can still look into interesting questions related to the problem of which patterns to choose. One such

2As for the F-WL-test, F-MPNNs cannot distinguish vertices if they are assigned the same feature vector.
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a question, and the one studied in this section, is when a pattern adds expressive power over the ones
that we have already selected. More formally, we study the following problem: Given a finite set F of
patterns, when does adding a new pattern P r to F extends the expressive power of the F-WL-test?

To positively answer this question, we need to find two graphs G and H , show that they are
indistinguishable by the F-WL-test, but show that they can be distinguished by the F ∪ {P r}-WL-
test. As an example we show that longer cycles always add expressive power.

Proposition 5. For any ` > 3, {Cr3 , . . . , Cr` }-WL is more expressive than {Cr3 , . . . , Cr`−1}-WL.

Here, C` denotes a cycle of length `. We also observe that, by Proposition 3, {Cr3 , . . . , Cr` }-WL is
bounded by 2-WL for any ` ≥ 3 because cycles have treewidth two.

In general, it is quite challenging to find two graphs and to prove that they are indistinguishable by
F-WL but can be distinguished by the F ∪ {P r}-WL-test. Instead, in this section we provide two
techniques that can be used to partially answer the question posed above by only looking at properties
of the sets of patterns. Our first result is for establishing when a pattern does not add expressive
power to a given set F of patterns, and the second one when it does.

Detecting when patterns are superfluous. Our first result states that instead of choosing complex
patterns that are the joins of smaller patterns, one should opt for the smaller patterns.

Proposition 6. Let P r = P r1 ? P
r
2 be a pattern that is the join of two smaller patterns. Then for any

set F of patterns, we have that F ∪ {P r}-WL is upper bounded by F ∪ {P r1 , P r2 }-WL.

Stated differently, this means that adding to F any pattern which is the join of two patterns already in
F does not add expressive power. For example, instead of the pattern one should simply use the

3-clique . This is in line with other advantages of smaller patterns: their homomorphism counts
are easier to compute, and, since they are less specific, they should tend to produce less over-fitting.

Detecting when patterns add expressiveness. Joining patterns into new patterns does not give
extra expressive power, but what about patterns which are not joins? We next provide a useful recipe
for detecting when a pattern does add expressive power. We recall that the core of a graph P is its
unique (up to isomorphism) induced subgraph which is both a homomorphic image of P and a core.

Theorem 4. Let F be a finite set of patterns and let Qr be a pattern whose core has treewidth k.
Then, F ∪ {Qr}-WL is more expressive than F-WL if every pattern P r ∈ F satisfies one of the
following conditions: (i) P r has treewidth < k; or (ii) P r does not map homomorphically to Qr.

As an example, {K3, . . . ,K`}-WL is more expressive than {K3, . . . ,K`−1}-WL for any
` > 3 because of the first condition. Similarly, {K3, . . . ,K`, Cm}-WL is more expressive than
{K3, . . . ,K`}-WL for odd cycles Cm. Indeed, such cycles are cores and no clique K` with ` > 2
maps homomorphically to Cm.

6 Experiments

We next showcase that GNN architectures benefit when homomorphism counts of patterns are added
as additional vertex features. For patterns where homomorphism and subgraph isomorphism counts
differ (e.g., cycles) we compare with GSNs [Bouritsas et al., 2020]. We use the benchmark for GNNs
by Dwivedi et al. [2020], as it offers a broad choice of models, datasets and graph classification tasks.
Selected GNNs. We select the best architectures from Dwivedi et al. [2020]: Graph Attention
Networks (GAT) [Velickovic et al., 2018], Graph Convolutional Networks (GCN) [Kipf and Welling,
2017], GraphSage [Hamilton et al., 2017], Gaussian Mixture Models (MoNet) [Monti et al., 2017]
and GatedGCN [Bresson and Laurent, 2017]. We leave out various linear architectures such as GIN
[Xu et al., 2019] as they were shown to perform poorly on the benchmark.
Learning tasks and datasets. As in Dwivedi et al. [2020] we consider (i) graph regression and the
ZINC dataset [Irwin et al., 2012, Dwivedi et al., 2020]; (ii) vertex classification and the PATTERN
and CLUSTER datasets [Dwivedi et al., 2020]; and (iii) link prediction and the COLLAB dataset
[Hu et al., 2020]. We omit graph classification: for this task, the graph datasets from Dwivedi et al.
[2020] originate from image data and hence vertex neighborhoods carry little information.
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Table 1: Results for the ZINC dataset.

(a) Results for the ZINC dataset show that homomorphism (hom)
counts of cycles improve every model. We compare the mean
absolute error (MAE) of each model without any homomorphism
count (baseline), against the model augmented with the hom
count, and with subgraph isomorphism (iso) counts of C3–C10.

MODEL MAE (BASE) MAE (HOM) MAE (ISO)

GAT 0.47±0.02 0.22±0.01 0.24±0.01
GCN 0.35±0.01 0.20±0.01 0.22±0.01
GraphSage 0.44±0.01 0.24±0.01 0.24±0.01
MoNet 0.25±0.01 0.19±0.01 0.16±0.01
GatedGCN 0.34±0.05 0.1353±0.01 0.1357±0.01

(b) The effect of different cycles for the
GAT model over the ZINC dataset, using
mean absolute error.

SET (F) MAE

NONE 0.47±0.02
{C3} 0.45±0.01
{C4} 0.34±0.02
{C6} 0.31±0.01
{C5, C6} 0.28±0.01
{C3, . . . , C6} 0.23±0.01
{C3, . . . , C10} 0.22±0.01

Patterns. We extend the initial features of vertices with homomorphism counts of cycles C` of
length ` ≤ 10, when molecular data (ZINC) is concerned, and with homomorphism counts of
k-cliques Kk for k ≤ 5, when social or collaboration data (PATTERN, CLUSTER, COLLAB) is
concerned. We use the z-score of the logarithms of homomorphism counts to make them standard-
normally distributed and comparable to other features. Section 5 tells us that all these patterns will
increase expressive power (Theorem 4 and Proposition 5) and are “minimal” in the sense that they are
not the join of smaller patterns (Proposition 6). Similar pattern choices were used in Bouritsas et al.
[2020]. We use DISC [Zhang et al., 2020]3, a tool specifically built to get homomorphism counts for
large graph datasets. Each model is trained and tested independently using combinations of patterns.

Higher-order GNNs. We do not compare to higher-order GNNs since this was already done by
Dwivedi et al. [2020]. They included ring-GNNs (which outperform 2WL-GNNs) and 3WL-GNNs
in their experiments, and these were outperformed by our selected “linear” architectures. Although
the increased expressive power of higher-order GNNs may be beneficial for learning, scalability and
learning issues (e.g., loss divergence) hamper their applicability [Dwivedi et al., 2020]. Our approach
thus certainly outperforms higher-order GNNs with respect to the benchmark.

Methodology. Graphs were divided between training/test as instructed by Dwivedi et al. [2020],
and all numbers reported correspond to the test set. The reported performance is the average over
four runs with different random seeds for the respective combinations of patterns in F , model and
dataset. Training times were comparable to the baseline of training models without any augmented
features.4 All models for ZINC, PATTERN and COLLAB were trained on a GeForce GTX 1080 Ti
GPU, for CLUSTER a Tesla V100-SXM3-32GB GPU was used.

Next we summarize our results for each learning task separately. Here we report results using 16
message-passing layers for ZINC, PATTERN, and CLUSTER, and 3 message-passing layers for
COLLAB, as in Dwivedi et al. [2020]. In the supplementary material we report comparable results
using only 4 layers for ZINC and PATTERN.

Graph regression. The first task of the benchmark is the prediction of the solubility of molecules
in the ZINC dataset [Irwin et al., 2012, Dwivedi et al., 2020], a dataset of about 12 000 graphs of
small size, each of them consisting of one particular molecule. The results in Table 1a show that
each of our models indeed improves by adding homomorphism counts of cycles and the best result
is obtained by considering all cycles. GSNs were applied to the ZINC dataset as well [Bouritsas
et al., 2020]. In Table 1a we also report results by using subgraph isomorphism counts (as in GSNs):
using homomorphism counts provides comparable results with using subgraph isomorphism counts
although homomorphism counts are typically more efficient to compute. By looking at the full results,
we see that some cycles are much more important than others. Table 1b shows which cycles have
the greatest impact for the worst-performing baseline, GAT. Remarkably, adding homomorphism
counts makes the GAT model competitive with the best performers of the benchmark.

3We thank the authors for providing us with an executable.
4Code to reproduce our experiments is available at https://github.com/MrRyschkov/LGP-GNN
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Table 2: Results for the PATTERN dataset show that homomorphism counts improve all models except
GatedGCN. We compare weighted accuracy of each model without any homomorphism count (base-
line) against the model augmented with the counts of the setF that showed best performance (bestF ).

MODEL + BEST F ACCURACY BASELINE ACCURACY BEST

GAT{K3,K4,K5} 78.83 ± 0.60 85.50 ± 0.23
GCN{K3,K4,K5} 71.42 ± 1,38 82.49 ± 0.48
GraphSage {K3,K4,K5} 70.78 ± 0,19 85,85 ± 0.15
MoNet {K3,K4,K5} 85.90 ± 0,03 86.63 ± 0.03
GatedGCN {∅} 86.15 ± 0.08 86.15 ± 0.08

Table 3: All models improve the Hits@50 metric over the COLLAB dataset. We compare each model
without any homomorphism count (baseline) against the model augmented with the counts of the set
of patterns that showed best performance (best F).

MODEL + BEST F HITS@50 BASELINE HITS@50 BEST

GAT {K3} 50.32±0.55 52.87±0.87
GCN {K3,K4,K5} 51.35±1.30 54.60±1.01
GraphSage {K5} 50.33±0.68 51.39±1.23
MoNet {K4} 49.81±1.56 51.76±1.38
GatedGCN {K3} 51.00±2.54 51.57±0.68

Vertex classification. The next task in the benchmark corresponds to vertex classification. Here
we analyze two datasets, PATTERN and CLUSTER [Dwivedi et al., 2020], both containing over
12 000 artificially generated graphs resembling social networks or communities. The task is to predict
whether a vertex belongs to a particular cluster or pattern, and all results are measured using the
accuracy of the classifier. Also here, our results show that homomorphism counts, this time of cliques,
tend to improve the accuracy of our models. Indeed, for the PATTERN dataset we see an improvement
in all models but GatedGCN (Table 2), and three models are improved in the CLUSTER dataset
(reported in the supplementary material). Once again, the best performer in this task is a model that
uses our extended features. Note that we do not need to compare against subgraph isomorphism
counts (GSNs), because for cliques, homomorphism counts coincide with subgraph isomorphism
counts (up to a constant factor).
Link prediction In our final task we consider a single graph, COLLAB [Hu et al., 2020], with over
235 000 vertices, containing information about the collaborators in an academic network, and the
task at hand is to predict future collaboration. The metric used in the benchmark is the Hits@50
evaluator [Hu et al., 2020]. Here, positive collaborations are ranked among randomly sampled
negative collaborations, and the metric is the ratio of positive edges that are ranked at place 50 or
above. Once again, homomorphism counts of cliques improve the performance of all models, see
Table 3. An interesting observation is that the best set of features (cliques) does depend on the model,
although the best model uses all cliques again. We do not compare against subgraph isomorphism
counts (GSNs) for the same reason as mentioned above.
Remarks. The best performers in each task use homomorphism counts, in accordance with our
theoretical results, showing that such counts do extend the power of MPNNs. Homomorphism counts
are also cheap to compute. For COLLAB, the largest graph in our experiments, the homomorphism
counts of all patterns we used, for all vertices, could be computed by DISC [Zhang et al., 2020] in less
than 3 minutes. One important remark is that selecting the best set of features is still a challenging
endeavor. Our theoretical results help us streamline this search, but for now it is still an exploratory
task. In our experiments we first looked at adding each pattern individually, and then tried with
combinations of those that showed the best improvements. This feature selection strategy incurs
considerable cost and needs further investigation.

