
Appendix417

A Details for the Object Shape Inference Domain418

Prior VAE Training Details419

The prior used in this domain is a VAE trained on 2048-point PCs of ShapeNet “airplane” objects.420

As it is based on the architecture used in Daniel and Tamar [27], we refer the reader to their work421

for architectural details5. We train the VAE for 2000 iterations, augmenting the dataset with random422

rotations around the vertical (z) axis in the range of
[
−π

4 ,
π
4

]
. Both the encoder and decoder are423

trained with the Adam optimizer [35], with a learning rate of 0.0005 and a batch size of 64. The424

prior standard deviation is set to σz = 0.2, and the weighting parameters for the loss are set to425

βrec = 50, βKL = 1. The latent space dimension is 128.426

Grasping Simulator Implementation Details427

To simplify implementation, we use a hand-crafted geometric simulator to calculate contact points428

between a theoretical robot hand and object point clouds (PCs). We assume each finger is moved429

along a vector pointing at the origin (which is located inside the object PC), and mark the point in430

the PC furthest from the origin along this vector direction as the contact point. To simulate the width431

of the finger, we consider points within a certain radius around the vector for contact calculation.432

When grasping with k fingers, the observation o ∈ Rk×3 is the subset of contact points from the PC433

x.434

Tuning Experiment Details435

The prior p(x;θ0) is tuned for 2500 gradient steps, which takes approximately 25 seconds on a436

single Nvidia GTX 1080 Ti GPU. We resample a new batch of N = 256 samples from the updated437

model every K = 32 gradient steps, each taken on half of the batch due to memory constraints. We438

use the Adam optimizer with learning rate 0.0002. We calculate the optimization objective with a439

quantile value of q = 1
16 .440

CVAE Baseline Hyperparameters441

The CVAE baseline uses an architecture similar to the VAE prior model described above, with an442

additional encoder to encode the condition contact points to a 128 dimensional latent µprior,σprior.443

In addition to its usage in the KL divergence loss, the prior mean µprior is injected into the decoder444

in various layers. The CVAE baseline is mostly trained with the same hyperparameters as the VAE445

described above, with two differences: βKL = 1 and a learning rate of 0.0002.446

Out-of-Distribution Experiment Visuals447

Fig. 4 shows visual samples from the MACE-tuned prior and from the CVAE in the OOD experiment448

(with the observation constituting a condition out of the distribution the CVAE was trained on).449

Additional Model Samples450

In this section we display additional samples for all of the distributions discussed in Sec. 4.1. All451

visuals follow the same color scheme as in the main text, with samples shown in white and the grasp452

positions represented by orange cylinders.453

Fig. 5 shows samples from the pre-trained VAE prior. Figs. 6,7 display additional samples for the454

first (in-distribution) experiment, for the posterior tuned by MACE and the CVAE baseline respec-455

tively.456

5See their public code at https://github.com/taldatech/soft-intro-vae-pytorch; we plan to
release our code publicly at a later time.

12

https://github.com/taldatech/soft-intro-vae-pytorch

(a) Samples from the posterior (b) Samples from the CVAE

Figure 4: Samples from the posterior distribution tuned by MACE (left) and the CVAE baseline
(right) when using an observation that is an OOD condition for the CVAE – note the gripper finger
at the tail of the airplane. Results for MACE are similar to the in-distribution task, while the CVAE
is unable to generate meaningful samples.

Figure 5: Samples from the prior

Figs. 8,9 display additional samples for the second (OOD) experiment, for the posterior tuned by457

MACE and the CVAE respectively.458

B Details for the Inverse Kinematics Domain459

Architecture of the Prior Model460

As mentioned in Sec. 4.2, we train an autoregressive model to produce joint configurations condi-461

tioned on end-effector positions. We use 10M data points collected using the PyBullet simulator,462

and train the model end-to-end with the Adam optimizer in a supervised manner, using a maximum-463

likelihood objective over joint configurations.. Joint probabilities are represented by Gaussian mix-464

ture models with two components, each parameterized using a fully-connected NN with 5 layers of465

200 neurons, and Leaky ReLU activation functions.466

13

Figure 6: Samples from the posterior in the in-distribution experiment

Figure 7: Samples from the CVAE in the in-distribution experiment

14

Figure 8: Samples from the posterior in the OOD experiment

Figure 9: Samples from the CVAE in the OOD experiment

15

Figure 10: Samples from the prior overlayed with the box obstacle. Many of them collide with the
walls of the box.

