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Abstract

Detecting an abrupt and persistent change in the
underlying distribution of online data streams is an
important problem in many applications. This pa-
per proposes a new robust score-based algorithm
called RSCUSUM, which can be applied to un-
normalized models and addresses the issue of un-
known post-change distributions. RSCUSUM re-
places the Kullback-Leibler divergence with the
Fisher divergence between pre- and post-change
distributions for computational efficiency in un-
normalized statistical models and introduces a no-
tion of the “least favorable” distribution for robust
change detection. The algorithm and its theoreti-
cal analysis are demonstrated through simulation
studies.

1 INTRODUCTION

In the problem of quickest change detection, the objective is
to detect an abrupt change in the statistical properties of an
observed stochastic process. This change in the distribution
has to be detected with the minimum possible delay, subject
to a constraint on the rate of false alarms. This problem has
applications in sensor networks, cyber-physical systems, bi-
ology, and neuroscience; see|Veeravalli and Banerjee|[2014],
Basseville et al.| [1993]], Poor and Hadjiliadis| [2008]], [Tar{
takovsky et al.[[2014].

When the pre- and post-change distribution of the data is
known, a typical optimal algorithm in the literature is a stop-
ping rule. A sequence of statistics is calculated using the
likelihood ratio of the observations, and a change is declared
when the sequence of statistics crosses a pre-designed thresh-
old. The threshold is chosen to meet a constraint on false
alarms; see Shiryaev|[1963]], Lorden! [1971], |Pollakl [1985]],
Moustakides|[[1986], |Lai|[[1998]], Tartakovsky and Veeravalli
[2005]). The three most important algorithms in the literature

are the Shiryaev algorithm (Shiryaev|[1963]], Tartakovsky|
and Veeravalli| [2005]]), the cumulative sum (CUSUM) al-
gorithm (Page|[[19535]], [Lorden| [1971]], Moustakides| [1986],
Lai|[1998]]), and the Shiryaev-Roberts algorithm (Roberts
[[1966]], Pollak| [[1985]]).

The main challenge in implementing a change detection
algorithm in practice is that the pre- and post-change distri-
butions are not precisely known. This challenge is amplified
when the data is high-dimensional. Specifically, in several
machine learning applications, the data models may not lend
themselves to explicit distributions. For example, energy-
based models (LeCun et al.| [2006]]) capture dependencies
between observed and latent variables based on their associ-
ated energy (an unnormalized probability), and score-based
deep generative models [Song et al.| [2020]] generate high-
quality images by learning the score function (the gradient of
the log density function). These models can be computation-
ally cumbersome to normalize themselves as probabilistic
density functions. Thus, optimal algorithms from the change
detection literature, which are likelihood ratio-based tests,
are computationally expensive to implement.

This issue is partially addressed in Wu et al.|[2023]] where
the authors have proposed the SCUSUM algorithm, a
Hyvirinen score-based (Hyvirinen| [2005]) modification
of the CUSUM algorithm for quickest change detection. It
is shown in|Wu et al.| [2023]] that the SCUSUM algorithm
is consistent and the authors also provide expressions for
the average detection delay and the mean time to a false
alarm. The Hyvirinen score is invariant to scale and hence
can be applied to unnormalized models. This makes the
SCUSUM algorithm highly efficient as compared to the
classical CUSUM algorithm for high-dimensional models.

The main drawback of the SCUSUM algorithm is that its
effectiveness is contingent on knowing the precise post-
change unnormalized model, i.e., knowing the post-change
model within a normalizing constant. In practice, due to
a limited amount of training data, the post-change model
can only be learned within an uncertainty class. To detect
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the change effectively, an algorithm must be robust against
these modeling uncertainties. The SCUSUM algorithm is
not robust in this sense. Specifically, if not carefully de-
signed, the SCUSUM algorithm can fail to detect several
(in fact, infinitely many) post-change scenarios.

In this paper, we propose a robust score-based variant of the
CUSUM algorithm for the quickest change detection. We
refer to our algorithm as the RSCUSUM algorithm. Under
the assumption that the post-change uncertainty class is con-
vex and compact, we show that the RSCUSUM algorithm
is robust, i.e., can consistently detect changes for every pos-
sible post-change model. This consistency is achieved by
designing the RSCUSUM algorithm using the least favor-
able distribution from the post-change class.

