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A LIKELIHOOD RATIO-BASED ROBUST CUSUM ALGORITHM

In this section, we review the result in Unnikrishnan et al. [2011] on classical robust quickest change detection. Let p∞
and p1 be the density functions of pre- and post-change distributions. If the post-change law is known, then given the data
stream {Xn}n≥1, the stopping rule of the likelihood ratio-based CUSUM algorithm is defined by

TCUSUM = inf{n ≥ 1 : Λ(n) ≥ τ}, (1)

where Λ(n) is defined using the recursion

Λ(0) = 0,

Λ(n)
∆
=

(
Λ(n− 1) + log

p1(Xn)

p∞(Xn)

)+

, ∀n ≥ 1, (2)

which leads to a computationally efficient stopping scheme (if the densities p1 and p∞ are precisely known). In Moustakides
[1986], it is shown that the CUSUM algorithm is exactly optimal, for every fixed constraint γ, for Lorden’s problem. As
pointed out in Lai [1998], the algorithm is also asymptotically optimal for Pollak’s problem. In Lorden [1971] and Lai
[1998], the asymptotic performance of the CUSUM algorithm is also characterized. Specifically, it is shown as γ → ∞.

LWADD(TCUSUM) ∼ LCADD(TCUSUM) ∼
log γ

DKL(P1‖P∞)
. (3)

Here DKL(p1‖p∞) is the Kullback-Leibler divergence between the post-change density p1) and pre-change distribution
p∞:

DKL(P1‖P∞) =

∫
x

p1(x) log
p1(x)

p∞(x)
dx,

and the notation g(c) ∼ h(c) as c → c0 indicates that g(c)
h(c) → 1 as c → c0 for any two functions c 7→ g(c) and c 7→ h(c).

The CUSUM algorithm can successfully detect a change in law from p1 to p∞ because∫
x

log
p1(x

p∞(x)
p1(x)dx = DKL(P1‖P∞) > 0∫

x

log
p1(x

p∞(x)
p∞(x)dx = −DKL(P∞‖P1) < 0.

(4)

Thus, the mean of the increment of Λ(n) in (2) before the change is negative, and after the change is positive.

If the post-change density p1 is not known and assumed to belong to a family G1, then the test is designed using the least
favorable distribution. Specifically, in Unnikrishnan et al. [2011], it is assumed that there is a density q1 ∈ G1 such that for
every p1 ∈ G1,

log
q1(X)

p∞(X)

∣∣∣∣
X∼q1

≺ log
q1(X)

p∞(X)

∣∣∣∣
X∼p1

. (5)
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Here the notation ≺ is used to denote stochastic dominance: if W and Y are two random variables, then W ≺ Y if

P (Y ≥ t) ≥ P (W ≥ t), for all t ∈ (−∞,∞).

If such a density q1 exists in the post-change family, then the robust CUSUM is defined as the CUSUM test with q1 used as
the post-change density. Such a test is exactly optimal for the problem of Lorden [1971] under additional assumptions on the
smoothness of densities, and asymptotically optimal for the problem in Pollak [1985]. We refer the reader to Unnikrishnan
et al. [2011] for a more precise optimality statement.

We note that in the literature on quickest change detection, the issue of the unknown post-change model has also been
addressed by using a generalized likelihood ratio (GLR) test or a mixture-based test. While these tests have strong optimal-
ity properties, they are computationally even more expensive than the robust test described above; see Lorden [1971], Lai
[1998], Tartakovsky et al. [2014].

As discussed in the introduction, the robust CUSUM algorithm discussed above may have two major drawbacks: 1) Due
to the complicated characterization of the least favorable distribution q1 (5), it may be hard to identify in high-dimensional
models. 2) The robust CUSUM is a likelihood ratio-based test and is thus computationally expensive to implement for
high-dimensional models.

In Section 4 of the main paper, we propose the RSCUSUM algorithm to mitigate these issues.

1. The RSCUSUM algorithm is based on Hyvärinen score (Hyvärinen [2005]) and is invariant to normalizing constants.
This makes it computationally efficient for high-dimensional models which are often only learnable within a normal-
izing constant.

2. We defined the notion of least favorable distribution differently in our paper. For us, the least favorable distribution has
the least Fisher divergence with respect to the pre-change model. We also provided an efficient computational method
to identify the least favorable distribution.

B PROOFS

The theoretical analysis for delay and false alarms is analogous to that of analysis from Wu et al. [2023]. We give complete
proofs here for completeness.

B.1 PROOF OF LEMMA 4.3

Proof. Define the function λ : 7→ h(λ) given by

h(λ)
∆
= E∞[exp(zλ(X))]− 1.