7 Conclusion
We propose F-MPNNs as an efficient way to increase the expressive power of MPNNs and showed
that enriching features with homomorphism counts of small patterns is a promising add-on to any
GNN architecture. Graph parameter selection and a complete characterization of when adding a new
pattern to F adds expressive power to the F-WL-test deserves further study.
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A Proofs of Section 3

We use the following notions. Let G and H be graphs, v ∈ VG, w ∈ VH , and d ≥ 0. The vertices v
and w are said to be indistinguishably by F-WL in round d, denoted by (G, v) ≡(d)

F -WL (H,w), iff
χ

(d)
F,G,v = χ

(d)
F,H,w. Similarly, G and H are said to be indistinguishable by F-WL in round d, denoted

by G ≡(d)
F -WL H , iff {{χ(d)

F,G,v | v ∈ VG}} = {{χ(d)
F,H,w | w ∈ VH}}. Along the same lines, v and w are

indistinguishable by an F-MPNNM , denoted by (G, v) ≡(d)
M,F (H,w), iff x(d)

M,F,G,v = x
(d)
M,F,H,w.

Similarly, G and H are said to be indistinguishable by M in round d, denoted by G ≡(d)
M,F H , iff

{{x(d)
M,F,G,v | v ∈ VG}} = {{x(d)

M,F,H,w | w ∈ VH}}.

A.1 Proof of Proposition 1

We show that the class of F-MPNNs is upper bounded in expressive power by F-WL. The proof is
analogous to the proof in Morris et al. [2019] showing that MPNNs are bounded by WL.

We show a stronger result by upper bounding F-MPNNs by F-WL-test, layer by layer. More
precisely, we show that for every F-MPNNM , graphs G and H , vertices v ∈ VG, w ∈ VH , and
d ≥ 0,

(1) (G, v) ≡(d)
F -WL (H,w) =⇒ (G, v) ≡(d)

M,F (H,w); and

(2) G ≡(d)
F -WL H =⇒ G ≡(d)

M,F H .

Clearly, these imply that F-MPNNs are bounded in expressive power by F-WL, both when vertex
and graph distinguishability are concerned.

Proof of implication (1). We show this implication by induction on the number of rounds.

Base case. We first assume (G, v) ≡(0)
F -WL (H,w). In other words, χ(0)

F,G,v = χ
(0)
F,H,w and thus,

χG(v) = χH(w) and for every P r ∈ F we have hom(P r, Gv) = hom(P r, Hw). By definition,
x

(0)
M,F,G,v is a hot-one encoding of χG(v) combined with hom(P r, Gv) for P r ∈ F , for every

MPNNM , graph G and vertex v ∈ VG. Since these agree with the labelling and homomorphism
counts for vertex w ∈ VH in graph H , we also have that x(0)

M,F,G,v = x
(0)
M,F,H,w, as desired.

Inductive step. We next assume (G, v) ≡(d)
F -WL (H,w). By the definition of F-WL this is equivalent

to (G, v) ≡(d−1)
F -WL (H,w) and {{χ(d−1)

F,G,v′ | v′ ∈ NG(v)}} = {{χ(d−1)
F,H,w′ | w′ ∈ NH(w)}}. By the

induction hypothesis, this implies (G, v) ≡(d−1)
M,F (H,w) and there exists a bijection β : NG(v)→

NH(w) such that (G, v′) ≡(d−1)
M,F (H,β(v′)) for every v′ ∈ NG(v), and every F-MPNN M . In

other words, x(d−1)
M,F,G,v = x

(d−1)
M,F,H,w and x

(d−1)
M,F,G,v′ = x

(d−1)
M,F,H,β(v′) for every v′ ∈ NG(v). By

the definition of F-MPNNs this implies that COMB(d)
(
{{x(d−1)

M,F,G,v′ | v′ ∈ NG(v)}}
)

is equal to

COMB(d)
(
{{x(d−1)

M,F,H,w′ | w′ ∈ NH(w)}}
)

and hence also, after applying UPD(d), x(d)
M,F,G,v =

x
(d)
M,F,H,w. That is, (G, u) ≡(d)

M,F (H,w), as desired.

Proof of implication (2). The implication G ≡(d)
F -WL H =⇒ G ≡(d)

M,F H now easily follows.

Indeed, G ≡(d)
F -WL H is equivalent to {{χ(d)

F,G,v | v ∈ VG}} = {{χ(d)
F,H,w | w ∈ VH}}. In other words,

there exists a bijection α : VG → VH such that χ(d)
F,G,v = χ

(d)
F,H,α(v) for every v ∈ VG. We have

just shown that this implies x(d)
M,F,G,v = x

(d)
M,F,H,α(v) for every v ∈ VG and for every F-MPNNM .

Hence, {{x(d)
M,F,G,v | v ∈ VG}} = {{x(d)

M,F,H,w | w ∈ VH}}, or G ≡(d)
M,F H , as desired.
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A.2 Proof of Theorem 1

We show that for any finite collection F of patterns, graphs G and H , vertices v ∈ VG and w ∈ VH ,
and d ≥ 0:

(G, v) ≡(d)
F -WL (H,w) ⇐⇒ hom(T r, Gv) = hom(T r, Hw), (1)

for every F-pattern tree T r of depth at most d. Similarly,

G ≡(d)
F -WL H ⇐⇒ hom(T,G) = hom(T,H), (2)

for every (unrooted) F-pattern tree of depth at most d.

For a given set F = {P r1 , . . . , P r` } of patterns and s = (s1, . . . , s`) ∈ N`, we denote by Fs the
graph pattern of the form (P s11 ? · · · ? P s`` )r, that is, we join s1 copies of P1, s2 copies of P2 and so
on.

Proof of equivalence (1). The proof is by induction on the number of rounds d.

=⇒ We first consider the implication (G, v) ≡(d)
F -WL (H,w) =⇒ hom(T r, Gv) = hom(T r, Hw)

for every F-pattern tree T r of depth at most d.

Base case. Let us first consider the base case, that is, d = 0. In other words, we consider F-pattern
trees T r consisting of a single root r adorned with a pattern F s for some s = (s1, . . . , s`) ∈ N`. We
note that due to the properties of the graph join operator:

hom(T r, Gv) =
∏̀
i=1

(
hom(P ri , G

v)
)si
. (3)

Since, (G, v) ≡(0)
F -WL (H,w), we know that χG(v) = χH(w) = a for some a ∈ Σ and

hom(P ri , G
v) = hom(P ri , H

w) for all P ri ∈ F . This implies that the product in (3) is equal
to ∏̀

i=1

(
hom(P ri , H

w)
)si

= hom(T r, Hw),

as desired.

Inductive step. Suppose next that we know that the implication holds for d − 1. We assume now

(G, v) ≡(d)
F -WL (H,w) and consider an F-pattern tree T r of depth at most d. Assume that in the

backbone of T r, the root r has m children c1, . . . , cm, and denote by T c11 , . . . , T c`m the F-pattern
trees in T r rooted at ci. Furthermore, we denote by T (r,ci)

i the F-pattern tree obtained from T cii by
attaching r to ci; T

(r,ci)
i has root r. Let Fs be the pattern in T r associated with r. The following

equalities are readily verified:

hom(T r, Gv) = hom(Fs, Gv)

m∏
i=1

hom(T
(r,ci)
i , Gv) = hom(Fs, Gv)

m∏
i=1

( ∑
v′∈NG(v)

hom(T cii , G
v′)
)
.

(4)

Recall now that we assume (G, v) ≡(d)
F -WL (H,w) and thus, in particular, (G, v) ≡(0)

F -WL (H,w).
Hence, by induction, hom(Sr, Gv) = hom(Sr, Hw) for every F-pattern tree Sr of depth 0. In
particular, this holds for Sr = Fs and hence

hom(Fs, Gv) = hom(Fs, Hw).

Furthermore, (G, v) ≡(d)
F -WL (H,w) implies that there exists a bijection β : NG(v)→ NH(w) such

that (G, v′) ≡(d−1)
F -WL (H,β(v′)) for every v′ ∈ NG(v). By induction, for every v′ ∈ NG(v) there thus

exists a unique w′ ∈ NH(w) such that hom(Sr, Gv
′
) = hom(Sr, Hw′) for every F-pattern tree Sr

of depth at most d− 1. In particular, for every v′ ∈ NG(v) there exists a w′ ∈ NH(w) such that

hom(T cii , G
v′) = hom(T cii , H

w′),
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for each of the sub-trees T cii in T r. Hence, (4) is equal to

hom(Fs, Hw)

m∏
i=1

( ∑
w′∈NH(w)

hom(T cii , H
w′)
)
,

which in turn is equal to hom(T r, Hw), as desired.

⇐= We next consider the other direction, that is, we show that when hom(T r, Gv) = hom(Sr, Hw)

holds for every F -pattern tree T r of depth at most d, then (G, v) ≡(d)
F -WL (H,w) holds. This is again

verified by induction on d. This direction is more complicated and is similar to techniques used in
Grohe [2020b]. In our induction hypothesis we further include that a finite number of F -pattern trees
suffices to infer (G, v) ≡(d)

F -WL (H,w) for graphs G and H and vertices v ∈ VG and w ∈ VH .

Base case. Let us consider the base case d = 0 first. We need to show that χG(v) = χH(w) and
hom(P ri , G

v) = hom(P ri , H
w) for every P ri ∈ F , since this implies (G, v) ≡(0)

F -WL (H,w).

We first observe that hom(T r, Gv) = hom(T r, Hw) for every F -pattern tree T r of depth 0, implies
that v and w must be assigned the same label, say a, by χG and χH , respectively.

Indeed, if we take T r to consist of a single root r labeled with a (and thus r is associated with the
pattern F0), then hom(T r, Gv) = hom(T r, Hw) will be one if χG(v) = χH(w) = a and zero
otherwise. This implies that χG(v) = χH(w) = a.

Next, we show that hom(P ri , G
v) = hom(P ri , H

w) for every P ri ∈ F . It suffices to consider the
F-pattern tree T ri consisting of a root r joined with a single copy of P ri .

We observe that we only need a finite number of F-pattern trees to infer (G, v) ≡(0)
F -WL (H,w).

Indeed, suppose that χG and χH assign labels a1, . . . , aL, then we need L single vertex trees with
no patterns attached and root labeled with one of these labels. In addition, we need one F-pattern
tree for each pattern P ri ∈ F and each label a1, . . . , aL. That is, we need L(`+ 1) F -pattern trees of
depth 0.

Inductive step. We now assume that the implication holds for d − 1 and consider d. That is, we
assume that if hom(T r, Gv) = hom(T r, Hw) holds for every F-pattern tree T r of depth at most
d − 1, then (G, v) ≡(d−1)

F -WL (H,w) holds. Furthermore, we assume that only a finite number K of
F-pattern trees Sr1 , . . . , S

r
K of depth at most d− 1 suffice to infer (G, v) ≡(d−1)

F -WL (H,w).

So, for d, let us assume that hom(T r, Gv) = hom(T r, Hw) holds for every F-pattern tree of depth
at most d. We need to show (G, v) ≡(d)

F -WL (H,w) and that we can again assume that a finite number
of F-pattern trees of depth at most d suffice to infer (G, v) ≡(d)

F -WL (H,w).

By definition of (G, v) ≡(d)
F -WL (H,w), we can, equivalently, show that (G, v) ≡(d−1)

F -WL (H,w) and
that there exists a bijection β : NG(v) → NH(w) such that (G, v′) ≡(d−1)

F -WL (H,β(v′)) for every
v′ ∈ NG(v). That (G, v) ≡(d−1)

F -WL (H,w) holds, is by induction, since hom(T r, Gv) = hom(T r, Hw)
for every F-pattern tree of depth at most d and thus also for every F-pattern tree of depth at most
d− 1. We may thus focus on showing the existence of the bijection β.

Let X,Y ∈ {G,H}, x ∈ VX and y ∈ VY . We know, by induction and the proof of the previous
implication, that (X,x) ≡(d−1)

F -WL (Y, y) if and only if hom(Sri , X
x) = hom(Sri , Y

y) for each i ∈ K.
Denote by R1, . . . , Re the equivalence class on VX ∪ VY induced by ≡(d−1)

F -WL . Furthermore, define
Nj,X(x) := NX(x)∩Rj and let nj = |Nj,G(v)| and mj = |Nj,H(w)| for v ∈ VG and w ∈ VH , for
each j ∈ [e]. If we can show that nj = mj for each j ∈ [e], then this implies the existence of the
desired bijection.