The problem of optimal robust quickest change detection is
studied in|Unnikrishnan et al.| [2011]]. In a minimax setting,
the optimal algorithm is the CUSUM algorithm designed
using the least favorable distribution. The robust CUSUM
test in|{Unnikrishnan et al.|[201 1] may suffer from two draw-
backs: 1) It is a likelihood ratio-based test and hence may
not be amenable to implementation in high-dimensional
models. 2) The notion of least favorable distribution is de-
fined using stochastic boundedness, which may be difficult
to verify for high-dimensional data.

In contrast with the work in [Unnikrishnan et al.|[2011]], we
define the notion of least favorable distribution using Fisher
divergence and provide a method to effectively identify the
least favorable distribution for the post-change model.

1.1 OUR CONTRIBUTIONS

We now summarize our contributions in this paper.

e We propose a new robust score-based quickest change
detection algorithm that can be applied to unnormalized
models, namely, statistical models whose density involves
an unknown normalizing constant. Specifically, we use the
Hyvirinen score (Hyvérinen| [2005]]) to propose a robust
score-based variant of the SCUSUM algorithm from Wu
et al.|[2023]], which we refer to as RSCUSUM. In this vari-
ant and its subsequent theory, the role of Kullback-Leibler
divergence in classical change detection is replaced with the
Fisher divergence between the pre-and post-change distribu-
tions. Please see Section 3

e Our developed RSCUSUM algorithm can address un-
known post-change models. Specifically, assuming that the
post-change law belongs to a known family of distributions
that is convex and compact, we identify a least favorable dis-
tribution that is closest in terms of Fisher divergence from
the pre-change family. We then show that the RSCUSUM
algorithm can consistently detect each post-change distribu-
tion from the family, and is robust in this sense. Please see
Section Ml

e We provide an effective method to identify the least fa-
vorable post-change distribution in a post-change family.
This is in contrast to the setup in|Unnikrishnan et al.|[2011]]
where a stochastic boundedness characterization makes it
harder to identify the least favorable distribution. Please see
Section

e From a theoretical perspective, unlike the CUSUM al-
gorithm that leverages the fact that the likelihood ratios
form a martingale under the pre-change model [Lai| [1998]],
Woodroofe| [[1982], the RSCUSUM algorithm is a score-
based algorithm where cumulative scores do not enjoy a
standard martingale characterization. Our analysis of the
delay and false alarm analysis for RSCUSUM is based on
new analysis techniques. Pleas see Section [4]

o We demonstrate the effectiveness of the RSCUSUM al-
gorithm through simulation studies on Gaussian and Gauss-
Bernoulli Restricted Boltzmann Machine (RBM) models.
Please see Section

2 PROBLEM FORMULATION

Let {Xn}n21 denote a sequence of independent random
variables defined on the probability space ({2, F, P,). Let
Fn be the o—algebra generated by random variables
X1, Xa, ..., Xy, and let F = o(Up>1F,) be the
o —algebra generated by the union of sub-c-algebras. Under
P,, Xy, Xo, ..., X,_1 areii.d. according to a density
Poo and X, X, 41, ... arei.i.d. according to a density p;.
We think of v as the change point, po, as the pre-change
density, and p; as the post-change density. We use E,, and
Var, to denote the expectation and the variance associated
with the measure P,, respectively. Thus, v is seen as an un-
known constant and we have an entire family {P, }1<,<o0
of change-point models, one for each possible change point.
We use P, to denote the measure under which there is no
change, with [E, denoting the corresponding expectation.

A change detection algorithm is a stopping time 7" with
respect to the data stream {X, },,>1:

{T <n}eF,.

If T' > v, we have made a delayed detection; otherwise, a
false alarm has happened. Our goal is to find a stopping time
T to optimize the trade-off between well-defined metrics on
delay and false alarm. We consider two minimax problem
formulations to find the best stopping rule.

To measure the detection performance of a stopping rule,
we use the following minimax metric (Lorden|[[1971])), the
worst-case averaged detection delay (WADD):

Laaon(T) £ supesssupE, (T — v + 1)*|F,],
v>1

A .
where (y)* = max(y,0) for any y € R. Here esssup is
the essential supremum, i.e., the supremum outside a set



of measure zero. We also consider the version of minimax
metric introduced in |Pollak! [1985]], the worst conditional
averaged detection delay (CADD):

ECZ—\DD(T) é sup EV [T — Z/|T 2 l/].
v>1
For false alarms, we consider the average running length
(ARL), which is defined as the mean time to false alarm:

ARL 2 E[T].