Observe that
h′(λ)

∆
=

dh

dλ
(λ) = E∞[(SH(X,P∞)− SH(X,Q1)) exp(zλ(X))].

Note that h(0) = 0, and h′(0) = −DF(P∞‖Q1) < 0. Next, we prove that either 1) there exists λ⋆ ∈ (0,∞) such that
h(λ⋆) = 0, or 2) for all λ > 0 we have h(λ) < 0.

Observe that

h′′(λ)
∆
=

d2h

dλ
(λ) = E∞[(SH(X,P∞)− SH(X,Q1))

2 exp(zλ(X))] ≥ 0.

We claim that h(λ) is strictly convex, namely h′′(λ) > 0 for all λ ∈ [0,∞). Suppose h′′(λ) = 0 for some λ ≥ 0, we must
have SH(X,P∞) − SH(X,Q1) = 0 almost surely. This implies that E∞[(SH(X,P∞) − SH(X,Q1))] = 0 which in turn
gives −DF(P∞‖Q1) = 0 and P∞ = Q1 almost everywhere, leading to a contradiction to the assumption P∞ /∈ G1. Thus,
h(λ) is strictly convex and h′(λ) is strictly increasing.

Here, we recognize two cases: either 1) h(λ) have at most one global minimum in (0,∞), or 2) it is strictly decreasing in
[0,∞). We will show that the second case is degenerate that is of no practical interest.

• Case 1: If the global minimum of h(λ) is attained at a ∈ (0,∞), then h′(a) = 0. Since h′(0) < 0 and h(0) = 0,
the global minimum h(a) < 0. Since h′(λ) is strictly increasing, we can choose b > a and conclude that h′(λ) >



h′(b) > h′(a) = 0 for all λ > b. It follows that limλ→∞ h(λ) = +∞. Combining this with the continuity of h(λ),
we conclude that h(λ∗) = 0 for some λ∗ ∈ (0,∞) and any value of λ ∈ (0, λ∗] satisfies Inequality (10).
Note that in this case, we must have P∞ (SH(X,P∞)− SH(X,Q1) ≥ c) > 0, for some c > 0. Otherwise,
we have P∞ (SH(X,P∞)− SH(X,Q1) ≤ 0) = 1. This implies that P∞(zλ(X) ≤ 0) = 1, or equivalently
E∞[exp(zλ(X))] < 1 for all λ > 0, and therefore leads to Case 2: h(λ) < 0 for all λ > 0. Here, E∞[exp(zλ(X))] 6= 1
since P∞(SH(X,P∞) − SH(X,Q1) = 0) < 1; otherwise P∞(SH(X,P∞) − SH(X,Q1) = 0) = 1, and then
E∞[SH(X,P∞)− SH(X,Q1)] = −DF(P∞‖Q1) = 0, causing the same contradiction to P∞ /∈ G1.

• Case 2: If h(λ) is strictly decreasing in (0,∞), then any λ ∈ (0,∞) satisfies Inequality (10). As discussed before, in
this case, we must have P∞ (SH(X,P∞)− SH(X,Q1) ≤ 0) = 1. Equivalently, all the increments of the RSCUSUM
detection score are non-positive under the pre-change distribution, and P∞(Z(n) = 0) = 1 for all n. Accordingly,
E∞[TRSCUSUM] = +∞. When there occurs change (under measure Q1), we also observe that RSCUSUM can get close
to detecting the change point instantaneously as λ is chosen arbitrarily large. Obviously, this case is of no practical
interest.

B.2 PROOF OF THEOREM 4.4

Proof. We follow the proof of Lai [1998][Theorem 4] to conclude the result of Theorem 4.4. A constructed martingale and
Doob’s submartingale inequality [Doob, 1953] are combined to finish the proof.

1. We first construct a non-negative martingale with mean 1 under the measure P∞. Define a new instantaneous score
function X 7→ z̃λ(X) given by

z̃λ(X)
∆
= zλ(X) + δ,

where

δ
∆
= − log

(
E∞ [exp(zλ(X))]

)
.

Further define the sequence

G̃n
∆
= exp

( n∑
k=1

z̃λ(Xk)

)
, ∀n ≥ 1.

Suppose X1, X2, . . . are i.i.d according to P∞ (no change occurs). Then,

E∞

[
G̃n+1 | Fn

]
= G̃nE∞[exp(z̃λ(Xn+1))] = G̃ne

δE∞[exp(zλ(Xn+1))] = G̃n,

and

E∞[G̃n] = E∞

[
exp

(
n∑

i=1

(zλ(Xi) + δ)

)]
= enδ

n∏
i=1

E∞[exp(zλ(Xi))] = 1.