Let T r=ai be the F-pattern tree of depth at most d obtained by attaching Sri to a new root vertex r
labeled with a. We may assume that v and w both have label a, since their homomorphism counts for
the single root trees with labels from Σ. The root vertex r is not joined with any Fs (or alternatively
it is joined with F0). It will be convenient to denote the root of Sri by ri instead of r. Then for each
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i ∈ [K]:

hom(T r=ai , Gv) =
∑

v′∈NG(v)

hom(Srii , G
v′) =

∑
j∈[e]

njhom(Srii , G
v′j )

=
∑
j∈[e]

mjhom(Srii , H
w′j ) =

∑
w′∈NH(w)

hom(Srii , H
w′) = hom(T r=ai , Hw),

where v′j and w′j denote arbitrary vertices in Nj,G(v) and Nj,H(w), respectively. Let us denote
hom(Srii , G

v′j ) by aij and observe that this is equal to hom(Srii , H
w′j ). Hence, we know that for

each i ∈ [K]: ∑
j∈[e]

aijnj =
∑
j∈[e]

aijmj .

Let us call a set I ⊆ [K] compatible if all roots in Srii , for i ∈ I , have the same label. Consider a
vector s = (s1, . . . , sK) ∈ NK and define its support as supp(s) := {i ∈ [K] | si 6= 0}. We say that
s is compatible if its support is. For such a compatible s we now define T r=a,s to be the F-pattern
tree with root r labeled with a, with one child c which is joined with (and inheriting the label from)
the following F-pattern tree of depth d− 1:

Fi∈supp(s)S
si
i .

In other words, we simply join together powers of the Srii ’s that have roots with the same label. Then
for every compatible s ∈ NK :

hom(T r=a,s, Gv) =
∑

v′∈NG(v)

∏
i∈[K]

(
hom(Srii , G

v′)
)si

=
∑
j∈[e]

nj
∏
i∈[K]

(
hom(Srii , G

v′j )
)si

=
∑
j∈[e]

mj

∏
i∈[K]

(
hom(Srii , H

w′j )
)si

=
∑

w′∈NH(w)

∏
i∈[K]

(
hom(Srii , H

w′)
)si

= hom(T r=a,si , Hw),

where, as before, v′j and w′j denote arbitrary vertices in Nj,G(v) and Nj,H(w), respectively. Hence,
for any compatible s ∈ NK : ∑

j∈[e]

nj
∏
i∈[K]

asiij =
∑
j∈[e]

mj

∏
i∈[K]

asiij .

We now continue in the same way as in the proof of Lemma 4.2 in Grohe [2020b]. We repeat the
argument here for completeness. Define asj :=

∏K
i=1 a

si
ij for each j ∈ [e]. We assume, for the sake of

contradiction, that there exists a j ∈ [e] such that nj 6= mj . We choose such a j0 ∈ [e] for which
S = supp(aj0) is inclusion-wise maximal.

We first rule out that S = ∅. Indeed, suppose that S = ∅. This implies that aj0 = 0. Now observe
that aj and aj′ are mutually distinct for all j, j′ ∈ [e], j 6= j′. Indeed, if they were equal then this
would imply that Rj = Rj′ . Hence, supp(aj) 6= ∅ for any j 6= j0. We note that nj = mj for all
j 6= j0 by the maximality of S. Hence, nj0 = n−

∑
j 6=j0 nj = n−

∑
j 6=j0 mj = mj0 , contradicting

our assumption. Hence, S 6= ∅.
Consider J := {j ∈ [e] | supp(aj) = S}. For each j ∈ J , consider the truncated vector âj := (aij |
i ∈ S). We note that âj , for j ∈ J , all have positive entries and are mutually distinct. Lemma 4.1 in
Grohe [2020b] implies that we can find a vector (with non-zero entries) ŝ = (ŝi | i ∈ S) such that the
numbers âŝj for j ∈ J are mutually distinct as well. We next consider s = (s1, . . . , sK) with si = ŝi
if i ∈ S and si = 0 otherwise. Then by definition of ŝ, also asj for j ∈ J are mutually distinct.

We next note that for every p ∈ N, apsj = (asj)
p and if we define A to be the |J | × |J |-matrix such

that Ajj′ := aj
′s
j then this will be an invertible matrix (Vandermonde). We use this invertibility to

show that nj0 = mj0 .

Let nJ := (nj | j ∈ J) and mJ = (mj | j ∈ J). If we inspect the j′th entry of nJ ·A, then this is
equal to ∑

j∈J
nja

j′s
j =

∑
j∈[e]

nja
j′s
j −

∑
j∈[e]

S 6⊆supp(aj)

nja
j′s
j −

∑
j∈[e]

S⊂supp(aj)

nja
j′s
j .
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We want to reduce the above expression to∑
j∈J

nja
j′s
j =

∑
j∈[e]

nja
j′s
j −

∑
j∈[e]

S⊂supp(aj)

nja
j′s
j .

To see that this holds, we verify that when S 6⊆ supp(aj) then aj
′s
j = 0. Indeed, take an ` ∈ S such

that ` 6∈ supp(aj). Then, aj
′s
j contains the factor aj

′s`
`j = 0s` with s` = ŝ` 6= 0. Hence, aj

′s
j = 0.

Now, by the maximality of S, for all j with S ⊂ supp(aj) we have nj = mj and thus∑
j∈[e]

S⊂supp(aj)

nja
j′s
j =

∑
j∈[e]

S⊂supp(aj)

mja
j′s
j .

Since
∑
j∈[e] nja

j′s
j =

∑
j∈[e]mja

j′s
j , we thus also have that∑
j∈J

nja
j′s
j =

∑
j∈J

mja
j′s
j .

Since this holds for all j′ ∈ J , we have nJ ·A = mJ ·A and by the invertibility of A, nJ = mJ .
In particular, since j0 ∈ J , nj0 = mj0 contradicting our assumption.

As a consequence, nj = mj for all j ∈ [e] and thus we have our desired bijection.

It remains to verify that we only need a finite number of F-pattern trees to conclude that nj = mj

for all j ∈ [e]. In fact, the above proof indicates that we just need to check test for each root label a,
we need to check identities for the finite number of pattern trees used to define the matrix A.

Proof of equivalence 2 This equivalence is shown just like proof of Theorem 4.4. in Grohe [2020a]
with the additional techniques from Lemma 4.2 in Grohe [2020b].

=⇒ We first show that G ≡(d)
F -WL H implies hom(T,G) = hom(T,H) for unrooted F-pattern

trees T of depth at most d.

Assume that VX ∩ VY = ∅ for X,Y ∈ {G,H}. For x ∈ VX and y ∈ VY , define x ∼d y if and only
if hom(T r, Xx) = hom(T r, Y y) for all F-pattern trees T r of depth at most d. Let R1, . . . , Re be
the ∼d-equivalence classes and for each j ∈ [e], let pj := |Rj ∩ VG| and qj := |Rj ∩ VH |. Suppose
that G ≡(d)

F -WL H . This implies that pj = qj for every j ∈ [e].

Let T be an unrooted F-pattern tree of depth at most d, let r be any vertex on the backbone of T ,
and let T r be the rooted F-pattern tree obtained from T by declaring r as its root. By definition, for
X ∈ {G,H}, any x ∈ VX ∩Rj , hom(T r, Xx) are all the same number, only dependent on j ∈ [e].
Hence,

hom(T,G) =
∑

v∈V (G)

hom(T r, Gv) =
∑
j∈[e]

pjhom(T r, Gvj )

=
∑
j∈[e]

qjhom(T r, Hwj ) =
∑

w∈V (H)

hom(T r, Hw) = hom(T,H),

where vj and wj are arbitrary vertices in Rj ∩ VG and Rj ∩ VH , respectively, and where we used
that hom(T r, Gvj ) = hom(T r, Hwj ) and pj = qj . Since this holds for any unrooted F-pattern tree
T of depth at most d, we have show the desired implication.

⇐= We next check the other direction. That is, we assume that hom(T,G) = hom(T,H) holds
for any unrooted F-pattern tree T of depth at most d and verify that G ≡(d)

F -WL H .

For x ∼d y to hold for x ∈ VX , y ∈ VY andX,Y ∈ {G,H}, we earlier showed that this corresponds
to checking whether hom(T rii , X

x) = hom(T rii , Y
y) for a finite number K rooted F-pattern trees

T rii . By definition of the Rj’s, aij := hom(T rii , X
x) for x ∈ Rj is well-defined (independent of

the choice of X ∈ {G,H} x ∈ VX ). For the rooted T rii ’s we denote by Ti its unrooted version.
Similarly as before,

hom(Ti, G) =
∑
j∈[e]

aijpj =
∑
j∈[e]

aijqj = hom(Ti, H).
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We next show that pj = qj for j ∈ [e]. In fact, this is shown in precisely the same way as in our
previous characterisation and based on Lemma 4.2 in Grohe [2020b]. That is, we again consider trees
obtained by joining copies of the Ti’s, to obtain, for compatible s ∈ NK ,∑

j∈[e]

asiijpj =
∑
j∈[e]

asiijqj .

It now suffices to repeat the same argument as before (details omitted).

B Proofs of Section 4

B.1 Additional details of standard concepts

Core and treewidth. A graph G is a core if all homomorphisms from G to itself are injective. The
treewidth of a graph G = (V,E, χ) is a measure of how much G resembles a tree. This is defined
in terms of the tree decompositions of G, which are pairs (T, λ), for a tree T = (VT , ET ) and λ a
mapping that associates each vertex t of VT with a set λ(t) ⊆ V , satisfying the following:

• The union of λ(t), for t ∈ VT , is equal to V ;
• The set {t ∈ VT | v ∈ λ(t)} is connected, for all v ∈ V ; and
• For each {u, v} ∈ E there is t ∈ VT with {u, v} ∈ λ(t).

The width of (T, λ) is mint∈T (|λ(t)|) − 1. The treewidth of G is the minimum width of its tree
decompositions. For instance, trees have treewidth one, cycles have clique two, and the k-clique Kk

has treewidth k − 1 (for k > 1).

If P r is a pattern, then its treewidth is defined as the treewidth of the graph P . Similarly, P r is a core
if P is.

k-WL. A partial isomorphism from a graph G to a graph H is a set π ⊆ VG × VH such that all
(v, w), (v′, w′) ∈ π satisfy the equivalences v = v′ ⇔ w = w′, {v, v′} ∈ EG ⇔ {w,w′} ∈ EH ,
χG(v) = χH(w) and χG(v′) = χH(w′). We may view π as a bijective mapping from a subset
X ⊆ VG to a subset of Y ⊆ VH that is an isomorphism from the induced subgraph G[X] to the
induced subgraph H[Y ]. The isomorphism type isotp(G, v̄) of a k-tuple v̄ = (v1, . . . , vk) is a label
in some alphabet Σ such that isotp(G, v̄) = isotp(H, w̄) if and only if π = {(v1, w1), . . . , (vk, wk)}
is a partial isomorphism from G to H .

Let k ≥ 1 and G = (V,E, χ). The k-dimensional Weisfeiler-Leman algorithm (k-WL) computes
a sequence of labellings χ(d)

k,G from V k → Σ. We denote by χ(d)
k,G,v̄ the label assigned to the k-

tuple v̄ ∈ V k in round d. The initial labelling χ(0)
k,G assigns to each k-tuple v̄ is isomorphism type

isotp(G, v̄). Then, for round d,

χ
(d)
k,G,v̄ :=

(
χ

(d−1)
k,G,v̄ ,M

(d−1)
v̄

)
,

where M (d−1)
v̄ is the multiset{{(

isotp(v1, . . . , vk, w), χ
(d−1)
k,G,(v1,...,vk−1,w), χ

(d−1)
k,G,(v1,...,vk−2,w,vk), . . . , χ

(d−1)
k,G,(w,v2,...,vk)

)∣∣∣ w ∈ V }}.
As observed in Dell et al. [2018], if k ≥ 2 holds, then we can omit the entry isotp(v1, . . . , vk, w)

from the tuples in Mv̄ , because all the information it contains is also contained in the entries χ(d−1)
k,G,...

of these tuples. Also, WL = 1-WL in the sense that χ(d)
G,v = χ

(d)
G,v′ if and only if χ(d)

1,G,v = χ
(d)
1,G,v′

for all v, v′ ∈ V . The k-WL algorithm is run until the labelings stabilises, i.e., if for all v̄, w̄ ∈ V k,
χ

(d)
k,G,v̄ = χ

(d)
k,G,w̄ if and only if χ(d+1)

k,G,v̄ = χ
(d+1)
k,G,w̄. We say that k-WL distinguishes two graphs G

and H if the multisets of labels for all k-tuples of vertices in G and H , respectively, coincides.
Similar notions as are place for distinguishing k-tuples, and for distinguishing graphs (or vertices)
based on labels computed by a given number of rounds.