We now formulate a robust quickest change detection prob-
lem; see|Unnikrishnan et al.|[2011]]. We assume that pre- and
post-change distributions are not precisely known. However,
each is known within an uncertainty class:

Py € o
Plegl.

For simplicity, in this paper, we will assume that the pre-
change class is a singleton:

goo = {Poo}

Our proposed method can also be extended to the case of
composite G,. The objective is to find a stopping rule to
solve the following problem:

H%in sup ‘CWADD (T) Eoo [T} Z e (1)

PGy

subject to

where ~ is a constraint on the ARL. The delay Lyapp in
the above problem is a function of the true post-change law
P; and should be designated as ,C&DD. We will, however,
suppress this notation and simply refer to EVJ;&DD by Lyapp-
Thus, the goal in this problem is to find a stopping time
T to minimize the worst-case detection delay, subject to a
constraint y on E. [T].

We are also interested in the version with the minimax metric
introduced in [Pollak|[[1985]]:
min sup Leapp(T) Exo[T] >7v. (2
T peG

subject to

If the post-change family is also singleton, G; = { P }, then
the above formulations are the classical minimax formu-
lations from the quickest change detection literature; see
Veeravalli and Banerjee|[2014], [Tartakovsky et al.|[2014],
Poor and Hadjiliadis|[2008]]. The optimal algorithm (exactly
optimal for (I) and asymptotically optimal for (Z)) is the
CUSUM algorithm given by

Tepsom = inf{n > 1: A(n) > 7},
where A(n) is defined using the recursion

A(0) =0,

.
A(n)é<A(n—1)+logm> Yn>1, 3)

which leads to a computationally convenient stopping
scheme. We recall that here p; is the post-change density
and po, is the pre-change density.

In [Lorden| [1971] and Lai [1998]], the asymptotic perfor-
mance of the CUSUM algorithm is also characterized.
Specifically, it is shown as v — oo,

log

Lyapp (TCUSUM) ~ [:CADD(TCUSUM) ~ W
KL 00

Here D, (P || P ) is the Kullback-Leibler divergence be-
tween the post-change distribution and pre-change distribu-
tion:

pi(z)
Poo (T)

Do (P Pro) = / p (@) log P gy,

and the notation g(c) ~ h(c) as ¢ — ¢ indicates that

i Ei; — 1as ¢ — ¢ for any two functions ¢ — g(c) and

¢+ h(c).

Since the CUSUM algorithm uses likelihood ratio to com-
pute its statistic, it is not amenable to implementation for
high-dimensional models (see Wu et al.|[2023]]), where often
the densities p; or po, are only known within a normalizing
constant.

3 ROBUST QUICKEST CHANGE
DETECTION FOR UNNORMALIZED
MODELS

In this section, we propose a robust score-based CUSUM
(RSCUSUM) algorithm. We first review the SCUCUM al-
gorithm proposed by [Wu et al.| [2023]] to address the issues
with likelihood ratio-based CUSUM for unnormalized mod-
els. The SCUSUM is defined based on Hyvérinen Score
(Hyvérinen| [2005])), which circumvents the computation
issue of the normalization constant. Similar to the schemes
of SCUSUM, we use the Hyvérinen score and propose a
robust variant that releases the knowledge of the true post-
change distribution, where we assume the true post-change
distribution is unknown but its uncertainty class is known.

Recall from Section E] that under the measure P, there is
no change, and the density for each random variable is p..
In the rest of the paper, we refer to the probability measure
of X7 under P, also by P.. Similarly, we refer to the law
of X7 under P; also by P;. The differences will always be
clear from the context.

We provide the definition of the Hyvérinen Score below.

Definition 3.1 (Hyvirinen Score). The Hyvirinen score of
any measure P (with density p) is a mapping (X, P) +—
Su(X, P) given by

1
Sa(X, P) 2 3 ||Vx logp(X)||3 + Ax log p(X)



whenever it can be well defined. Here, || - |2 denotes the
. 2 .
Euclidean norm, Vx and Ax = Z?:l % respectively

denote the gradient and the Laplacian operators acting on
X = (z1,,2q)".

By using the Hyvirinen Score in our algorithm, the role of
Kullback-Leibler divergence in the theoretical analysis of
the algorithm is replaced by the Fisher divergence.

Definition 3.2 (Fisher Divergence). The Fisher divergence
between two probability measures P to () (with densities p
and ¢) is defined by

De(PIQ) 2 Bxp [ Vx logp(X) — Vix loga(X)]3]

whenever the integral is well defined.