Thus, under the measure P∞, {G̃n}n≥1 is a non-negative martingale with the mean E∞[G̃1] = 1.

2. We next examine the new stopping rule

T̃RSCUSUM = inf

{
n ≥ 1 : max

1≤k≤n

n∑
i=k

z̃λ(Xi) ≥ τ

}
,

where z̃λ(Xi) = zλ(Xi) + δ. By Inequality (10), we observe that δ ≥ 0. By Jensen’s inequality,

E∞[exp(zλ(X))] ≥ exp (E∞[zλ(X)]) , (6)

with equality holds if and only if zλ(X) = c almost surely, where c is some constant. Suppose the equality of
Equation (6) holds, then

−λDF(Q1||P∞) = E∞[zλ(X)] = c = E1[zλ(X)] = λDF(P∞||Q1).



It follows that 0 ≤ DF(P∞||Q1) = −DF(Q1||P∞) ≤ 0, which implies that P∞ /∈ G1 almost everywhere. This
leads to a contradiction to the assumption P∞ /∈ G1. Thus, the inequality of Equation (6) is strict, and therefore
δ < λDF(P∞||Q1). Hence, T̃RSCUSUM is not trivial.
Define a sequence of stopping times:

η0 = 0,

η1 = inf

{
t :

t∑
i=1

z̃λ(Xi) < 0

}
,

ηk+1 = inf

t > ηk :

t∑
i=ηk+1

z̃λ(Xi) < 0

 , for k ≥ 1.

By previous discussion, {G̃n}n≥1 is a nonnegative martingale under P∞ with mean 1. Then, for any k and on {ηk <
∞},

P∞

 n∑
i=ηk+1

z̃λ(Xi) ≥ τ for some n > ηk | Fηk

 ≤ e−τ , (7)

by Doob’s submartingale inequality [Doob, 1953]. Let

M
∆
= inf

{
k ≥ 0 : ηk < ∞ and

n∑
i=ηk+1

z̃λ(Xi) ≥ τ for some n > ηk

}
. (8)

Combining Inequality (7) and Definition (8),

P∞(M ≥ k + 1 | Fηk
) = 1− P∞

 n∑
i=ηk+1

z̃(Xi) ≥ τ for some n > ηk | Fηk

 ≥ 1− e−τ , (9)

and

P∞(M > k) = E∞[P∞(M ≥ k + 1 | Fηk
)I{M≥k}] = E∞[P∞(M ≥ k + 1 | Fηk

)]P∞(M > k − 1). (10)

Combining Equations (10) and (9),

E∞[M ] =

∞∑
k=0

P∞(M > k) ≥
∞∑
k=0

(1− e−τ )k = eτ .

Observe that

T̃RSCUSUM = inf

{
n ≥ 1 :

n∑
i=ηk+1

z̃λ(Xi) ≥ τ for some ηk < n

}
≥ M,

and T̃RSCUSUM ≤ TRSCUSUM. We conclude that E∞[TRSCUSUM] ≥ E∞[T̃RSCUSUM] ≥ E∞[M ] ≥ eτ .

B.3 PROOF OF THEOREM 4.5

We first introduce a technical definition in order to apply Woodroofe [1982][Corollary 2.2.] to the proof of Theorem 4.5.

Definition B.1. A distribution P on the Borel sets of (−∞,∞) is said to be arithmetic if and only if it concentrates on a
set of points of the form ±nd, where d > 0 and n = 1, 2, . . ..

Remark B.2. Any probability measure that is absolutely continuous with respect to the Lebesgue measure is non-arithmetic.



Proof. Consider the random walk that is defined by

Z ′(n) =

n∑
i=1

zλ(Xi), for n ≥ 1.

We examine another stopping time that is given by

T ′
RSCUSUM

∆
= inf{n ≥ 1 : Z ′(n) ≥ τ}.

Next, for any τ , define Rτ on {T ′
RSCUSUM < ∞} by

Rτ
∆
= Z ′(T ′

RSCUSUM)− τ.

Rτ is the excess of the random walk over a stopping threshold τ at the stopping time T ′
RSCUSUM. Suppose the change point

ν = 1, then X1, X2, . . . , are i.i.d. following the distribution Q1. Let µ and σ2 respectively denote the mean E1[zλ(X)] and
the variance Var1[zλ(X)]. Note that

µ = E1[zλ(X)] = λ(DF(P1‖P∞)− DF(P1‖Q1)) > 0,

and
σ2 = Var1[zλ(X)] = E1[zλ(X)2]− (λ(DF(P1‖P∞)− DF(P1‖Q1)))

2
.