We remark that k-WL algorithm given here is sometimes referred to as the “folklore” version of the
k-dimensional Weisfeiler-Leman algorithm. It is known that indistinguishability of graphs by k-WL
is equivalent to indistinguishability by sentences in the the k + 1-variable fragment of first order
logic with counting Cai et al. [1992], and to hom(P,G) = hom(P,H) for every graph of treewidth
k Dvorak [2010], Dell et al. [2018].
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B.2 Proof of Proposition 3

We show that for each finite set F of patterns, the expressive power of F-WL is bounded by k-WL,
where k is the largest treewidth of a pattern in F .

We first recall the following characterisation of k-WL-equivalence Dvorak [2010], Dell et al. [2018].
For any two graphs G and H ,

G ≡k-WL H ⇐⇒ hom(P,G) = hom(P,H)

for every graph P of treewidth at most k. On the other hand, we know from Theorem 1 that

G ≡F -WL H ⇐⇒ hom(T,G) = hom(T,H)

for every F-pattern tree T . Hence, we may conclude that

G ≡k-WL H =⇒ G ≡F -WL H

if we can show that any F-pattern tree has treewidth at most k.

Suppose that k is the maximal treewidth of a pattern in F . To conclude the proof, we verify that the
treewidth of any F-pattern tree is bounded by k.
Lemma 1. If k is the maximal treewidth of a pattern in F , then the treewidth of any F-pattern tree
T is bounded by k.

Proof. The proof is by induction on the number of patterns joined at any leaf of T . Clearly, if no
patterns are joined, then T is simply a tree and its treewidth is 1. Otherwise, consider a F-pattern
tree T = (V,E, χ) whose treewidth is at most k, and a pattern P r of treewidth k that is to be joined
at vertex t of T . By the induction hypothesis, there is a decomposition (H,λ) for T witnessing its
bounded treewidth, that is,

1. The union of all λ(h), for h ∈ VH , is equal to V ;
2. The set {h ∈ VH | t ∈ λ(h)} is connected, for all t ∈ V ;
3. For each {u, v} ∈ E there is h ∈ VH with {u, v} ∈ λ(h); and
4. The size of each set λ(h) is at most k + 1.

Likewise, by assumption, for pattern P r we have such a tree decomposition, say (HP , λP ).

Now consider any vertex h of the decomposition of T such that λ(h) contains vertex t in T to which
P r is to be joined at its root. We can create a joint tree decomposition for the join of P r and T (at
node t) by merging H and HP with an edge from vertex h in H to the root of HP (recall HP is a
tree by definition). It is readily verified that this decomposition maintains all necessary properties.
Indeed, condition 1 is clearly satisfied since λ and λp combined cover all vertices of the join of T
with P r. Furthermore, since the only node shared by T and P r is the join node, and we merge H
and HP by putting an edge from node h in H to the root of HP , connectivity of is guaranteed and
condition 2 is satisfied. Moreover, since the operation of joining T and P r does not create any extra
edges, condition 2 is immediately verified, and so is 3, because we do not create any new vertices,
neither in H nor in HP , and we already know that λ and λP are bounded by k + 1.

B.3 Proof of Theorem 3

We show that if F contains a pattern P r which is a core and has treewidth k, then F-WL is not
bounded by (k− 1)-WL. In other words, we construct two graphs G and H that can be distinguished
byF-WL but not by (k−1)-WL. It suffices to find such graphs that can be distinguished by {P r}-WL
but not by (k − 1)-WL. The proof relies on the characterisation of (k − 1)-WL indistinguishability
in terms of the k-variable fragment Ck of first logic with counting and of k-pebble bijective games in
particular Cai et al. [1992], Hella [1996]. More precisely, G ≡(k−1)-WL H if and only if no sentence
in Ck can distinguish G from H . In other words, for any sentence ϕ in Ck, G |= ϕ if and only if
H |= ϕ. We denote indistinguishability by Ck by G ≡Ck H . We heavily rely on the constructions
used in Atserias et al. [2007] and Bova and Chen [2019]. In fact, we show that the graphs G and H
constructed in those works, suffice for our purpose, by extending their strategy for the k-pebble game
to k-pebble bijective games.
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Construction of the graphs G and H . Let P r be a pattern in F which is a core and has treewidth
k. For a vertex v ∈ VP , we gather all its edges in Ev :=

{
{v, v′} | {v, v′} ∈ EP

}
. Let v1 be one of

the vertices in VP .

For G, as vertex set VG we take vertices of the form (v, f) with v ∈ VP and f : Ev → {0, 1}. We
require that ∑

e∈Ev1

f(e) mod 2 = 1 and
∑
e∈Ev

f(e) mod 2 = 0 for v 6= v1, v ∈ VP .

For H , as vertex set VH we take vertices of the form (v, f) with v ∈ VP and f : Ev → {0, 1}. We
require that

∑
e∈Ev

f(e) mod 2 = 0, for all v ∈ VP . We observe that G and H have the same
number of vertices.

The edge sets EG and EH of G and H , respectively, are defined as follows: (v, f) and (v′, f ′) are
adjacent if and only if v 6= v′ and furthermore,

f({v, v′} = f ′({v, v′}).
It is known that hom(P,G) = 0 (here it is used that P is a core), hom(P,H) 6= 0 and G and H are
indistinguishably by means of sentences in the k-variable fragment FOk of first order logic Atserias
et al. [2007], Bova and Chen [2019]. To show our theorem, we thus need to verify that G ≡Ck H as
well. Indeed, for if this holds, then G ≡(k−1)-WL H yet G 6≡(0)

{P}-WL H . Indeed, Theorem 1 implies

that for G 6≡(0)
{P}-WL H to hold, hom(P,G) = hom(P,H), which we know not to be true. Hence,

G 6≡{P}-WL H , as desired.

Showing Ck-indistinguishability of G and H . We next show that the graphs G and H are
indistinguishable by sentences in Ck. This will be shown by verifying that the Duplicator has a
winning strategy for the k-pebble bijective game on G and H [Hella, 1996].

The k-pebble bijective game. We recall that the k-pebble bijective game is played between two
players, the Spoiler and the Duplicator, each placing at most k pebbles on the vertices of G and
H , respectively. The game is played in a number of rounds. The pebbles placed after round r are
typically represented by a partial function p(r) : {1, . . . , k} → VG × VH . When p(r)(i) is defined,
say, p(r)(i) = (v, w), this means that the Spoiler places the ith pebble on vertex v and the Duplicator
places the ith pebble on w. Initially, no pebbles are placed on G and H and hence p(0) is undefined
everywhere.

Then in round r > 0, the game proceeds as follows:

1. The Spoiler selects a pebble i in [k]. All other already placed pebbles are kept on the same
vertices. We define p(r)(j) = p(r−1)(j) for all j ∈ [k], j 6= i.

2. The Duplicator responds by choosing a bijection h : VG → VH . This bijection should be
consistent with the pebbles in the restriction of p(r−1) to [k] \ {i}. That is, for every j ∈ [k],
j 6= i, if p(r−1)(j) = (v, w) then w = h(v).

3. Next, the Spoiler selects an element v ∈ VG.
4. The Duplicator defines p(r)(i) = (v, h(v)). Hence, after this round, the ith pebble is placed

on v by the Spoiler and on h(v) by the Duplicator.

Let dom(p(r)) be the elements in [k] for which p(r) is defined. For i ∈ dom(p(r)) denote by
(vi, wi) ∈ VG × VH the pair of vertices on which the ith pebble is placed. The Duplicator wins round
r if the mapping vi 7→ wi is partial isomorphism between G and H . More precisely, it should hold
that for all edges {vi, vj} ∈ EG if and only if (wi, wj) ∈ EH . In this case, the game continues to
the next round. Infinite games are won by the Duplicator. A winning strategy consists of defining a
bijection in step 2 in each round, allowing the game to continue, irregardless of which vertex v the
Spoiler places a pebble in Step 3.

Winning strategy. We will now provide a winning strategy for the k-bijective game on our constructed
graphs G and H . We recall that VG and VH have the same number of vertices, so a bijection between
VG and VH exists. We show how the Duplicator can select a “good” bijection in Step 2 of the game,
by induction on the number of rounds.
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To state our induction hypothesis, we first recall some notions and properties from Atserias et al.
[2007] and Bova and Chen [2019].

Let W be a walk in P and let e be an edge in EP . Then, occW (e) denotes the number of occurrences
of the edge e in the walk. More precisely, if W = (a1, . . . , a`) is a walk in P of length `, then

occW (e) := |{i ∈ [`− 1] | e = {ai, ai+1}}|.

Furthermore, for a subset S ⊆ VP , we define

avoid(S) :=
⋃

{M∈M,M∩S=∅}

M,

whereM is an arbitrary bramble of P of order > k. A brambleM is a set of connected subsets of
VP such that for any two elements M1 and M2 inM, either M1 ∩M2 6= ∅, or there exists a vertex
a ∈M1 and b ∈M2 such that {a, b} ∈ EP . The order of a bramble is the minimum size of a hitting
set forM. It is known that P has treewidth ≥ k if and only if it has a bramble of order > k. In what
follows, we letM be any such bramble.
Lemma 2 (Lemma 14 in Bova and Chen [2019]). For any 1 ≤ ` ≤ k, let (a1, f1), . . . , (a`, f`)
be vertices in VG. Let W be a walk in P from v1 to avoid({a1, . . . , a`}). For all i ∈ [`], let
f ′i : Eai → {0, 1} be defined by

f ′i(e) = fi(e) + occW (e) mod 2

for all e ∈ Eai . Then, the mapping (ai, fi) 7→ (ai, f
′
i), for all i ∈ [`], is a partial isomorphism from

G to H .

We use this lemma to show that the bijection (to be defined shortly) selected by the Duplicator induces
a partial isomorphism between G and H on the pebbled vertices.

We can now state our induction hypothesis: In each round r, there exists a bijection h : VG → VH
which is

(a) consistent with the pebbles in the restriction of p(r−1) to [k]\{i} (Recall, Pebble i is selected
by the Spoiler in Step 1.)

(b) If p(r)(j) = (aj , fj , h(aj , fj)) for j ∈ dom(p(r)), then there exists a walk W (r) in P , from
v to avoid({aj | j ∈ dom(p(r))}, such that

h(aj , fj) = (aj , f
′
j),

where f ′j(e) = fj(e) + occW (r)(e) mod 2 for every e ∈ Eaj . In other words, on the ver-
tices in VG pebbled by p(r), the bijection h is, by the previous Lemma, a partial isomorphism
from G to H .

If this holds, then the strategy for the Duplicator is selecting that bijection h in each round.

Verification of the induction hypothesis. We assume that the special vertex v1 in P has at least two
neighbours. Such a vertex exists since otherwise P consists of a single edge while we assume P to
be of treewidth at least two.

Base case. For the base case (r = 0) we define two walks: W1 = v1, v2 and W2 = v1, t with
v2 6= t and v2, t are neighhbours of v1. We define h(ai, f) = (ai, f

′) with f ′(e) = f(e) + occW1
(e)

mod 2 if ai 6= t, and h(t, f) = (t, f ′) with f ′(e) = f(e) + occW2
(e) mod 2.

The mapping h is a bijection from VG to VH . We note that it suffices to show that h is injective since
VG and VH contain the same number of vertices. Since h(ai, fi) 6= h(aj , fj) whenever ai 6= aj ,
we can focus on comparing h(ai, f) and h(ai, g) with f 6= g. This implies that f(e) 6= g(e) for
at least one edge e ∈ Nai . Clearly, this implies that f ′(e) = f(e) + occW (e) mod 2 6= g′(e) =
g(e) + occW (e) mod 2. In fact this, holds for any walk W and thus in particular for W1 and W2.
We further observe that h is consistent simply because no pebbles have been placed yet. For the same
reason we can take the walk W (0) to be either W1 or W2.

Inductive case. Assume that the induction hypothesis holds for round r and consider round r+ 1. Let
p(r) = (aj , fj , aj , f

′
j) for j ∈ dom(p(r)). By induction, there exists a bijection h′ : VG → VH such
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that h(aj , fj) = (aj , f
′
j) and furthermore, f ′j(e) = fj(e) + occW (r)(e) mod 2 for every e ∈ Naj ,

for some walk W (r) from v1 to t ∈ avoid({aj | j ∈ dom(p(r))}).