Clearly, Vx logp(X), Vx log ¢(X), and Ax log ¢(X) re-
main invariant if p and q are scaled by any positive constant
with respect to X. Hence, the Fisher divergence and the
Hyvirinen Score remain scale-variant concerning an arbi-
trary constant scaling of density functions.

The SCUSUM [Wu et al., 2023]] assumes that the true pre-
and post-chagne distributions P,, and P; are known. It
defines the detection score by

20(X) 2 A(Su(X, Po) — Su(X, P1)). @)

However, it is impractical, in particular for online data
streams, to know the true post-change distribution. We as-
sume that pre-change data is available. This data and a
model class G, are used to model/learn the pre-change dis-
tribution P,,. The post-change distribution P, is assumed
to be modeled by an unknown element of a parametric fam-
ily Gi = {Go : 6 € ©1}. We note that our framework
readily extends to the case of non-parametric families but
for simplicity, we present our results only in the parametric
case.

We define the notion of least favorable distribution. This
approach to defining the least favorable distribution for the
quickest change detection is novel.

Definition 3.3 (Least Favorable Distribution (LFD)). As-
sume that the family G; = {Gy : 6 € ©1} is convex and
compact. We define

@1 = arg min Dp(Gol|Poc). Q)

The existence of (1 is guaranteed by the compactness of G;
and the continuity of the Fisher divergence as a function of
its arguments. Thus, @)1 is the closest element of G; to Py,
in the Fisher-divergence sense.

Given the pre-change law P, (with density p,), we now
use ()1 and its density ¢; to design the RSCUSUM algo-
rithm. We define the instantaneous RSCUSUM score func-
tion X — z,(X) by

A2 (X) 2 A(S4(X, Po) = Sa(X,Q1), (6

where A > 0 is a pre-selected multiplier, Sx (X, Ps) and
Su(X, Q1) are respectively the Hyvirinen score functions
of P, and Q;. If the post-change model is precisely known,
then the @); in the above equation will be replaced by
the known post-change law and RSCUSUM is identical
to SCUSUM [Wu et al 2023]]. In Section ] we will pro-
vide more discussion on the role of A in the RSCUSUM
algorithm.

Our proposed stopping rule is given by

Trscuson = inf{n >1: Z(”) > 7'}7 )

where 7 > 0 is a stopping threshold that is pre-selected to
control false alarms, and Z(n) can be computed recursively:

(0)=0,
(n) = (Z(n— 1)+ 2x(X,) T, Vn > 1.

>

Z
Z
The statistic Z(n) is referred to as the detection score of

RSCUSUM at time n. The RSCUSUM algorithm is sum-
marized in Algorithm [T

Algorithm 1: RSCUSUM Detection Algorithm

Input: Hyvarinen score functions Sy (-, Ps) and
Su(+, Q1) of pre-change distribution and least
favorable distribution in Gy, respectively.

Data: m previous observations X[_,,1,0; and the

online data stream {X,, },>1

Initialization:

| Current time k =0, A > 0,7 > 0,and Z(0) =0
while Z(k) < 7 do
k=k+1
Update Z)\(Xk) = /\(SH(Xk7 Poo) — SH(Xk, Ql))
Update Z(k) = max(Z(k — 1) + z)(X%), 0)

Record the current time % as the stopping time Trscysun
Output: Trscysum

4 DELAY AND FALSE ALARM ANALYSIS
OF THE RSCUSUM ALGORITHM

In this section, we provide delay and false alarm analysis of
the RSCUSUM algorithm. We introduce two assumptions:
1) P ¢ Gi, and 2) the same mild regularity conditions
introduced in Hyvirinen| [2005] so that the Hyvérinen score
is well-defined.

We first prove an important lemma for our problem. If the
Fisher divergence is seen as a measure of distance between
two probability measures, then the following lemma pro-
vides a reverse triangle inequality for this distance, under the
mild assumption that the order of integrals and derivatives
can be interchanged.



Lemma 4.1. Let P, be the pre-change distribution, (1 €
G1 be the least-favorable distribution (as defined in Equa-
tiond), and Q2 € G1 be any other post-change distribution.
Then

Dr (Q1]|Poo) < Dr (Q2]|Poo) — Dr (Q2]|Q1) -

Proof. Consider a convex set of densities

{v = 6c(@) : 4e(2) = Enr (@) + (1 = §a2(2),§ €0, 1]},

where ¢; and ¢- are densities of () and ()2, respectively. Let
Q¢ denote the distribution characterized by density g:. We
note that Q¢ € G; due to the convexity assumption on ;.
We use L(£) to denote the Fisher divergence Dy (Q¢|| Poo),
and

C(é‘)=/HV10gqg—V10gpooH2quw

= [ IV iosear + (1~ ) - Viogpwe
(€ + (1~ &)gz)da.