Experiment Details467

PyBullet Experiments. The first two experiments described in Sec. 4.2 are conducted with the468

PyBullet physics simulation environment, with the wall and window obstacles. We tune the pre-469

trained prior for 1500 fine-tuning steps, which takes approximately 65 seconds on a single Nvidia470

GTX 1080 Ti GPU. We resample a new batch of N = 64 samples from the updated model every471

K = 4 gradient steps. We use the Adam optimizer with learning rate 0.00002. We calculate the472

optimization objective with a quantile value of q = 1
16 .473

MoveIt and IsaacGym Experiment. For the box environment experiment and comparison to474

MoveIt, we use the same prior model, but instead use the GPU-based IsaacGym simulation en-475

vironment to expedite scoring the samples. To calculate the results described in Table 2 of Sec. 4.2,476

we sample 20 batches of 4096 configurations each, and test them for collisions in IsaacGym. Ob-477

taining the scores, we select the best configurations and report the mean and standard deviation of478

their distances from the goal in the accuracy column. The same configurations are used as initial479

positions for the “MACE + MoveIt” method in the third column, with the time constituting the total480

duration of sampling, testing for collisions with IsaacGym and finding solutions with MoveIt. The481

middle column reports times for MoveIt with a standard initial position. As MoveIt explicitly solves482

an optimization problem for the IK, its accuracy is very high; however, in some cases it takes much483

longer to find valid solutions.484

Tuning Experiment for the Box Domain. In addition to the timing experiment, we conduct a485

tuning experiment with MACE on the box domain using IsaacGym. The experimental procedure is486

similar to the PyBullet experiments. We tune the model for 500 tuning steps, taking approximately487

10 seconds on a single Nvidia GTX 1080 Ti GPU with the faster IsaacGym simulator. We resample488

a batch of N = 4096 configurations every K = 4 gradient steps, and use a quantile of q = 1
128 .489

Fine-tuning is conducted using the Adam optimizer, with a learning rate of 0.0001. Samples from490

the prior can be found in Fig. 10, while samples from the tuned model can be seen in Fig. 11.491

Additional Model Samples for the PyBullet Experiments492

In this section, we provide additional samples for the distributions described in Sec. 4.2. Fig. 12 and493

Fig. 14 provide samples from the prior model, trained with no obstacles present in the workspace.494

This is the same distribution in both sets of samples, overlayed with different objects to show that495

many configurations collide with each of them.496

Fig. 13 shows samples from the posterior tuned with MACE in the presence of the wall obstacle.497

Fig. 15 shows samples from the posterior tuned with MACE and the window obstacle.498

16

Figure 11: Samples from the posterior tuned with MACE to match the box obstacle.

Figure 12: Samples from the prior overlayed with the wall obstacle.

Figure 13: Samples from the posterior tuned to match observations of the wall obstacle.

17

Figure 14: Samples from the prior overlayed with the window obstacle.

Figure 15: Samples from the posterior tuned to match observations of the window obstacle.

