
A Appendix

A.1 Training Hyperparameters

DNNs Can Learn Useful Features From Unlearnable Datasets In Section 4.2, we train a number
of ResNet-18 (RN-18) [8] models on different unlearnable datasets with cross-entropy loss for 60
epochs using a batch size of 128. We save checkpoints at every epoch of training. For our optimizer,
we use SGD with momentum of 0.9 and weight decay of 5⇥ 10�4. We use an initial learning rate of
0.1 which decays using a cosine annealing schedule.

For training a new classification layer on feature extractor checkpoints, we use 5, 000 random
clean images from the original training set data. Note that 5, 000 images is 10% of CIFAR-10 and
CIFAR-100, but 3.9% of Imagenet subset, etc. Following [12], using the feature extractor, we extract
embeddings from this clean subset of data and preprocess the embeddings to have mean zero and
unit standard deviation. To retrain the last layer, we use the logistic regression implementation from
scikit-learn (sklearn.linear_model.LogisticRegression).

Linearly Separable Perturbations Are Not Necessary In Section 4.3, for every unlearnable
dataset, we first gather the set of perturbations by subtracting the clean image from the perturbed
image. We zero-one normalize the perturbations before training a linear layer using L-BFGS [15] for
500 steps using a learning rate of 0.5.

Orthogonal Projection for Learning From Datasets with Class-wise, Linear Perturbations In
Section 4.4, for CIFAR-10, we train the logistic regression model for 20 epochs using SGD with
an initial learning rate of 0.1, which decays by a factor of 10 on epochs 5 and 8 (at epochs which
are 0.5 and 0.75 through training). For CIFAR-100, we train the logistic regression model for 60
epochs due to the higher number of classes. After we orthogonally project the unlearnable data using
the optimized weights, we train networks using the hyperparameters from checkpoint-training of
Section 4.2.

A.2 Additional Section 4.2 Results: DNNs Can Learn Useful Features From Unlearnable
Datasets

A.2.1 More Model Architectures for Section 4.2

We consider three more model architectures: VGG-16 [29], GoogLeNet [30], and ViT [4]. Our ViT
uses a patch size of 4. For RN-18 and VGG-16, feature vectors are 512-dimensional. Feature vectors
for GoogleNet are 1024-dimensional. The ViT class token is 384-dimensional.

Table 4: Generalizable features can be learned from unlearnable datasets, using a variety
of network architectures. We report Max DFR Test Accuracy for each CIFAR-10 unlearnable
dataset. In gray, we indicate test accuracy improvement/deterioration over DFR on the corresponding
randomly initialized model architecture.

MODEL ARCHITECTURE
VGG-16 GOOGLENET VIT

CIFAR-10 TRAINING DATA

NONE 35.69 48.08 37.40

UNLEARNABLE EXAMPLES [10] 37.84 (+2.15) 41.08 (-7.00) 49.57 (+12.17)
ADVERSARIAL POISONING [7] 64.73 (+29.04) 71.70 (+23.62) 68.97 (+31.57)
AR (`2) [27] 36.98 (+1.29) 40.12 (-7.96) 60.53 (+23.13)
NTGA [37] 56.03 (+20.34) 61.24 (+13.16) 60.53 (+23.13)
ROBUST UNLEARNABLE [28] 39.13 (+3.44) 40.59 (-7.49) 49.10 (+11.70)
LSP [36] 40.86 (+5.17) 58.22 (+10.14) 50.95 (+13.55)
OPS+EM [35] 31.31 (-4.38) 38.57 (-9.51) 49.73 (+12.33)
� OPS [35] 39.63 (+3.94) 52.02 (+3.94) 56.04 (+18.64)
� UNLEARNABLE EXAMPLES [10] 30.47 (-5.22) 36.32 (-11.76) 44.90 (+7.50)
� REGIONS-4 [26] 43.29 (+7.60) 48.65 (+0.57) 52.60 (+15.20)
� RANDOM NOISE 72.08 (+36.39) 62.19 (+14.11) 55.58 (+18.18)

13



In Table 4, we find that across architectures, Adversarial Poisoning data is easiest to extract general-
izable features from. Surprisingly, ViT is most effective at learning generalizable features from all
unlearnable datasets, achieving more than 7% test accuracy improvement over a randomly initialized
ViT in all cases. For example, using only 5, 000 clean CIFAR-10 samples can be used to achieve
nearly 69% test accuracy, while using the same clean samples can only achieve 37.40% test accuracy
on a randomly initialized ViT. The GoogleNet architecture weights are seemingly more easily cor-
rupted during training; Max DFR Test Accuracy for Unlearnable Examples, AR, Robust Unlearnable,
and other datasets is much lower than test accuracy from a finetuned randomly initialized GoogleNet.
Interestingly, the randomly initialized GoogleNet feature extractor achieves the highest DFR test
accuracy.