Clearly £(¢) is minimized at £ = 1, and a’g—(;) le=1-< 0.

Let £'(§) = ag—(f), we have

£1€ = [ (@1 ) [V 1ogac — Viogpn|ds
N\
+/2q§V (lhq(h) (Vlogge — Vlog ps)da.
3
This implies
L£'17) = /(q1 — ) ||V log g1 — Vlog peo]| da
T
+/2q1V <Q1qu2> (Vlogqy — Vlog pso)da
1

= Dr (Q1]|P) —/Q2HVIOgCI1 —VlogpooH2

term 1

T
+2q:V (qquQ) (Vlog g1 — Vlog pso) d.
1

term 2

®)

For term 1, we have

¢2||V log g1 — V log poo ||
= 2| Vlog 1 — Vlog gz|” + 2| V1og g2 — Vlog pec ||
+2¢2(Vlogqr — Vlogqg)T(V log g2 — Vlogpeo) -

term 1(a)

€))

‘We note that,

[ V105 - Viogas|*dz = Dr(@allQu),  (10)

[ eIV 10802 — F10gpc|[*de = De(QlP). (11

For term 2, we note that

\Y <(11_qz> = q—Q(VIngh - Vlogqg).
q1 q1

Therefore,

T
20,V (mq‘h> (Viog g — Viogpoo)
1

=2¢>(Vilogq — Vlogqg)T(VlogCh — Vlogpeo)-
(12)

Combining the last term in Equation (9) with Equation (12)),

— term 1(a) + term 2

= 2¢(Vlog g — Vloggs)"
(Vlogqi — V1og pao — Vlog o + Vlog pso)
= 2¢||Vlog 1 — Vlog g|*. (13)

Plugging Equations (I0), (IT), and (I3) into Equation (8),

L'(17) = Dr (Q1| Poc) + Dz (Q2]|Q1) — D (Q2| Pss) -

The results follows since &g) le=1-<0. O

We now use Lemma[4.T]to prove a result on the consistency
of our proposed RSCUSUM algorithm.

Lemma 4.2 (Positive and Negative Drifts). Consider the
instantaneous RSCUSUM score function X +— z)(X) as
defined in Equation ((6). Recall that Py € Gy is the true (but
unknown) post distribution. Then,

Ew [2A(X)] = =ADz(Px||Q1) < 0, and
Ey [2A(X)] 2 AD#(Q1 | Poo) > 0.

Proof. Under some mild regularity conditions, |[Hyvéarinen
[2005]] proved that

De(PIQ) = Exer |5 IV ogpCOIS +5:(X,Q)|.

We use Cp to denote the term Exp | 5 [|Vx 10gp(X)||§} :
Then

= Dr(Pec||Poc) = Cp., — Dr(Pec||Q1) + Cp,
= —Dr (P ||@1),



and

E1[Su(X, Ps) — Su(X, Q1)]
= De(P1]|P) — Cp, = De(P1|Q1) + Cp,
> D (Q1]| P )s

where we applied Lemma[4.1]

Since A > 0, the results follow. O

Lemma [4.2] shows that, prior to the change, the expected
mean of instantaneous RSCUSUM score z) (X)) is negative.
Consequently, the accumulated score has a negative drift at
each time n prior to the change. Thus, the RSCUSUM de-
tection score Z(n) is pushed toward zero before the change
point. This intuitively makes a false alarm unlikely. In con-
trast, after the change, the instantaneous score has a positive
mean, and the accumulated score has a positive drift. Thus,
the RSCUSUM detection score will increase toward infinity
and leads to a change detection event.

Next, we discuss the values of the multiplier A in the theoret-
ical analysis. Obviously, with a fixed stopping threshold, a
larger value of A results in a smaller detection delay because
the increment of the SCUSUM detection score is large, and
the threshold can be easily reached. However, a larger value
of X\ also causes SCUSUM to stop prematurely when no
change occurs, leading to a larger false alarm probability.
Hence, the value of A cannot be arbitrarily large (except in
the degenerate case where Poo (Sy (X, Q1) — Su(X, Pxo) <
0) = 1). It needs to satisfy the following key condition:

Eoolexp(za(X))] < 1. (14)

We will present a technical lemma that guarantees the exis-
tence of such a A to satisfy inequality (14]).