Assume that the Spoiler selects i ∈ [k] in Step 1 in round r + 1. We define the Duplicator’s bijection
h : VG → VH for round r + 1, as follows. Recall that t ∈ VP is the vertex in which the walk W (r)

ends.

• For all (a, f) ∈ VG such that a 6= t, we define h(a, f) = (a, f ′) where for each e ∈ Ea:

f ′(e) = f(e) + occW (r)(e) mod 2.

• For all (t, f) ∈ VG, we will extend W (r) with a walk W ′ so that it ends in a vertex t′
different from t. Suppose that M ∈M such that t ∈M . We want to find an M ′ ∈M such
that M ′ ∩ ({aj | j ∈ dom(p(r)), j 6= i} ∪ {t}) = ∅. We can then take t′ to be a vertex in
M ′ and since M and M ′ are both connected, and either have a vertex in common or an edge
between them, we can let W ′ be a walk from t to t′ entirely in M and M ′. Now, such an
M ′ exists since otherwise {aj | j ∈ dom(p(r)), j 6= i} ∪ {t} would be a hitting set forM
of size at most k. We know, however, that any hitting setM must be of size k + 1 because
of the treewidth k assumption for P . We now define the bijection as h(t, f) = (t, f ′) where
for each e ∈ Et:

f ′(e) = f(e) + occW (r),W ′(e) mod 2.

This concludes the definition of h : VG → VH . We need to verify a couple of things: (i) h is bijection;
(ii) h is consistent with all pebbles in p(r) except for the “unpebbled” one p(r)(i); and (iii) it induces
a partial isomorphism on pebbled vertices.

(i) h is a bijection. Since VG and VH are of the same size, it suffices to show that h is an
injection. Clearly, h(a1, f1) 6= h(a2, f2) whenever a1 6= a2. We can thus focus on h(a, f1)
and h(a, f2) with f1 6= f2. Then, f1 and f2 differ in at least one edge e ∈ Ea and for this
edge:

f ′1(e) = f1(e) + occW (e) mod 2 6= f2(e) + occW (e) mod 2 = f ′2(e).

for any walk W . In particular, this holds for both walks used in the definition of h: W (r),
used when a 6= t, and W (r),W ′ used when a = t. Hence, h is indeed a bijection.

(ii) h is consistent. For each j ∈ dom(p(r+1)) with j 6= i, let p(r+1) = (aj , fj , aj , f
′
j). Now,

by induction, W (r) ended in a vertex t distinct from any of these aj’s and thus none of these
aj’s are equal to t. This implies that h(aj , fj) = (aj , f

′′
j ) with f ′′j (e) = fj(e) + occW (r)(e)

mod 2. But this is precisely how p(r) placed its pebbles, by induction. Hence, f ′′j (e) = f ′j(e)
and thus h is consistent.

(iii) p(r+1) induces a partial isomorphism. After the Spoiler picked an element (ai, fi) ∈ VG,
we now know that p(r+1)(j) = (aj , fj , h(aj , fj)) for all j ∈ dom(p(r+1)). We recall that
h is defined in two possible ways, using two distinct walks: W (r), for vertices in VG not
involving t, or, otherwise using the walk W (r),W ′, for vertices in VG involving t.
Hence, when all aj’s for p(r+1) are distinct from t, then h(aj , fj) = (aj , f

′
j) with f ′j(e) =

fj(e) + occW (r)(e) mod 2 and we can simply take the new walk W (r+1) to be W (r).
Then, Lemma 2 implies that the mapping (aj , fj) → h(aj , fj), for j ∈ dom(p(r+1)) is a
partial isomorphism from G to H , as desired.
Otherwise, we know that aj 6= t for j 6= i but ai = t. That is, the Spoiler places the ith
pebble on a vertex of the form (t, f) in VG. We now have that h is defined in two ways
for the pebbled elements using the two distinct walks. We next show that W (r),W ′ can be
used for both types of pebbled elements in p(r+1), those of the form (aj , f) with aj 6= t and
(t, f). For the last type this is obvious since we defined h(t, f) in terms of W (r),W ′. For
the former type, we note that aj 6∈M and aj 6∈M ′ for j 6= i. If we take an edge e ∈ Naj ,
then occW r,W ′(e) = occW (r)(e) because W ′ lies entirely in M and M ′. As a consequence,
for (aj , fj) with j 6= i, for all e ∈ Nj :

f ′j(e) = fj(e) + occW (r)(e) mod 2
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= fj(e) + occW (r),W ′(e) mod 2.

Then, Lemma 2 implies that the mapping (aj , fj) → h(aj , fj), for j ∈ dom(p(r+1)) is
a partial isomorphism from G to H , because we can use the same walk W (r),W ′ for all
pebbled vertices.

B.4 Proof of Proposition 4

We show that no finite set F of patterns suffices for F-WL to be equivalent to k-WL, for k > 1,
in terms of expressive power. The proof is by contradiction. That is, suppose that there exists
a set F such that G ≡F -WL H ⇔ G ≡k-WL H for any two graphs G and H . In particular,
G ≡F -WL H ⇒ G ≡k-WL H and thus also G ≡F -WL H ⇒ G ≡2-WL H , since the 2-WL-test
is upper bounded by any k-WL-test for k > 2. We argue that no finite set F exists satisfying
G ≡F -WL H ⇒ G ≡2-WL H .

Let m denote the maximum number of vertices of any pattern in F .5 Furthermore, consider graphs
G and H , where G is the disjoint union of m+ 2 copies of the cycle Cm+1, and H is the union of
m+ 1 copies of the cycle Cm+2. Note that G and H have the same number of vertices.

We observe that any homomorphism from a pattern P r in F to Gv or Hw, for vertices v ∈ VG and
w ∈ VH , maps P r to either a copy of Cm+1 (for G) or a copy of Cm+2 (for H). Furthermore, any
such homomorphism maps P r in a subgraph of Cm+1 or Cm+2, consisting of at most m vertices.
There is, however, a unique (up to isomorphism) subgraph of m vertices in Cm+1 and Cm+2. Indeed,
such subgraphs will be a path of length m. This implies that hom(P r, Gv) = hom(P r, Hw) for any
v ∈ VG and w ∈ VH . Since the argument holds for any pattern P r in F , all vertices in G and H will
have the same homomorphism count for patterns in F . Furthermore, since both G and H are regular
graphs (each vertex has degree two), this implies that F-WL cannot distinguish between G and H .
This is formalised in the following lemma. We recall that a t-regular graph is a graph in which every
vertex has degree t.

Lemma 3. For any set F of patterns and any two t-regular (unlabelled) graphs G and H such
that hom(P r, Xx) = hom(P r, Y y) for P r ∈ F , X,Y ∈ {G,H}, x ∈ VX and y ∈ VY holds,
G ≡F -WL H .

Proof. The lemma is readily verified by induction on the number d of rounds of F-WL. We show a
stronger result in that χ(d)

F,X,x = χ
(d)
F,Y,y for any d, X,Y ∈ {G,H}, x ∈ VX and y ∈ VY , from which

G ≡F -WL H follows. By our Theorem 1, it suffices to show that hom(T r, Xx) = hom(T r, Y y) for
F -pattern trees of depth at most d. Let F = {P r1 , . . . , P r` }. For the base case, let T r be a join pattern
Fs for some s = (s1, . . . , s`) ∈ N`. Then,

hom(T r, Xx) =
∏̀
i=1

(hom(P ri , X
x))

si =
∏̀
i=1

(hom(P ri , Y
y))

si = hom(T r, Y y),

since hom(P ri , X
x) = hom(P ri , Y

y) for any P ri ∈ F . Then, for the inductive case, assume that
hom(Sr, Xx) = hom(Sr, Y y) for any F-pattern tree Sr of depth at most d − 1, X,Y ∈ {G,H},
x ∈ VX and y ∈ VY , and consider an F-pattern T r of depth d. Let Sc11 , . . . , S

cp
p be the F-pattern

trees of depth at most d− 1 rooted at the children c1, . . . , cp of r in the backbone of T r. As before,
let Fs the pattern joined at r in T r. Then,

hom(T r, Xx) = hom(Fs, Xx)

p∏
i=1

∑
x′∈NX(x)

hom(Scii , X
x′) = hom(Fs, Xx)

p∏
i=1

t · hom(Scii , X
x̃)

= hom(Fs, Y y)

p∏
i=1

t · hom(Scii , Y
ỹ) = hom(Fs, Y y)

p∏
i=1

∑
y′∈NY (y)

hom(Scii , Y
y′)

= hom(T r, Y y),

5Strictly speaking, we can use the diameter of any pattern in F instead, but it is easier to convey the proof
simply by taking number of vertices.
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where we used that NX(x) and NY (y) both consists of t vertices (regularity), by the induction
hypothesis all vertex have the same homomorphism counts for F-patterns trees of depth at most
d− 1, and where x̃ and ỹ are taken to be arbitrary vertices in NX(x) and NY (y), respectively.

Hence, since G and H are 2-regular and satisfy the conditions of the lemma, we may indeed infer that
G ≡F -WL H . We note, however, that G 6≡2-WL H . Indeed, from Dvorak [2010] and Dell et al. [2018]
we know that G ≡2-WL H implies that hom(P,G) = hom(P,H) for any graph P of treewidth at
most two. In particular, G ≡2-WL H implies that hom(C`, G) = hom(C`, H) for all cycles C`. We
now conclude by observing that hom(Cm+1, G) 6= hom(Cm+1, H) by construction. Recall that
G consists of m + 2 disjoint copies of Cm+1 and H consists of m + 1 copies of Cm+2. Consider
hom(Cm+1, G) and hom(Cm+1, H). We can write these as (m + 2)(m + 1)hom(Crm+1, C

v
m+1)

and (m + 1)(m + 2)hom(Crm+1, C
w
m+2) for some fixed vertices v and w and where all cycles are

now rooted. It now suffices to observe that all homomorphisms h from Crm+1 to Cwm+2 are such that
the image h(Crm+1) contain < m+ 1 vertices. And moreover, with any such h, we can associate a
unique h′ from Crm+1 to Cvm+1 (such that also h′(Crm+1) contains < m+ 1 vertices). Finally, we
note that there are two homomorphisms from Crm+1 to Cvm+1 which are surjections and thus cover
all m+ 1 vertices in Cvm+1. We may thus conclude that hom(Crm+1, C

w
m+2) < hom(Crm+1, C

v
m+1),

from which we can infer that hom(Cm+1, G) 6= hom(Cm+1, H), as desired. We have thus found two
graphs with cannot be distinguished by F-WL, but that can be distinguished by 2-WL, contradicting
our assumption that G ≡F -WL H ⇒ G ≡2-WL H .

C Proofs of Section 5

C.1 Proof of Proposition 5

We show that for any k > 3, {Cr3 , . . . , Crk}-WL is more expressive than {Cr3 , . . . , Crk−1}-WL.
More precisely, we construct two graphs G and H such that G and H cannot be distinguished by
{Cr3 , . . . , Crk−1}-WL, but they can be distinguished by {Cr3 , . . . , Crk}-WL.

The proof is analogous to the proof of Proposition 4. Indeed, it suffices to let G consist of k disjoint
copies of Ck+1 and H to consist of k + 1 disjoint copies of Ck. Then, as observed in the proof
of Proposition 4, G and H will be indistinguishable by {Cr3 , . . . , Crk−1}-WL simply because each
pattern has at most k− 1 vertices. Yet, by construction, hom(Ck, G) 6= hom(Ck, H) and thus G and
H are distinguishable (already by the initial labelling) by {Cr3 , . . . , Crk}-WL.

C.2 Proof of Proposition 6

Let P r = P r1 ?P
r
2 be a pattern that is the join of two smaller patterns. We show that for any any set F

of patterns, we have thatF∪{P r}-WL is upper bounded byF∪{P r1 , P r2 }-WL. That is, for every two
graphsG andH ,G ≡F∪{P r

1 ,P
r
2 }-WL H impliesG ≡F∪{P r}-WL H . By definition,G ≡F∪{P r

1 ,P
r
2 }-WL

H is equivalent to {{χ(d)
F∪{P r

1 ,P
r
2 },G,v

| v ∈ VG}} = {{χ(d)
F∪{P r

1 ,P
r
2 },H,w

| w ∈ VH}}. In other words,

with every v ∈ VG we can associate a unique w ∈ VH such that χ(d)
F∪{P r

1 ,P
r
2 },G,v

= χ
(d)
F∪{P r

1 ,P
r
2 },H,w

.