A.2.2 More Datasets for Section 4.2

We consider three additional base datasets for four unlearnable dataset methods. We use an ImageNet
[25] subset of the first 100 classes, following [10]. The train split consists of 129, 395 images, while
the test split consists of 5, 000 images.

Our SVHN [18], CIFAR100 [13], and Adversarial Poisoning ImageNet subset datasets contain pertur-
bations of size k�k1  8

255 . Unlearnable Examples ImageNet [25] subset contains perturbations of
size k�k1  16

255 , following their open-source repository. We generate the Adversarial Poisoning [7]
ImageNet subset from published source code using 1 PGD restart, as opposed to 8 due to computation
time. Our SVHN and CIFAR-100 Adversarial Poisoning datasets use 3 PGD restarts. On clean
SVHN, CIFAR-100, and ImageNet subset, RN-18 achieves 96.33%, 74.14%, 78.92% test accuracy
respectively.

Table 5: Generalizable features can be learned from unlearnable datasets of different underlying
distributions. We report Max DFR Test Accuracy for each unlearnable dataset. RN-18 checkpoints
are trained on SVHN, CIFAR-100, and ImageNet subset unlearnable datasets, and DFR is performed
using 5, 000 clean samples from the corresponding base dataset.

FINETUNE DATA
SVHN CIFAR-100 IMAGENET

TRAINING DATA

NONE 32.05 8.13 3.64

UNLEARNABLE EXAMPLES [10] 26.76 16.12 8.44
ADVERSARIAL POISONING [7] 87.06 44.37 20.22
� UNLEARNABLE EXAMPLES [10] 22.48 10.32 7.88
� RANDOM NOISE 27.35 47.41 23.30

In Table 5, we again show that Adversarial Poisoning unlearnable data can be easily used to extract
generalizable features regardless of the underlying distribution (base dataset of SVHN, CIFAR-100,
or ImageNet). For SVHN, Adversarial Poisoning is the only dataset from which the trained feature
extractor performs better in Max DFR Test Accuracy (87.06%) over a randomly initialized RN-18
(32.05%). As mentioned in Section 4.2, error-minimizing perturbations of Unlearnable Examples
tend to be most effective at corrupting weights during training, regardless of underlying finetune data.

A.2.3 Additional Plots for Section 4.2

We add results to the experiment from Figure 2. In Figure 4, unlearnable datasets sufficiently corrupt
RN-18 weights during training and prevent DFR from recovering test accuracy.
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Figure 4: Representations learned by other poisons we consider are no better than random.
(a-b) Reweighting deep features from sample-wise error minimizing noises provide no benefit over
random features. DFR on a randomly initialized RN-18 only achieves 40% test accuracy (dotted line).
(c-f) Other class-wise perturbations are very effective at corrupting network representations during
training – so effective that even DFR is unable to recover test accuracy from random features (red
dotted line).

A.3 Additional Results for Section 4.3: Linearly Separable Perturbations Are Not Necessary

A.3.1 Other Background

A related unlearnable dataset introduces entangled features (EntF) [34] which is motivated by the
separability of recent poisoning perturbations. However, separability is qualitatively evaluated
through t-SNE visualizations, which is different from the separability experiment we perform. More
specifically, t-SNE cluster separability should not be equated to the linear separability we measure
in Table 2 because it is possible to have linearly separable data that, when plotted using t-SNE,
appears not separable. In other words, the EntF poison from [34] could still contain linearly separable
perturbations.

A.3.2 Evaluating Linear Separability of Poison Images

In Section 4.3, we document the linear separability of perturbations from various poisons, as in
[36]. Poison images, on the other hand, behave slightly differently. In Table 6, we report logistic
regression train accuracy on various CIFAR-10 poison images. We find that Unlearnable Examples,
LSP, OPS+EM, and class-wise poisons have linearly separable poison images, but the remaining
poisons we consider do not.