C The the Point Cloud Completion Domain499

PC completion is an important component of manipulation pipelines, which allows robots to reason500

about their environment when partial information is available from sources such as depth sensors501

[36, 37]. Previous work typically focuses on scenarios in which a model can be faithfully recovered502

given the partial PC, i.e., when the dataset is small or the partial information is indicative of the503

object [38, 39, 40]. Instead, we consider a case where the posterior can be extremely multi-modal,504

and must therefore model a highly diverse distribution.505

Given a partial PC as the observation o, we infer a posterior distribution over possible full PCs x.506

We include this domain as a proof-of-concept, and present qualitative results on a relatively simple507

dataset.508

Dataset. We use a dataset of 10K symmetrical 3D boxes generated with random edge lengths,509

placed on the xy plane and centered around the z axis. Each PC consists of 2048 points, uniformly510

sampled on the box faces.511

Model. We use a the same VAE architecture described in Sec. 4.1. The VAE is trained for 2000512

iterations with training samples augmented by random rotation around the vertical (z) axis in the513

range of [−π, π]. Both the encoder and decoder are trained with the Adam optimizer [35], with a514

learning rate of 0.0002 and a batch size of 64. The prior standard deviation is set to σz = 1, and515

the weighting parameters for the loss are set to βrec = 1, βKL = 0.1. The latent space dimension is516

128.517

18

(a) Samples from the prior (b) Samples from the posterior

Figure 16: Tuning for the PC completion domain. Samples from the prior and posterior models are
shown in white. Partial PC observation o is overlayed over all samples in orange. While the prior
model is extremely diverse and exhibits many different box sizes and rotations, the posterior tuned
with MACE converges to samples which more closely match the evidence, while still producing a
plausible distribution of objects.

Simulator. We require a simulator that can produce partial PCs given a full PC model. For this518

simple dataset, we obtain partial PCs by applying a random cut to each box, using a randomly519

sampled hyperplane. Note that this shape of the partial PC can fit a variety of different boxes,520

leading to a diverse posterior.521

Score function. To measure similarity between PCs, S(o′,o) is calculated using the Chamfer dis-522

tance between PCs o′ and o. As suggested by Chen et al. [37], we find that calculating the distance523

to the top k > 1 nearest points produces better results than k = 1, and therefore use k = 5 when cal-524

culating the score function. Considering PCs x and x′ with points labeled as {pi}Ni=1 and {p′i}Mi=1525

respectively, the original Chamfer distance is given by:526

CD =

N∑
i=1

min
p′
i∈x′
||p′i − pi||22 +

M∑
i=1

min
pi∈x
||pi − p′i||22.

The k-wise Chamfer distance replaces the min operation with a selection of the top-k nearest neigh-527

bors, denoted by the sets x(k) and x′(k):528

CDk =
1

k

N∑
i=1

∑
p′
i∈x′(k)

||p′i − pi||22 +
1

k

M∑
i=1

∑
pi∈x(k)

||pi − p′i||22

To obtain scores in [0, 1] with 1 being the maximum score, we set S(o′,o) = exp(−τCDk(o
′,o)),529

where τ is a temperature parameter, set to τ = 0.1 in our experiments.530

Point Cloud Completion: Results531

We use MACE-VAE (see Sec. 3.2.1) to tune the prior distribution parameters of the VAE latent space532

for 4000 fine-tuning steps, which take approximately 40 seconds on a single Nvidia GTX 1080 Ti533

GPU. We resample a new batch of N = 256 samples from the updated model every K = 128534

gradient steps, each taken on a batch of half of the samples. We use the Adam optimizer with535

learning rate 0.001. We calculate the optimization objective with a quantile value of q = 1
32 . Fig. 16a536

shows samples from the prior distribution p(x;θ0) overlayed with the partial PC observation o,537

while fig. 16b shows samples from the posterior model P (x;θT) tuned with MACE. We observe538

that MACE can produce diverse completions of the partial PC. Additional samples can be found in539

Figures 17,18.540

Additional Model Samples541

Fig. 17 shows samples from the pre-trained VAE prior. Fig. 18 displays additional samples for the542

posterior tuned by MACE.543

19

Figure 17: Samples from the prior

Figure 18: Samples from the posterior

20

	Details for the Object Shape Inference Domain
	Details for the Inverse Kinematics Domain
	The the Point Cloud Completion Domain