Lemma 4.3 (Existence of appropriate \). There exists A\ >
0 such that Inequality (I4) holds. Moreover, either 1) there
exists \* € (0, 00) such that the equality of holds, or
2) for all X > 0, the inequality of ({[4) is strict. As noted in
Wu et al.|[2023)], the second case is of no practical interest.

Proof. We give proof in the supplementary material. [

From now on, we consider a fix A > 0 that satisfies Inequal-
ity (T4) to present our core results. In practice, it is possible
to use m past samples X[_,,, 1 o] to determine the value of
A. In particular, A can be chosen as the positive root of the
function A — h()) given by

1 m
%z::exp za (X

By Lemma @] and its related technical discussions, the
above equation has a root greater than zero with a high
probability if m is sufficiently large. In the case that A is

||l>

—m))] = 1.

not chosen properly, the algorithm remains implementable
but optimal performance of detection delay is not guaran-
teed. We discuss this situation further in the supplementary
material.

Theorem 4.4. Consider the stopping rule Tzscysum defined
in Equation (7). Then, for any T > 0,

E [TRSCUSUM] >e.

To satisfy the constraint of Boo[Trscusuu] = 7, it is enough
to set the threshold T = log .

Proof. We give proof in the supplementary material. [

Theorem [4.4]implies that the ARL increases at least expo-
nentially as the stopping threshold increases.

The following theorem gives the asymptotic performance
of the RSCUSUM algorithm in terms of the detection delay
under the control of the ARL.

Theorem 4.5. Subject 10 Eoo [Trscysumu] = v > 0, the stop-
ping rule Trscysuy satisfies

~ »CCADD(TRSCUSUM) ~ El [TRSCUSUM]

N log ~y
ADr(P1]|Po) = De(P1[|Q1))

gy o
S AD Qi Px)’ T

EWADD(TRSCUSUM)

Proof. We give proof in the supplementary material. [

In the above theorem, we have used the notation g(c) < h(c)
as ¢ — c¢g to indicate that lim sup hE g < 1lasc— ¢ for
any two functions ¢ — g(c) and ¢ — h(c).

Theorems [4.4] and [4.5] imply that the expected detection
delay (EDD) increases linearly as the stop threshold 7 in-
creases subject to a constraint on ARL.

S IDENTIFICATION OF THE LEAST
FAVORABLE DISTRIBUTION

Consider a general parametric distribution family P defined

on X. We use P,, to denote a set of a finite number of

distributions belonglng to P, namely
Pn={P,i=1,...,m: P,€ P}, meN*.

We use p; to denote the density of each distribution P;, i =

1,...,m. Then, we define a convex set of densities

A, 2 {x > gaipi(x) >

i=1

Q; = 1,0@ Z O} (15)



‘We further define a set of functions
B, 2 {:v — Zﬁi(x)vz logp;(x) :
i=1

Zﬁt(x) = 17 ﬁl(l‘) Z 07 pi € Pm}- (16)
1=1

Consider the pre-change distribution P, (with density po.)
such that P, € P and Py, ¢ A,,. We use E, to denote
its corresponding expectation with p.,. Next, we provide
a result to identify the LFD in A,, in terms of the Fisher-
divergence (as defined in Definition [3.3).

Theorem 5.1. Assume that there exists an element P, €
A, (with density pg) such that

Em{nm log po(X) - V., 1ogpoo<X>%}

= min

2
PEA,pEB, Ep{||¢(X) ~ Ve 10gp00(X)||2}- a7

Then, we have

Em{nvx log po(X) — V., 1ogpoo<x>%}

Proof. For any p € A,,, there exist w; such that p =
S wip;, where w; > 0and Y ;" | w; = 1. Direct calcu-
lations give

E{ IV, log p(X) — V. 1ogpoo<x>§}

470 s 2

_Ep{ o(X) Va log peo (X) 2}

:Ep{ Zf#iiuzﬂvi;ﬁi)(())() — V;log peo (X) 2}
Ep{ Zui(X)Vzlogpi(X)*VzIngoo(X) }v

where u;(X) = % foralli = 1,...,m, and

Yot ui(X) = 1. Clearly V, logu;(z) — Vi logu;(z) =
Vzlogpi(x) — Vylogp;(z) forall 1 <i,j < m.