We show, by induction on d, that this implies that χ(d)
F∪{P r},G,v = χ

(d)
F∪{P r},H,w. This suffices to

conclude that {{χ(d)
F∪{P r},G,v | v ∈ VG}} = {{χ(d)

F∪{P r},H,w | w ∈ VH}} and thus G ≡F∪{P t}-WL H .

Base case. We show that {{χ(d)
F∪{P r

1 ,P
r
2 },G,v

| v ∈ VG}} = {{χ(d)
F∪{P r

1 ,P
r
2 },H,w

| w ∈ VH}} implies

that with every v ∈ VG we can associate a unique w ∈ VH satisfying χ(0)
F∪{P r},G,v = χ

(0)
F∪{P r},H,w.

Indeed, as already observed, {{χ(d)
F∪{P r

1 ,P
r
2 },G,v

| v ∈ VG}} = {{χ(d)
F∪{P r

1 ,P
r
2 },H,w

| w ∈ VH}}
implies that with every v ∈ VG we can associate a unique w ∈ VH such that χ(d)

F∪{P r
1 ,P

r
2 },G,v

=

χ
(d)
F∪{P r

1 ,P
r
2 },H,w

. This in turn implies that χ(0)
F∪{P r

1 ,P
r
2 },G,v

= χ
(0)
F∪{P r

1 ,P
r
2 },H,w

, which implies
that hom(P r1 , G

v) = hom(P r1 , H
w) and hom(P r2 , G

v) = hom(P r2 , H
w) and hom(Qr, Gv) =

hom(Qr, Hw) for every Qr ∈ F . As a consequence, from properties of the graph join operators,
since P r = P r1 ? P

r
2 :

hom(P r, Gv) = hom(P r1 , G
v) · hom(P r2 , G

v) = hom(P r1 , H
w) · hom(P r2 , H

w) = hom(P r, Hw),
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and thus also χ(0)
F∪{P r},G,v = χ

(0)
F∪{P r},H,w.

Inductive case. We assume that {{χ(d)
F∪{P r

1 ,P
r
2 },G,v

| v ∈ VG}} = {{χ(d)
F∪{P r

1 ,P
r
2 },H,w

| w ∈ VH}}
implies χ(e)

F∪{P r},G,v = χ
(e)
F∪{P r},H,w, and want to show that it also implies χ(e+1)

F∪{P r},G,v =

χ
(e+1)
F∪{P r},H,w. We again use the fact that we can associate with every v ∈ VG a unique ver-

tex w ∈ VH such that χ(d)
F∪{P r

1 ,P
r
2 },G,v

= χ
(d)
F∪{P r

1 ,P
r
2 },H,w

. In particular, this implies that

χ
(e)
F∪{P r

1 ,P
r
2 },G,v

= χ
(e)
F∪{P r

1 ,P
r
2 },H,w

and χ
(e+1)
F∪{P r

1 ,P
r
2 },G,v

= χ
(e+1)
F∪{P r

1 ,P
r
2 },H,w

. From the defini-

tion of the -WL-test, it must also be the case that the multisets {χ(e)
F∪{P r

1 ,P
r
2 },G,v′

| v′ ∈ NG(v)}
and {χ(e)

F∪{P r
1 ,P

r
2 },H,w′

| v′ ∈ NH(w)} must be equal as well, i.e., we can find a one-to-one corre-
sponence between neighbors of v in G and neighbors of w in H that have the same label. From
the induction hypothesis we then have that χ(e)

F∪{P r},G,v = χ
(e)
F∪{P r},H,w and also that the multisets

{χ(e)
F∪{P r},G,v′ | v

′ ∈ NG(v)} and {χ(e)
F∪{P r},H,w′ | v

′ ∈ NH(w)} are equal, which implies, by the

definition of the WL-test, that χ(e+1)
F∪{P r},G,v = χ

(e+1)
F∪{P r},H,w, as was to be shown.

C.3 Proof of Theorem 4

We show that F ∪ {Qr}-WL, where Qr is pattern whose core has treewidth k, is more expressive
than F-WL if every pattern P r ∈ F satisfies one of the following conditions: (i) P r has treewidth
< k; or (ii) P r does not map homomorphically to Qr.

Let c(Q)r to denote the (rooted) core of Q, in which the root of c(Q)r is any vertex which is the
image of the root of Qr in a homomorphism from Qr to c(Q)r. By assumption, c(Q)r has treewidth
k.

Clearly, F-WL is upper bounded by F ∪ {Qr}-WL. Thus, all we need for the proof is to find two
graphs that are indistinguishable by F-WL but are in fact distinguished by F ∪ {Qr}-WL.

Those two graphs are, in fact, the graphs G and H constructed for c(Q)r (of treewidth k) in the proof
of Theorem 3. From that proof, we know that:

(a) hom(c(Q), G) = 0 and hom(c(Q), H) 6= 0; and
(b) G ≡Ck H .

We note that (a) immediately implies that G and H can be distinguished by F ∪ {Qr}-WL. In fact,
they are distinguished in already by the initial labelling in round 0. We next show that G and H are
indistinguishable by F-WL.

Let us first present a small structural result that helps us deal with patterns in F satisfying the second
condition of the Theorem.

Lemma 4. If a rooted pattern P r does not map homomorphically to Qr, then hom(P,G) =
hom(P,H) = 0

Proof. We use the following property of graphs G and H , which can be directly observed from their
construction (and was already noted in Atserias et al. [2007] and Bova and Chen [2019]). Define
Gr and Hr by setting as their root any vertex (ar, f), for ar the root of c(Q)r. Then there is a
homomorphism from Gr to c(Q)r, and there is a homomorphism from Hr to c(Q)r.

Now, any homomorphism h from P r to G can be extended to a homomorphism from P r to Qr: we
compose h with the homomorphism mentioned above from G to c(Q)r, which by definition again
maps homomorphically to Qr. Since by definition we have that P r does not map to Qr, h cannot
exist. The proof for H is analogous.

Now, let F ′ be the set of patterns obtained by removing from F all patterns which do not map
homomorphically to Qr. By Lemma 4, we have that G and H are distinguished by the F-WL-test if
and only if they are distinguished by F ′-WL.
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But all patterns in F ′ must have treewidth less than k, and by (b) G and H are indistinguishable by
k-WL. Proposition 3 then implies that G and H are indistinguishable by F-WL, as desired.

D Connections to existing formalisms

We here provide more details of how F-MPNNs connect to MPNNs from the literature which also
augment the initial labelling.

Vertex degrees. We first consider so-called degree-aware MPNNs Geerts et al. [2021] in which
the message functions of the MPNNs may depend on the vertex degrees. The Graph Convolution
Networks (GCNs) Kipf and Welling [2017] are an example of such MPNNs. Degree-aware MPNNs
are known to be equivalent, in terms of expressive power, to standard MPNNs in which the initial
labelling is extended with vertex degrees Geerts et al. [2021]. Translated to our setting, we can simply
let F = { } since hom( , Gv) is equal to the degree of vertex v in G. When considering graphs
without an initial vertex labelling (or a uniform labelling which assigns every vertex the same label),
our characterisation (Theorem 1) implies G ≡(d)

-WL
H if and only if hom(T,G) = hom(T,H) for

every { }-pattern tree of depth at most d. This in turn is equivalent to hom(T,G) = hom(T,H)

for every (standard) tree of depth at most d + 1. Indeed, { }-pattern trees of depth at most d are
simply trees of depth d+ 1. Combining this with the characterisation of WL by Dvorak [2010] and
Dell et al. [2018], we thus have for unlabelled graphs that G ≡(d)

-WL
H if and only if G ≡(d+1)

WL H .

So, by considering F = { }-MPNNs one gains one round of computation compared to considering
standard MPNNs. To lift this to labeled graphs, instead of F = { } one has to include labeled
versions of the single edge pattern, in order to count the number of neighbours of a specific label for
each vertex. This is done, e.g., by Ishiguro et al. [2020], who use the WL labelling obtained after the
first round to augment the initial vertex labelling. This corresponds indeed by adding hom(T r, Gv) as
feature for every labeled tree of depth one. This results in that G ≡(d)

-WL
H if and only if G ≡(d+1)

WL H

for labelled graphs.

Walk counts. The Graph Feature Networks by Chen et al. [2019a] can be regarded as a generalisa-
tion of the previous approach. Instead of simply adding vertex degrees, the number of walks of certain
lengths emanating from vertices are added. Translated to our setting, this corresponds to considering
{L2, L3, . . . , L`}-MPNNs, where L` denotes a rooted path of length `. For unlabelled graphs, our
characterisation (Theorem 1) implies that G ≡(d)

L1,...,L`-WL H is upper bounded by G ≡(d+`)
WL H ,

simply because every {L2, L3, . . . , L`}-pattern tree of depth d is a standard tree of depth at most
d+ `.

Cycles. Li et al. [2019] extend MPNNs by varying the notion of neighbourhood over which is
aggregated. One particular instance corresponds to an aggregation of features, weighted by the
number of cycles of a certain length in each vertex (see discussion at the end of Section 4 in Li et al.
[2019]). Translated to our setting, this corresponds to considering {C`}-MPNNs where C` denotes
the cycle of length `. As mentioned in the main body of the paper, these extend MPNNs and result in
architectures bounded by 2-WL (Proposition 5). This is in line with Theorem 3 from Li et al. [2019]
stating that their framework strictly extends MPNNs and thus 1-WL.

Isomorphism counts. Another, albeit similar, approach to add structural information to the initial
labelling is taken in the paper Graph Substructure Networks by Bouritsas et al. [2020]. The idea there
is to extend the initial features with information about how often a vertex v appears in a subgraph of
G which is isomorphic to PMore precisely, Bouritsas et al. [2020] consider a connected unlabelled
graph P as pattern and partition its vertex set VP orbit-wise. That is, VP =

⊎oP
i=1 V

i
P where oP

denotes the number of orbits of P . Here, v, v′ ∈ V iP whenever there is an automorphism h in Aut(P )
mapping v to v′. Next, they consider all distinct subgraphs G1, . . . , Gk in G which are isomorphic to
P , denoted by P ∼= Gj for j ∈ [k]. We write P ∼=f Gj when P ∼= Gj using a specific isomorphism
f . Then for each orbit partition i ∈ [oP ] and vertex v ∈ V , they define:

iso(P,G, v, i) = |{Gj ∼= P | v ∈ VGj
, and there exists an f s.t. Gj ∼=f P and f(v) ∈ V iP , j ∈ [k]}|.
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That is, the number of subgraphs Gj in G that can be isomorphically mapped to P are counted,
provided that this can be done by an isomorphism which maps vertex v in Gj (and thus G) to one of
the vertices in the ith orbit partition V iP of the pattern. A similar notion is proposed for edges, which
we will not consider here. Similar to our extended features, the initial features of each vertex v is then
augmented with

(
iso(P,Gv, i) | P ∈ F , i ∈ [oP ]

)
for some set F of patterns. Standard MPNNs are

executed on these augmented initial features. We refer to Bouritsas et al. [2020] for more details.

We can view the above approach as an instance of our framework. Indeed, given a pattern P in F ,
for each orbit partition, we replace P by a different rooted version P ri , where ri is a vertex in V iP .
Which vertex in the orbit under consideration is selected as root is not important (because they are
equivalent by definition of orbit). We then see that the standard notion of subgraph isomorphism
counting directly translates to the quantity used in Bouritsas et al. [2020]:

sub(P ri , Gv) := number of subgraphs in G containing v, isomorphic to P ri = iso(P,G, v, i).

It thus remains to express sub(P ri , Gv) in terms of homomorphism counts. This, however, follows
from Curticapean et al. [2017] in which it is shown that iso(P ri , Gv) can be computed by a linear
combination of hom(Qri , Gv) where Qri ranges over all graphs on which P ri can be mapped by
means of a surjective homomorphism. For a given P ri , the finite set of such patterns is called the
spasm of P ri in Curticapean et al. [2017] and can be easily computed.