Under the mild regularity conditions given by Hyvärinen [2005],

E1[SH(X,P∞)]2 < ∞, and

E1[SH(X,Q1)]
2 < ∞.

It implies that E1[zλ(X)2] < ∞ if λ is chosen appropriately, e.g. λ satisfy Inequality (14) and λ is not arbitrary large.
Therefore, by Lorden [1970] Theorem 1,

sup
τ≥0

E1[Rτ ] ≤
E1[(zλ(X)+)2]

E1[zλ(X)]
≤ µ2 + σ2

µ
,

where zλ(X)+ = max(zλ(X), 0). Additionally, Q1 must be non-arithmetic in order to have Hyvärinen scores well-defined.
Hence, by Woodroofe [1982] Corollary 2.2.,

E1[T
′
RSCUSUM] =

τ

µ
+

E1[Rτ ]

µ
≤ τ

µ
+

µ2 + σ2

µ2
, ∀τ ≥ 0.

Observe that for any n, Z ′(n) ≤ Z(n), and therefore TRSCUSUM ≤ T ′
RSCUSUM. Thus,

E1[TRSCUSUM] ≤ E1[T
′
RSCUSUM] ≤

τ

µ
+

µ2 + σ2

µ2
, ∀τ ≥ 0. (11)

By Theorem 4, we select τ = log γ to satisfy the constraint E∞[TRSCUSUM] ≥ γ > 0. Plugging it back to Equation (11), we
conclude that, as γ → ∞,

E1[TRSCUSUM] ∼
log γ

µ
=

log γ

λ(DF(P1‖P∞)− DF(P1‖Q1))
,

to complete the proof.

Due to the stopping scheme of RSCUSUM, the expected time Eν [TRSCUSUM−ν|TRSCUSUM ≥ ν] is independent of the change
point ν (This is obvious, and the same property for CUSUM has been shown by Xie et al. [2021]). Let ν = 1, and we have

LCADD(TRSCUSUM) = E1[TRSCUSUM]− 1.

Thus, we conclude that

LCADD(TRSCUSUM) ∼
log γ

λ(DF(P1‖P∞)− DF(P1‖Q1))
.

Similar arguments applies for LWADD(TRSCUSUM).



B.4 SELECTION OF APPROPRIATE MULTIPLIER

It is worth noting that although results of our core results hold for a pre-selected λ that satisfied the condition discussed in
Lemma 4.3. The effect of choosing any other λ′ amounts to the scaling of all the increments of RSCUSUM by a constant
factor of λ′/λ. This means that all of these results still hold adjusted for this scale factor. For instance, the result of Theorem
4.4 can be modified to be written as

E∞[TRSCUSUM] ≥ exp

{
λτ

max(λ, λ′)

}
,

for any λ′ > 0. It is easy to see that this scaling will change the statement of Theorem 4.5 accordingly to

E1[TRSCUSUM] ∼
max(λ, λ′)

λ

log γ

λ′(DF(P1‖P∞)− DF(P1‖Q1))
,

as γ → ∞. In order to have the strongest results in Theorems 4.4 and 4.5, we must choose λ as close to λ∗ as possible.

C EXPERIMENTAL DETAILS

C.1 SYNTHETIC DATASET

We consider the parametric family P = {Gθ : θ ∈ Θ}, and a set of basis elements Pm = {P1, . . . , Pm}, ∀Pi ∈ P . We set
m = 4 for synthetic simulations. The uncertainty class of post-change distribution (pre-change distribution respectively) is
given by

G1 =

{
m∑
i=1

αiPi :

m∑
i=1

αi = 1, ∀ αi ≥ 0

}
,

G∞ = {P∞ : P∞ ∈ P , P∞ /∈ G1}.

Multivariate Normal Distribution (MVN) Let µ and V respectively denote the mean and the covariance matrix. The
corresponding score function is calculated by

SH(X,P ) =
1

2
(X − µ)TΣ−2(X − µ)− tr(V −1),

where the operator tr(·) takes the trace of matrix.

For the scenario of MVNm, we think the covariance matrix V is a constant for any distribution in the parametric family.
The pre-change distribution P∞ = N (µ∗, V∗), where

µ⋆ = (0, 0), and V⋆ =

(
1, 0.5
0.5, 1

)
.

The set Pm = {N (µj , Vj), j = 1, . . . ,m}, where

µj = (ϵj , ϵj), and Vj =

(
1, 0.5
0.5, 1

)
.

We take the value of ϵ1 (ϵj , j = 2, 3, 4 respectively) as 0.5 (0.6, 0.8, 1.0 respectively) for P1 (Pj , j = 2, 3, 4 respectively).