Using Condition (T7), the quantity above is minimized at
P = po, which concludes the proof. O

Theorem [5.1] provides an efficient way to identify the LFD
in a convex set with only knowledge of the gradient of the
log density functions.

Next, we provide a method to find the LFD in a class of
Gaussian mixture models.

Theorem 5.2. Let Gy denote the d-dimensional Gaussian
distribution centered at § € R with a constant covariance
matrix V€ RI*4. Let the set ©1 C R? pe compact and
convex. Consider the pre-change distribution Gy, and post-
change distribution class Gy defined as all Gaussian mixture
models given by the convex hull of {Gy : 0 € ©1}. For any
vector v € RY, let ||[v|ly = (vTV~20)Y2. Assume that
0. & ©1, and 0y € O is the closest to 0, under the || - ||v
norm, namely ||0p—0.||v = mingee, ||0—0«||v. Then, Gy,
is the closest to Gy, among Gy under the Fisher divergence.

Proof. Let go, and gp, denote the densities of Gy, and G, ,
respectively. Clearly,

min Ege{HVm log go(X) — V log gs, (X)”%}
go€G1

<E,, {nm log; g, (X) — Vs log g0, <X>||%}

We will prove the equality by proving the reverse inequality.
To this end, consider an arbitrary element of G;. By defi-
nition of convex hull, this element can be written as G; =
Yo wiGe, (X) for some m > 1, w; > 0,i=1,---,m
with > jw; = land 6; € O fori = 1,--- ,m. As
proved in the above theorem

E{v log g1(X) — V. log gs. <X>||%}

= ]E91 {
wige,; (X)

Whereﬂi(X) = m forall . = 1,...,m.

2
},
2

> Bi(X)V. log ga,(X) — Vo log ga, (X)
=1

Thus, we have

E{v log g1(X) — V', log g, <X>||%}

=By, [ Y A:()(X —0:) — (X —0.)
i=1 A%
m 2

=Eq, ||>_ Bi(X)(0. — ;)
i=1 Vv

Using the assumption that |0y — 0.||y = mingeo, [0 —
0.||v, we have

2
= Eéh

v

> BiX) (0. — 6:)
i=1

2

=By, || — Y Bi(X)0|| > Eg,[l6. — 6oll5
i=1 \4

—E,, {nw log; g, (X) — V. log g0, <X>||§}.

This concludes the proof. O



For a general parametric family of potential post-change
distributions, it may be difficult to identify the LFD. In Sec-
tion[6.1] we propose a method to find the LFD in parameter
space.

6 NUMERICAL RESULTS

In this section, we present numerical results for both
synthetic and real data demonstrating the robustness of
RSCUSUM. Specifically, we identify the LFD in G; defined
as convex hull of given distributions P;(x), i = 1,2,--- ,m.
To this end, we minimize the Fisher divergence over the set
B,,, defined in Equation (I6) and invoke Theorem [5.1} In
general, we can then estimate the V,; log po(«) for LFD by

221 Bz(x)vz 1ngi(x)'

6.1 EXAMPLE OF THE LEAST FAVORABLE
DISTRIBUTION

We consider the parametric family P as the multivariate
Normal distribution (MVN), a subfamily [[Yu et al., 2016
of the exponential family (EXP), and the Gauss-Bernoulli
Restricted Boltzmann Machine (RBM) [LeCun et al.,[2006]).
For example, in the case of MVN,

= {N(:U“h Vi,

{Zaj\/ul, Zalfl Vaz>0}

=1

Here the pre-change distribution P, = N (i, Vi) and the
uncertainty class G is constructed from a finite basis P,,, =
{N(p;, Vi), i =1,...,m} (see Equation (13)). Each basis
element P; is parameterized by the corresponding vector
0, = (p;,V;). Without loss of generality, we assume 6; to
be the closest to 8., = (u,, V;) in Ly (Euclidean) norm.

By Theorem5.1] it is sufficient to find P, such that Condi-
tion holds. Any ¢(z) € By, is characterized by coeffi-
cients 5;(-), j = 1,...,m (see Equation (I6)).

We use a neural network Softmax; ofyy(z) to estimate
B;(+), specifically,

ﬁj (I) = SOftHlan OfNN($),

where fyy is given by the feature extractor part of a multi-
layer neural network corresponding to hidden layer sizes
[128 — 64 — m], with Softmax the last layer all ReLU
activation functions in hidden layers. Note that Softmax;
denotes the j-th element of the Softmax function. The use of
Softmax function ensures y .-, 3;(z) = 1 and 3;(x) > 0
foralll <i<m.