A.4 Additional Section 4.4 Results: Orthogonal Projection for Learning From Datasets with
Class-wise, Linear Perturbations

A.4.1 ViT for Section 4.4

To evaluate recovered data from Orthogonal Projection, we consider an additional architecture: ViT.
In Table 7, we train ViT with patch size of 4 on CIFAR-10 unlearnable datasets using different
attacks. Our Orthogonal Projection method is competitive with adversarial training for all class-wise
perturbed unlearnable datasets and most sample-wise perturbed datasets. Orthogonal Projection is
the best performing method for OPS+EM and OPS (ICLR 2023). Note that OPS+EM and OPS are
most difficult for adversarial training.
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Table 6: NTGA contains the least linearly separable images, while AR(`2) images are most com-
parable to the clean distribution. Other unlearnable datasets become more linearly separable.
We train a linear logistic regression model on poison images and report train accuracy. High train
accuracy indicates linear separability of poison images. Mean and one standard deviation computed
from 10 independent runs.

TRAINING DATA TRAIN ACCURACY

CLEAN 53.94 ± 0.02

UNLEARNABLE EXAMPLES [10] 100.00 ± 0.00
ADVERSARIAL POISONING [7] 62.40 ± 0.01
AR (`2) [27] 53.97 ± 0.02
NTGA [37] 31.48 ± 0.02
ROBUST UNLEARNABLE [28] 77.21 ± 0.01
LSP [36] 100.00 ± 0.00
OPS+EM [35] 100.00 ± 0.00
� OPS [35] 100.00 ± 0.00
� UNLEARNABLE EXAMPLES [10] 100.00 ± 0.00
� REGIONS-4 [26] 100.00 ± 0.00
� RANDOM NOISE 100.00 ± 0.00

Table 7: Orthogonal Projection can make class-wise unlearnable data learnable for ViT. Es-
pecially for unlearnable datasets with class-wise, linearly separable perturbations, our Orthogonal
Projection attack is competitive with `1 Adversarial Training at a fraction of the computational cost.

ATTACK
CIFAR-10 TRAINING DATA NONE ADV TRAINING ORTHO PROJ (OURS)

CLEAN 84.99 76.38 74.14

UNLEARNABLE EXAMPLES [10] 25.39 75.44 60.15
ADVERSARIAL POISONING [7] 31.33 75.15 41.49
AR (`2) [27] 17.13 75.12 35.11
NTGA [37] 32.67 71.95 66.19
ROBUST UNLEARNABLE [28] 28.24 78.03 37.34
LSP [36] 29.40 75.45 74.77
OPS+EM [35] 20.73 11.79 51.94
� OPS [35] 21.58 10.17 72.80
� UNLEARNABLE EXAMPLES [10] 12.19 76.35 76.01
� REGIONS-4 [26] 15.00 75.96 67.20
� RANDOM NOISE 29.66 76.23 73.05

A.4.2 CIFAR-100 Dataset for Section 4.4

We consider an additional dataset, CIFAR-100, to evaluate Orthogonal Projection. We train a RN-18
on four unlearnable dataset methods. During the first step of Orthogonal Projection, we train the
logistic regression model for 60 epochs using SGD with an initial learning rate of 0.1, which decays
by a factor of 10 on epochs 30 and 45.

Table 8: Orthogonal Projection is competitive on CIFAR-100 class-wise unlearnable data.

ATTACK
CIFAR-100 TRAINING DATA NONE ADV TRAINING ORTHO PROJ (OURS)

CLEAN 74.14 59.23 26.78

UNLEARNABLE EXAMPLES [10] 8.11 58.29 28.44
ADVERSARIAL POISONING [7] 5.93 57.60 25.24
� UNLEARNABLE EXAMPLES [10] 1.72 60.31 41.83
� RANDOM NOISE 1.30 58.83 51.23
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In Table 8, we find that Orthogonal Projection performs better on class-wise unlearnable data than
sample-wise perturbed data, as expected. At approximately the cost of standard training (Attack:
None), Orthogonal Projection achives gains of more than 20% test accuracy for sample-wise perturbed
data and more than 40% test accuracy for class-wise perturbed data.

A.4.3 Additional Intuition for Orthogonal Projection

Assume CIFAR-10 images of shape (3, 32, 32). Each column i of W (optimized in Alg 1, Lines 1-4)
is a 3072-dimensional vector that represents the most predictive image feature for class i. This step
serves as recovery of the perturbation. After the QR decomposition of W , Q consists of orthonormal
columns that form a basis for the column space of W . When we say Orthogonal Projection “ensures
that the dot product of a row of X with every column of Q is zero,” (i.e., Xr · Q = 0) this means
that every recovered image vector does not contain any linearly separable component (i.e., does not
contain any column of Q as a component). Alg. 1, Line 6 ensures image vectors and columns of Q are
orthogonal and so the dot product is 0. The “recovered” data thus has 10 dimensions (approximations
of the 10 perturbations) removed.