For the scenario of MVNc, we consider both the mean and covariance matrix as the parameter. Again, we consider the
pre-change distribution P∞ = N (µ∗, V∗), and the set Pm = {N (µj , Vi), j = 1, . . . ,m}. Here,

µj = (ϵj , ϵj), and Vj =

(
1, 0.5
0.5, 1

)
◦ exp(δj),

where ◦ denotes the element-wise product and ϵlog(σ2) denotes the element-wise perturbations of the covariance matrix.
We take the value of δj (respectively δj , j = 2, 3, 4) as 0.1 (0.2, 0.8, 1.0 respectively) for P1 (Pj , j = 2, 3, 4 respectively).
To make the perturbed covariance matrix positive-definite, we perturb the log of each component of the covariance matrix.



Table 1: EDD versus ARL for RSCUSUM and RCUSUM on Multivariate Gaussian Case

Perturbation/ARL 100 200 400 800 1500 3000

0.5 RSCUSUM 11.2552 12.6664 16.9057 20.3400 22.7026 27.3190
RCUSUM 11.4017 12.8748 16.8437 20.2776 22.6781 27.2831

0.6 RSCUSUM 8.5636 9.5218 13.1102 15.2747 16.5815 19.8648
RCUSUM 8.6460 9.5817 12.9797 15.2196 16.5526 19.7900

1 RSCUSUM 4.0894 4.5327 6.0542 7.1984 7.8237 9.4318
RCUSUM 4.1259 4.5658 6.0447 7.1551 7.8026 9.3947

2 RSCUSUM 1.4053 1.6268 2.2620 2.7546 3.0592 3.6752
RCUSUM 1.4290 1.6393 2.2516 2.7393 3.0481 3.6684

Exponential Family (EXP) We consider the Exponential family with the associated PDF given by

pθ(X) =
1

Zτ
exp

−τ

 d∑
i=1

(xi − µ)4 +
∑

1≤i≤d,i≤j≤d

(xi − µ)2(xj − µ)2

 ,

where θ = (τ, µ). The associated Hyvarinen score function is calculated by

SH(X,Pθ) =
1

2

d∑
i=1

(
∂

∂xi
logPθ(X)

)2

+

d∑
i=1

∂2

∂xi
logPθ(X),

where

∂

∂xi
logPθ(X) = −τ

4(xi − µ)3 + 2
∑

1≤i≤d,i≤j≤d

(xi − µ)(xj − µ)2

 , and

∂2

∂xi
logPθ(X) = −τ

12(xi − µ)2 + 2
∑

1≤i≤d,i≤j≤d

(xj − µ)2

 .

We consider the pre-change distribution P∞ with τ⋆ = 1 and µ∗ = 0. The post-change distribution basis elements are
constructed with τ = τ∗ + ϵj and µ = µ∗ + δj . Here, ϵj (δj respectively) denotes the perturbations of the scale parameter
τ (the location parameter µ respectively) for each Pj , j = 1, 2, 3, 4. We take values of ϵj as 1.0, 2.0, 8.0, 10.0, and values
of δj as 0.01, 0.02, 0.08, 0.1.

Gauss-Bernoulli Restricted Boltzmann Machine (RBM) As introduced in Subsection the main paper, we consider the
RBM mode with the PDF given by pθ(X) =

∑
h∈{0,1}dh pθ(X,H) = 1

Zθ
exp{−Fθ(X)}, where Fθ(X) is the free energy

given by

Fθ(X) =
1

2

dx∑
i=1

(xi − bi)
2 −

dh∑
j=1

Softplus

(
dx∑
i=1

Wijxi + bj

)
.

We compute the corresponding Hyvärinen score in a closed form

SH(X,Pθ) =

dx∑
i=1

1
2

xi − bi +

dh∑
j=1

Wijϕj

2

+

dh∑
j=1

W 2
ijϕj (1− ϕj)− 1

 ,

where ϕj
∆
= Sigmoid(

∑dx

i=1 Wijxi + bj). The Sigmoid function is defined as Sigmoid(y)
∆
= (1 + exp(−y))−1.

The pre-change distribution P∞ is with the parameters W = W∗, b = b∗, and c = c∗, where each component of W∗, b∗,
and c∗ is randomly drawn from the standard Normal distribution N (0, 1). For the post-change distribution basis elements,
we assign the parameters Wj = W∗ ⊕ ϵj , bj = b∗, and cj = c∗. Here, we only consider shifts of weight matrix W. We
let ϵj take values from 0.001, 0.002, 0.008, 0.01 for Pj , j = 1, 2, 3, 4.
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