To identify Py, we learn fyy by minimizing the following

loss function over the training sample X1, - - -

Z > 5

lel

,XN ~ P:
2

)

2

$)V1ogp;(X;) — Viog peo(X;)

where P is updated at each epoch based on the learned
coefficients (;(x) by

Z&

To generate samples from the unnormalized density function
V. log p(x), standard Markov Chain Monte Carlo (MCMC)
techniques (such as MALA) are employed. Furthermore, the
neural network is trained using the Adam optimizer.

V. logp(x )V log pi(x).

In Table |1} we report the average value - Zfil B;(Y;)
over the test sample Y7, - - - Y3, ~ P respectively in cases
where the basis elements of P,,, are MVN,,, (with mean
shifts), MVN, (with covariance shifts), EXP, and RBMs.
Details of P, and basis elements of P,, are given in the
Supplementary Material. In all cases the average value of
B1(y) (respectively 5;(y), j = 2,3,4) is extremely close
to 1 (respectively to 0). This gives strong evidence that the
LFD is achieved by one of the basis P,,, and Theorem
can be invoked to give the LFD.

i 1 2 3 4
MVN,, | 1.00c+00 4.90¢-09 2.43e-11  6.29¢-12
MVN, | 9.99¢-01 7.47e-06 3.23e-08 3.55¢-08

EXP | 9.99¢-01 2.84e-05 1.37¢-09 1.01e-09
RBM | 1.00e+00 3.18¢-33  0.00e+00  0.00e+00

Table 1: Empirical average values of §;(x) over 10000 test
sample for MVN, EXP, and RBM models.

6.2 SYNTHETIC DATA

As in Subsection [6.1] we simulate synthetic data streams
from MVNs and RBMs to evaluate the performance of
RSCUSUM. The LFD in the uncertainty class is identified
as in Subsection We also report the performance of
the SCUSUM (which is not robust) [Wu et al.|[2023]] for
arbitrary wrong distributions in the uncertain class.

We consider a change detection scenario where the pre-
and post-distributions are modeled by MVN (respectively
RBM) models with m = 4. Both P, and the elements
of the uncertainty class are created according to detailed
descriptions in the supplementary material. We use Gibbs
sampling method with 1000 iterations for RBMs. In each
trial, we treat one of P; € Pp,, i = 1,2,3,4 as the true
post-change distribution. For each trial, we perform the
experiment for 1000 runs.

In all experiments, we set the change point as v = 50, and
we set the total length of each data stream as 10000 to assure



the generated data stream is long enough for detection. We
evaluate the detection delay for ARL values ranging from
100 to 3000.

In Figure[T[a) and (b), we respectively report the detection
scores versus time in cases for MVN,,, and RBM experi-
ments. The results demonstrate that the average increment
of detection scores is positive for RSUCUM, while negative
for the non-robust SCUSUM. This means that a non-robust
CUSUM fails to detect this post-change scenario but the
RSCUSUM algorithms detects it.
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Figure 1: Detection score versus Time.

In Figure 2fa) and (b), we respectively demonstrate the
empirical EDD against log-scaled ARL for both MVN,,, and
RBM experiments. The results demonstrate that RSCUSUM
is robust and performs competitively in terms of detection
delay. In particular, we observe that the EDD of RSCUSUM
(subplot in left rows) increases at a linear rate for all cases,
while some EDD of non-robust SCUSUM (subplot in right
rows) may increase at an exponential rate (compare the
y-axis labels for the plots).

7 CONCLUSIONS

In this work, we proposed the RSCUSUM algorithm, a ro-
bust score-based algorithm for quickest change detection
when the post-change distribution is not precisely known.
We defined the least favorable distribution in the sense of
Fisher divergence. Using asymptotic analysis, we also ana-
lyzed the delay and false alarms of RSCUSUM in the sense
of Lorden’s and Pollak’s metrics. We provided both the-
oretical and algorithmic methods for computing the least
favorable distribution for unnormalized models. Numerical
simulations were provided to demonstrate the performance
of our robust algorithm.

Py o Py o Py: Py

25 RSCUSUM

Non-robust SCUSUM

6
log(ARL)

Non-robust SCUSUM
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(a) MVN,,

801 | RSCUSUM 500
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(b) RBM

Figure 2: EDD versus log-scaled ARL.
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