A.4.4 Subtracting a Class-wise Image

Given that the goal of Orthogonal Projection is to extract perturbations from poison images, it is
reasonable to consider visualizing the average image of a class for class-wise poisons like LSP and
OPS. In Figure 5, we see that class-wise average images somewhat reveal class-wise perturbations,
but the results are not clear enough to be useful. In contrast, class-wise patters and clearly present in
learned weights from logistic regression.

Figure 5: Average class images display class-wise perturbations, but not as clearly as learned
weights from logistic regression. We compare the average image of a class (Left) and learned
weights of a logistic regression classifier (Right) trained on image pixels (the first step of Orthogonal
Projection method) to for LSP and OPS Poisons. While average image of a class does reveal the
class-wise perturbation (block pattern for LSP and one highlighted pixel for OPS), the result is blurry
and contains other semantic image features. Learned weights from Orthogonal Projection properly
isolate the perturbation.
For training models on class-wise perturbed data, one might consider subtracting the class-wise
average image from each class. However, simply subtracting this average class image from each
image does not remove the poisoning effect. Additionally, because we do not know the true class
at inference time, we cannot subtract the class image, resulting in a distribution mismatch between
train and test sets. This trivial method of subtracting average class images is compared to Orthogonal
Projection in Table 9.

A.4.5 Visualizing Additional Logistic Regression Weights

We visualize additional linear model weights (from the first step of Orthogonal Projection) for
sample-wise perturbed unlearnable datasets in Figure 6, and for class-wise perturbed unlearnable
datasets in Figure 7. We find that for Adversarial Poisoning, AR, and Robust Unlearnable the linear
model learns features comparable to when trained on clean data. We posit that because the diversity
of perturbations in these datasets is higher, the linear model struggles to find predictive features to
project away. In contrast, for class-wise perturbed data, Figure 7, demonstrates that the linear model
can recover features that resemble the original class-wise perturbation.
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Table 9: Subtracting the average class image from training images is not effective. For LSP and
OPS, datasets with class-wise perturbations, our Orthogonal Projection attack improves CIFAR-10
test accuracy over simply subtracting the average class image at training time.

ATTACK
TRAINING DATA CLASS-AVG SUBTRACT ORTHO PROJ (OURS)

LSP [36] 13.05 87.99
� OPS [35] 12.62 87.94

Figure 6: Learned Weights from first step of Orthogonal Projection on sample-wise perturbed
CIFAR-10 unlearnable datasets. We visualize learned weights (W in Algorithm 1) after training
a linear model on unlearnable datasets. Learned weights from Adversarial Poisoning, AR, and
Robust Unlearnable resemble the learned weights from clean data (See Figure 3). In our Orthogonal
Projection attack, we project each perturbed image to be orthogonal to each of these learned weights
(Algorithm 1, Line 6).

A.5 Samples from Unlearnable Datasets

We visualize samples from sample-wise perturbed CIFAR-10 unlearnable datasets in Figure 8, and
from class-wise perturbed unlearnable datasets (prefixed by � throughout results) in Figure 9. NTGA
is omitted due to data ordering of the publicly available poison. We also visualize SVHN samples in
Figure 10 and CIFAR-100 in Figure 11.

A.6 Broader Impact Statement

Our findings test prevailing hypothesis about unlearnable datasets and our results have practical
implications for their use. Two of our three main conclusions relate to privacy vulnerabilities when
employing unlearnable datasets for data protection. In one experiment, we demonstrate useful
features can be learned from unlearnable data. In another, we demonstrate how one can effectively
remove a class-wise perturbation. Our findings highlight the need for extra caution when it comes to
using unlearnable datasets. By making this information available to the public, the capabilities and
vulnerabilities of unlearnable datasets can be better understood.
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Figure 7: Learned Weights from first step of Orthogonal Projection on class-wise perturbed
CIFAR-10 unlearnable datasets. We visualize learned weights (W in Algorithm 1) after training
a linear model on unlearnable datasets. Learned weights appear to recover the added class-wise
perturbation for all datasets. In our Orthogonal Projection attack, we project each perturbed image
to be orthogonal to each of these learned weights (Algorithm 1, Line 6).

Figure 8: Samples from CIFAR-10 unlearnable datasets. We visualize the first 10 images from
each sample-wise perturbed unlearnable dataset.
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Figure 9: Samples from CIFAR-10 unlearnable datasets. We visualize the first 10 images from
each class-wise perturbed unlearnable dataset.

Figure 10: Samples from SVHN unlearnable datasets.

Figure 11: Samples from CIFAR-100 unlearnable datasets.
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