Proposition 2 now readily follows. Indeed, consider a P-GSN and replace each P ∈ P by its rooted
versions P ri , for i ∈ [oP ]. Let P+ be the resulting set of (rooted) patterns. Then, the results by
Curticapean et al. [2017] imply that sub(P ri , Gv) can be computed in terms of hom(Qr, Gv), where
Qr is a pattern in the spasm s(P+) of P+. As a consequence, the expressive power of P-GSNs is
bounded by the power of s(P+)-MPNNs (and thus also by the power of s(P+)-WL).

Conversely, given an F -MPNN one can, again using results by Curticapean et al. [2017], define a set
F? of patterns, such that the subgraph isomorphism counts of patterns in F? can be used to compute
the homomorphism counts of patterns in F . Here, the set F? consists of the extensions of patterns
in F . An extension of a graph is a supergraph over the same set of vertices. As a consequence,
F-MPNNs are upper bounded by F?-GSNs. This is all in agreement with Curticapean et al. [2017]
in which it is shown that homomorphism counts, subgraph isomorphism counts and other notions
of pattern counts are all interchangeable. Nevertheless, by using homomorphism counts one can
gracefully extend known results about WL and MPNNs, as we have shown in the paper, and add little
overhead.

We conclude this section be a sketch of the proof of Theorem 2. We already observed that given a
P-GSN we can view it as an MPNN using rooted graph patterns P+. The difference now lies in that
subgraph isomorphism counts rather than homomorphism counts are used. If we inspect, however, the
proof of Theorem 1, then one sees that the two most important properties of homomorphism counts
used are: (a) hom(P r ?Qr, Gv) = hom(P r, Gv)·hom(Qr, Gv); and (b) if we consider a P+-tree T r
of depth d, then hom(T r, Gv) decomposes in an expression using homomorphism counts of P+-trees
of depth d− 1. It is important to observe that these properties do not necessarily hold when replacing
homomorphism counts by subgraph isomorphism counts, however. Nevertheless, they do hold for the
revised notion of homomorphism defined in the main paper. Indeed, when considering shom(T r, Gv)
we treat the backbone tree of T r differently from the patterns joined at its vertices. More precisely,
we only count those mappings h : VT → VG such that h is a homomorphism on the backbone of T r,
whilst for the joined patterns at the backbone’s vertices, we require local isomorphisms. Moreover,
we require h(P r, Gu) to be isomorphic to P r for every copy of P r joined with a vertex t in the
backbone of T r. These conditions imply that the function shom satisfies properties (a) and (b) used
in the proof of Theorem 1 and replacing hom by shom in the proof suffices to show Theorem 2.

E Additional experimental information

E.1 Experimental setup

One of the crucial questions when studying the effect of adding structural information to the initial
vertex labels is whether these additional labels enhance the performance of graph neural networks. In
order to reduce the effect of specific implementation details of GNNs and choice of hyper-parameters,
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we start from the GNN implementations and choices made in the benchmark by Dwivedi et al. [2020]6.
and only change the initial vertex labels, while leaving the GNNs themselves unchanged. This ensures
that we only measure the effect of augmenting initial features with homomorphism counts. We will
use the GNNs from the benchmark, without extended features, as our baselines. For the same reasons,
we use datasets proposed in the benchmark for their ability to statistically separate the performance
of GNNs. All other parameters are taken as in Dwivedi et al. [2020] and we refer to that paper for
more details.

Selected GNNs Dwivedi et al. [2020] divide the benchmarked GNNs into two classes: the MPNNs
and the “theoretically designed” WL-GNNs. The first class is found to perform stronger and train
faster. Hence, we chose to include the five following MPNN models from the benchmark:

• Graph Attention Network (GAT) as described in Velickovic et al. [2018]
• Graph Convolutional Network (GCN) as described in Kipf and Welling [2017]
• GraphSage as described in Hamilton et al. [2017]
• Mixed Model Convolutional Networks (MoNet) as described in Monti et al. [2017]
• GatedGCN as described in Bresson and Laurent [2017].

For GatedGCN we used the version in which positional encoding Belkin and Niyogi [2003] is added
to the vertex features, as it is empirically shown to be the strongest performing version of this
model by for the selected datasets Dwivedi et al. [2020]. We denote this version by GatedGCNE,PE ,
referring to the presence of edge features and this positional encoding. Details, background and
a mathematical formalization of the message passing layers of these models can be found in the
supplementary material of Dwivedi et al. [2020].

As explained in the experimental section of the main paper, we enhance the vertex features with the
log-normalized counts of the chosen patterns in every vertex of every graph of every dataset. The
first layers of some models of Dwivedi et al. [2020] are adapted to take in this variation in input size.
All other layers where left identical to their original implementation as provided by Dwivedi et al.
[2020].

Hardware, compute and resources All models for ZINC, PATTERN and COLLAB were trained
on a GeForce GTX 1080 337 Ti GPU, for CLUSTER a Tesla V100-SXM3-32GB GPU was used.
Tables 6, 9, 12 and 15 report the training times for all combination of models and additional feature set.
A rough estimate of the CO2 emissions based on the total computing times of reported experiments
(2 074 hours GeForce GTX 1080, 372 hours Tesla V100-SXM3-32GB), the computing times of
not-included experiments (1 037 hours GeForce GTX 1080, 181 hours Tesla V100-SXM3-32GB),
the GPU types (GeForce GTX 1080, Tesla V100-SXM3-32GB) and the geographical location
(undisclosed to preserve anonymity) of our cluster results in a carbon emission of 135 kg CO2

equivalent. This estimation was conducted using the MachineLearning Impact calculator presented in
Lacoste et al. [2019].

E.2 Graph learning tasks

We here report the full results of our experimental evaluation for graph regression (Section E.2.1),
link prediction (Section E.2.2) and vertex classification (Section E.2.3) as considered in Dwivedi
et al. [2020]. More precisely, a full listing of the patterns and combinations used and the obtained
results for the test sets can be found in Tables 4, 7, 10 and 13. Average training time (in hours) and
the number of epochs are reported in Tables 6, 9, 12 and 15. Finally, the total number of model
parameters are reported in Tables 5, 8, 11 and 14. All averages and standard deviations are over 4
runs with different random seeds. The main take-aways from these results are included in the main
paper.

E.2.1 Graph regression with the ZINC dataset

Just as in Dwivedi et al. [2020] we use a subset (12K) of ZINC molecular graphs (250K) dataset
Irwin et al. [2012] to regress a molecular property known as the constrained solubility. For each
molecular graph, the vertex features are the types of heavy atoms and the edge features are the types

6The original implementations can be found on https://github.com/graphdeeplearning/benchmarking-gnns
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of bonds between them. The following are taken from Dwivedi et al. [2020]:
Splitting. ZINC has 10 000 train, 1 000 validation and 1 000 test graphs.
Training.7 For the learning rate strategy, an initial learning rate is set to 5× 10−5 , the reduce factor
is 0.5, and the stopping learning rate is 1× 10−6, the patience value is 25 and the maximal training
time is set to 12 hours.
Performance Measure The performance measure is the mean absolute error (MAE) between the
predicted and the ground truth constrained solubility for each molecular graph.
Number of layers Most experiments are performed with 16 MPNN layers, following the best
performers in the benchmark. We also report results using 4 MPNN layers.
Hidden feature size The hidden feature sizes are (for GAT, GCN, GraphSage, MoNet and GatedGCN
respectively) 144, 145, 108, 90 and 70.

Table 4: Full results of the mean absolute error (predicted constrained solubility vs. the ground truth)
for selected cycle combinations and GNNs on the ZINC data set. The top part of the table refers to
experiments using 16 layers, the bottom part to experiments using 4 layers. In addition, in the last
two rows of each part of the table we compare between homomorphism counts (hom) and subgraph
isomorphism counts (iso).

Pattern set F GAT GCN GraphSage MoNet GatedGCNE,PE
None 0,47±0,02 0,35±0,01 0,25±0,01 0,44±0,01 0,34±0,05
{C3} 0,45±0,01 0,36±0,01 0,25±0,00 0,44±0,00 0,30±0,01
{C4} 0,34±0,02 0,29±0,02 0,26±0,01 0,30±0,01 0,27±0,06
{C5} 0,44±0,02 0,34±0,02 0,23±0,01 0,42±0,01 0,27±0,03
{C6} 0,31±0,00 0,27±0,02 0,25±0,01 0,30±0,01 0,26±0,09
{C3, C4} 0,33±0,01 0,27±0,01 0,24±0,02 0,32±0,01 0,23±0,03
{C5, C6} 0,28±0,01 0,26±0,01 0,23±0,01 0,28±0,01 0,20±0,03
{C4, C5, C6} 0,24±0,00 0,21±0,00 0,20±0,00 0,25±0,01 0,16±0,02
{C3, C4, C5, C6} 0,23±0,00 0,21±0,00 0,20±0,01 0,26±0,02 0,18±0,02
{C3, . . . , C10} (hom) 0,22±0,01 0,20±0,00 0,19±0,00 0,2376±0,01 0,1352±0,01
{C3, . . . , C10} (iso) 0,24±0,01 0,22±0,01 0,16±0,01 0,2408±0,01 0,1357 ± 0,01

None 0,48±0,01 0,46±0,00 0,36±0,01 0,45±0,00 0,26±0,03
{C3, . . . , C10} (hom) 0,20±0,02 0,25±0,02 0,19±0,01 0,17±0,01 0,13±0,01
{C3, . . . , C10} (iso) 0,21±0,00 0,23±0,03 0,16±0,01 0,19±0,01 0,11±0,01

E.2.2 Link Prediction with the Collab dataset

Another set used in Dwivedi et al. [2020] is COLLAB, a link prediction dataset proposed by the
Open Graph Benchmark (OGB) Hu et al. [2020] corresponding to a collaboration network between
approximately 235K scientists, indexed by Microsoft Academic Graph. Vertices represent scientists
and edges denote collaborations between them. For vertex features, OGB provides 128-dimensional
vectors, obtained by averaging the word embeddings of a scientist’s papers. The year and number of
co-authored papers in a given year are concatenated to form edge features. The graph can also be
viewed as a dynamic multi-graph, since two vertices may have multiple temporal edges between if
they collaborate over multiple years. The following are taken from Dwivedi et al. [2020]:

Splitting. We use the real-life training, validation and test edge splits provided by OGB. Specifically,
they use collaborations until 2017 as training edges, those in 2018 as validation edges, and those in
2019 as test edges.
Training. All GNNs use the same learning rate strategy: an initial learning rate is set to 1× 10−3 ,
the reduce factor is 0.5, the patience value is 10, and the stopping learning rate is 1× 10−5 .
Performance Measure. We use the evaluator provided by OGB Hu et al. [2020], which aims to
measure a model’s ability to predict future collaboration relationships given past collaborations.
Specifically, they rank each true collaboration among a set of 100 000 randomly-sampled negative
collaborations, and count the ratio of positive edges that are ranked at K-place or above (Hits@K).
The value K = 50 as this gives the best value for statistically separating the performance of GNNs.

7Here and in the next tasks we are using the parameters used in the code accompanying Dwivedi et al. [2020].
In the paper, slightly different parameters are used.

31



Table 5: Total model parameters for selected cycle combinations and GNNs on the ZINC data set.
The top part of the table refers to experiments using 16 layers, the bottom part to experiments using 4
layers. In addition, in the last two rows of each part of the table we compare between homomorphism
counts (hom) and subgraph isomorphism counts (iso).

Pattern set F GAT GCN GraphSage MoNet GatedGCNE,PE
None 358 273 360 742 388 963 401 148 408 135
{C3} 358 417 360 887 389 071 401 238 408 205
{C4} 358 417 360 887 389 071 401 238 408 205
{C5} 358 417 360 887 389 071 401 238 408 205
{C6} 358 417 360 887 389 071 401 238 408 205
{C3, C4} 358 561 361 032 389 179 401 328 408 275
{C5, C6} 358 561 361 032 389 179 401 328 408 275
{C4, C5, C6} 358 705 361 177 389 287 401 418 408 345
{C3, C4, C5, C6} 358 849 361 322 389 395 401 508 408 415
{C3, . . . , C10} (hom) 359 425 361 902 389 827 401 868 408 695
{C3, . . . , C10} (iso) 359 425 361 902 389 827 401 868 408 695

None 102529 103222 105139 106092 106575
{C3, . . . , C10} (hom) 103681 104382 106003 106812 107135
{C3, . . . , C10} (iso) 103681 104382 106003 106812 107135

Table 6: Average training time in hours and number of epochs for selected cycle combinations and
GNNs on the ZINC data set. The top part of the table refers to experiments using 16 layers, the
bottom part to experiments using 4 layers. In addition, in the last two rows of each part of the table
we compare between homomorphism counts (hom) and subgraph isomorphism counts (iso).

Model: GAT GCN GraphSage MoNet GatedGCNE,PE
Pattern set F Time Epochs Time Epochs Time Epochs Time Epochs Time Epochs
None 2,40 377 10,99 463 2,46 420 1,53 345 12,08 136
{C3} 2,88 444 12,03 363 2,03 500 0,91 298 12,07 148
{C4} 2,30 351 11,36 324 2,31 396 1,70 382 12,06 139
{C5} 2,42 375 12,03 333 1,70 444 1,06 370 12,06 202
{C6} 2,40 369 9,98 421 2,58 446 1,25 288 12,08 136
{C3, C4} 2,98 461 12,03 332 2,56 458 1,41 321 12,09 132
{C5, C6} 2,76 422 12,04 319 2,67 464 1,53 356 12,06 137
{C4, C5, C6} 2,45 381 10,13 419 1,67 463 1,04 382 12,04 229
{C3, C4, C5, C6} 2,65 408 10,38 420 2,09 503 1,26 364 12,08 135
{C3, . . . , C10} (hom) 2,65 428 12,03 350 2,76 478 1,48 363 12,06 175
{C3, . . . , C10} (iso) 2,78 497 11,72 419 2,63 547 1,58 440 11,62 148

None 0,32 158 2,14 201 0,26 171 0,28 184 5,47 223
{C3, . . . , C10} (hom) 0,33 166 2,35 190 0,16 164 0,36 207 5,80 210
{C3, . . . , C10} (iso) 0,26 176 1,66 182 0,20 186 0,31 222 5,06 272

Number of layers 3 MPNN layers are used for every model.
Hidden feature size The hidden feature sizes are (for GAT, GCN, GraphSage, MoNet and GatedGCN
respectively) 57, 74, 38, 53 and 35.

E.2.3 Vertex classification with PATTERN and CLUSTER

Finally, also used in Dwivedi et al. [2020] are the PATTERN and CLUSTER graph data sets, generated
with the Stochastic Block Model (SBM) Abbe [2018], which is widely used to model communities in
social networks by modulating the intra- and extra-communities connections, thereby controlling
the difficulty of the task. A SBM is a random graph which assigns communities to each vertex as
follows: any two vertices are connected with probability p if they belong to the same community, or
they are connected with probability q if they belong to different communities (the value of q acts as
the noise level).
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Table 7: Full Results (Hits @50) for all selected pattern combinations and GNNs on the COLLAB
data set.

Pattern set F GAT GCN GraphSage MoNet GatedGCNE,PE
None 50,32±0,55 51,36±1,30 49,81±1,56 50,33±0,68 51,00±2,54
{K3} 52,87±0,87 53,57±0,89 50,18±1,38 51,10±0,38 51,57±0,68
{K4} 51,33±1,42 52,84±1,32 51,76±1,38 51,13±1,60 49,43±1,85
{K5} 52,41±0,89 54,60±1,01 50,94±1,30 51,39±1,23 50,31±1,59
{K3,K4} 52,68±1,82 53,49±1,35 50,88±1,73 50,97±0,68 51,36±0,92
{K3,K4,K5} 51,81±1,17 54,32±1,02 49,94±0,23 51,01±1,00 51,11±1,06

Table 8: Total number of model parameters for all selected pattern combinations and GNNs on the
COLLAB data set.

Pattern set F GAT GCN GraphSage MoNet GatedGCNE,PE
None 25 992 40 479 39 751 26 487 27 440
{K3} 26 049 40 553 39 804 26 525 27 475
{K4} 26 049 40 553 39 804 26 525 27 475
{K5} 26 049 40 553 39 804 26 525 27 475
{K3,K4} 26 106 40 627 39 857 26 563 27 510
{K3,K4,K5} 26 163 40 701 39 910 26 601 27 545

Table 9: Average training times and number of epochs for all selected pattern combinations and
GNNs on the COLLAB data set.

Model: GAT GCN MoNet GraphSage GatedGCNE,PE
Pattern set F Time #Epochs Time #Epochs Time #Epochs Time #Epochs Time #Epochs
None 0,81 167 0,85 141 1,62 190 12,05 115,67 2,22 167
{K3} 0,67 165 0,90 153 1,70 184 12,10 67,00 2,48 186
{K4} 1,06 188 0,95 160 2,16 188 12,04 113,50 1,26 188
{K5} 0,50 167 1,13 165 1,04 193 12,05 124,00 1,82 174
{K3,K4} 1,20 189 0,86 128 2,15 189 12,05 113,25 1,51 183
{K3,K4,K5} 0,44 149 0,90 134 0,98 186 12,05 124,00 1,84 177

For the PATTERN dataset, the goal of the vertex classification problem is the detection of a certain pat-
tern P embedded in a larger graph G. The graphs in G consist of 5 communities with sizes randomly
selected between [5, 35]. The parameters of the SBM for each community is p = 0.5, q = 0.35, and
the vertex features in G are generated using a uniform random distribution with a vocabulary of size
3, i.e., {0, 1, 2}. Randomly, 100 patterns P composed of 20 vertices with intra-probability pP = 0.5
and extra-probability qP = 0.5 are generated (i.e., 50% of vertices in P are connected to G). The
vertex features for P are also generated randomly using values in {0, 1, 2}. The graphs consist of 44-
188 vertices. The output vertex labels have value 1 if the vertex belongs to P and value 0 belongs toG.

For the CLUSTER dataset, the goal of the vertex classification is the detection of which cluster a
vertex belongs. Here, six SBM clusters are generated with sizes randomly selected between [5, 35]
and probabilities p = 0.55 and q = 0.25. The graphs consist of 40-190 vertices. Each vertex can
take an initial feature value in range {0, 1, 2, . . . , 6}. If the value is i then the vertex belongs to class
i− 1. If the value is 0, then the class of the vertex is unknown and need to be inferred. There is only
one labelled vertex that is randomly assigned to each community and most vertex features are set to
0. The output vertex labels are defined as the community/cluster class labels.

The following are taken from Dwivedi et al. [2020]:

Splitting The PATTERN dataset has 10 000 train, 2 000 validation and 2 000 test graphs. The
CLUSTER dataset has 10 000 train, 1 000 validation and 1 000 test graphs. We save the generated
splits and use the same sets in all models for fair comparison.
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Training For all GNNs, an initial learning rate is set to 1×10−3, the reduce factor is 0.5, the patience
value is 10, and the stopping learning rate is 1× 10−5 .
Performance measure The performance measure is the average vertex-level accuracy weighted with
respect to the class sizes.
Number of layers 16 MPNN layers are used for every model, following the best performers in the
benchmark. For the PATTERN dataset, we also report results using 4 MPNN layers.
Hidden feature size The hidden feature sizes are (for GAT, GCN, GraphSage, MoNet and GatedGCN
respectively) 136, 146, 108, 90 and 70.

Table 10: Full results of the weighted accuracy for selected pattern combinations and GNNs on the
CLUSTER data set.

Pattern set F GAT GCN MoNet GraphSage GatedGCNE,PE
None 70,86±0,06 70,64±0,39 71,15±0,33 72,25±0,52 74,28±0,15
{K3} 71,60±0,15 64,88±4,16 72,21±0,19 72,97±0,23 74,14±0,12
{K4} 71,40±0,24 60,64±2,93 72,14±0,19 72,57±0,19 74,16±0,24
{K5} 71,26±0,39 66,60±1,47 72,34±0,09 72,60±0,24 74,23±0,07
{K3,K4} 71,80±0,28 50,94±22,98 72,32±0,27 73,03±0,25 74,17±0,13
{K3,K4,K5} 71,63±0,26 63,03±3,72 72,32±0,36 72,65±0,13 74,03±0,19

Table 11: Total number of model parameters for all selected pattern combinations and GNNs on the
CLUSTER data set.

Pattern set F GAT GCN MoNet GraphSage GatedGCNE,PE
None 395 396 362 849 399 373 386 835 406 755
{K3} 395 396 362 849 399 373 386 835 406 755
{K4} 395 548 362 995 399 463 386 943 406 825
{K5} 395 700 363 141 399 553 387 051 406 895
{K3,K4} 395 700 363 141 399 553 387 051 406 895
{K3,K4,K5} 396 004 363 433 399 733 387 267 407 035

Table 12: Training times (in hours) and number of epochs for all selected pattern combinations and
GNNs on the CLUSTER data set.

Model: GAT GCN MoNet GraphSage GatedGCNE,PE
Pattern set F Time #Epochs Time #Epochs Time #Epochs Time #Epochs Time #Epochs
None 1,62 109 2,83 117 1,54 125 0,95 101 10,40 92
{K3} 1,52 107 2,67 85 1,72 145 1,08 102 11,01 89
{K4} 1,18 107 1,94 80 1,62 149 0,90 102 10,23 90
{K5} 1,23 106 2,30 84 1,68 143 0,92 99 10,68 91
{K3,K4} 1,53 102 1,97 82 1,89 153 0,94 99 10,80 90
{K3,K4,K5} 1,62 105 1,96 82 1,95 157 0,97 100 10,25 91
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Table 13: Full results of the weighted accuracy for selected pattern combinations and GNNs on the
PATTERN data set. The top part of the table refers to experiments using 16 layers, the bottom part to
experiments using 4 layers.

Pattern set F GAT GCN MoNet GraphSage GatedGCNE,PE
None 78,83±0,60 71,42±1,38 85,90±0,03 70,78±0,19 86,15±0,08
{K3} 84,34±0,09 61,54±2,20 86,59±0,02 84,75±0,11 85,02±0,20
{K4} 84,43±0,40 63,40±1,55 86,60±0,02 84,51±0,06 85,40±0,28
{K5} 83,47±0,11 64,18±3,88 86,57±0,02 83,73±0,10 85,63±0,22
{K3,K4} 85,44±0,24 81,29±2,82 86,58±0,02 85,85±0,13 85,80±0,20
{K3,K4,K5} 85,50±0,23 82,49±0,48 86,63±0,03 85,88±0,15 85,56±0,33

None 77,64±1,66 61,23±0,57 85,82±0,05 70,85±1,25 85,94±0,08
{K3,K4,K5} 86,54±0,07 83,89±0,81 86,63±0,03 86,50±0,05 85,98±0,11

Table 14: Total number of model parameters for selected pattern combinations and GNNs on the
PATTERN data set. The top part of the table refers to experiments using 16 layers, the bottom part to
experiments using 4 layers.

Pattern set F GAT GCN MoNet GraphSage GatedGCNE,PE
None 394 632 362 117 398 921 386 291 406 403
{K3} 394 784 362 263 399 011 386 399 406 473
{K4} 394 784 362 263 399 011 386 399 406 473
{K5} 394 784 362 263 399 011 386 399 406 473
{K3,K4} 394 936 362 409 399 101 386 507 406 543
{K3,K4,K5} 395 088 362 555 399 191 386 615 406 613

None 110088 101069 103865 102467 104843
{K3,K4,K5} 110544 101507 104135 102791 105053

Table 15: Training times (in hours) and number of epochs for selected pattern combinations and
GNNs on the PATTERN data set. The top part of the table refers to experiments using 16 layers, the
bottom part to experiments using 4 layers.

Model: GAT GCN MoNet GraphSage GatedGCNE,PE
Pattern set F Time Epochs Time Epochs Time Epochs Time Epochs Time Epochs
None 1,96 87 3,41 102 1,68 116 0,77 103 10,32 101
{K3} 0,97 97 2,58 80 1,42 107 0,69 105 9,12 95
{K4} 0,90 90 2,68 80 1,46 106 0,67 95 9,47 94
{K5} 0,89 95 2,36 80 1,26 100 0,58 98 9,14 99
{K3,K4} 2,11 91 3,62 98 1,68 108 0,86 97 9,50 87
{K3,K4,K5} 1,02 91 3,26 94 1,48 109 0,76 102 8,84 88

None 0,86 156 1,95 98 0,82 169 0,61 122 3,40 89
{K3,K4,K5} 0,57 102 1,78 97 0,44 92 0,66 105 2,80 89
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