
A Prototype-Oriented Framework for Unsupervised
Domain Adaptation: Appendix

Korawat Tanwisuth1, Xinjie Fan1, Huangjie Zheng1, Shujian Zhang1,

Hao Zhang2, Bo Chen3, Mingyuan Zhou1

1The University of Texas at Austin 2 Cornell University 3Xidian University

A Broader impact

Any methods that deal with classification can suffer from dataset bias caused by domain shift between
training and testing data. While domain adaptation can help mitigate the problem [78], it cannot
eliminate the issue because of the combinatorial nature of too many exogenous factors [79]. Also, as
with any computationally intensive endeavor, care must be taken to use sustainable energy sources.
On a positive note, our method addresses many practical problems—including sampling variability,
class-imbalance, and source-data privacy—by leveraing class prototypes.

B EM steps derivation

Since the target label of each data point, ytj , is not observed, we can view it as a latent variable.
The unknown quantity we are interested in is the proportion of classes in the target data p(µk) =
p(ytj = k). To infer this quantity, we maximize the likelihood on the observed target data:

l({p(µk)}Kk=1 |xt1,xt2, . . . ,xtnt
) =

nt∑
j=1

ln[

K∑
k=1

p(µk)pθ,µ(xj |ytj = k)], (9)

where pθ,µ(xj |ytj = k) =
exp(µT

k f
t
j)

Z and Z is a normalizing constant. Note that µk are learned
jointly using the cross entropy loss on the source data.

Since it is difficult to directly optimize the marginal likelihood due to the sum inside the
log function, we resort to the Expectation-Maximization (EM) algorithm, where we iterate
between the expectation and maximization steps. We first initialize p(µk) with a uniform prior ,
p(µk)0 = 1

K , ∀k = 1, 2, . . . ,K, before performing the iterative updates. At each step l (starting
from 0), we conduct the E-step and M-step as follows:

E-step: Compute the posterior probability of the target data belonging to class k using the old
estimates. The posterior probabilities correspond to the weights of the transport cost of moving from
target features to the prototypes.

pθ,µ(ytj = k|xtj , p(µk)l) = πθ(µk |f
t
j , p(µk)l) =

p(µk)l exp(µTk f
t
j)∑K

k′=1 p(µk′)
l exp(µTk′f

t
j)

M-step: The log-likelihood of the complete data is given by
∑M
j=1 ln[p(µk)l+1pθ,µ(xj |ytj)]. We

maximize the expected complete log-likelihood where the expectation is taken with respect to the
posterior distribution found in the E-step:

p(µk)l+1 = argmax
p(µk)

l+1

L (10)

:= argmax
p(µk)

l+1

nt∑
j=1

K∑
k=1

pθ,µ(ytj = k|xtj , p(µk)l) ln[p(µk)l+1pθ,µ(xj |ytj = k)] + λ(

K∑
k=1

p(µk)l+1 − 1)

(11)

16

Here, λ is a Lagrange multiplier to enforce the constraint that p(µk) should lie in a simplex.

∂L

∂λ
=

K∑
k=1

p(µk)l+1 − 1 = 0

∂L

∂p(µk)l+1
=

nt∑
j=1

pθ,µ(ytj = k|xtj , p(µk)l)
1

p(µk)l+1
+ λ = 0

Multiplying both sides by p(µk)l+1 on and summing over k, we obtain the following update rule for
p(µk)l+1. And we get:

λ = −nt,

p(µk)l+1 =
1

nt

nt∑
j=1

pθ,µ(ytj = k|xtj , p(µk)l) =
1

nt

nt∑
j=1

π(µk |f
t
j , p(µk)l).

In practice, we draw a mini-batch of size M to estimate this quantity.

C Connection with K-means clustering and optimal transport

If we introduce a temperature parameter, τ , fix the parameters of the feature encoder θ, and let
the negative pair-wise cost be the weighting function instead of the inner product, the conditional
distribution becomes

πkj := πθ(µk |f
t
j) =

p(µk) exp(
−c(µk,f

t
j)

τ)∑K
k′=1 p(µk′) exp(

−c(µk′ ,ft
j)

τ)
. (12)

With a uniform prior and letting τ → 0, the conditional distribution becomes a one-hot encoding,
πkj = 1{k=argmin

k′
c(µk′ ,ft

j)}, which is equivalent to solving the following constrained optimization

problem:

min
πkj

1

M

M∑
j=1

K∑
k=1

πkjc(µk,f
t
j) (13)

s.t.

K∑
k=1

πkj = 1, ∀j, (14)

πkj ∈ {0, 1} ∀j, k, (15)

where µk is fixed. This is exactly the cluster assignment step in the K-Means clustering algorithm
[80]. In other words, we assign each data point to its closest centroid. Thus, the update in the
cross-entropy loss can be interpreted as the cluster-center update step and the update in the transport
loss is analogous to the cluster assignment step.

As explained in the main text, we might not be able to rely on the cost, c(µk,f
t
j), alone because we

do not have labels in the target domain. To avoid degenerate solutions, one might consider introducing
a balanced constraint: each cluster should contain an equal number of data points. The constrained
optimization problem then becomes:

min
πkj

1

M

M∑
j=1

K∑
k=1

πkjc(µk,f
t
j) (16)

s.t.

M∑
j=1

πkj =
M

K
, ∀k (17)

πkj ∈ {0, 1}, ∀k. (18)

17

This is an integer programming problem and may look difficult to optimize. However, one can
relax the decision variables, πkj , to be continuous and solve the following constrained optimization
problem instead:

min
πkj

1

M

M∑
j=1

K∑
k=1

πkjc(µk,f
t
j) (19)

s.t.

M∑
j=1

πkj =
1

K
, ∀k (20)

K∑
k=1

πkj =
1

M
, ∀j (21)

πkj ≥ 0, ∀j, k. (22)

The formulation above is the optimal transport problem discussed in the text where the marginal
constraints are uniform distributions over data points and classes. While we are solving a continuous
relaxation of the integer programming problem, solving this problem leads to an integral solution
[81], meaning that the optimal transport problem is equivalent to the cluster assignment step of the
K-means algorithm with a balanced constraint. Note that the statement holds when M is divisible by
K.

D Implementation details

We implement our method on top of the open-source transfer learning library (MIT license) [66],
adopting the default neural network architectures for both the feature encoder and linear classifier.
For the feature encoder network, we utilize a pre-trained ResNet-50 in all experiments except for
multi-source domain adaptation, where we use a pre-trained ResNet-101. We fine-tune the feature
encoder and train the linear layers from random initialization. The linear layers have the learning
rate of 0.01, ten times that of the feature encoder. The learning rate follows the following schedule:
ηiter = η0(1 + γiter)−α, where η0 is the initial learning rate. We set η0 to 0.01, γ to 0.0002, and
α to 0.75. We utilize a mini-batch SGD with a momentum of 0.9. We set the batch size for the
source data as N = 32 and that for the target data as M = 96. We use all the labeled source
samples and unlabeled target samples [6, 7, 26]. We set β0 to 0 (using a uniform prior) in all settings
except for the sub-sampled target datasets. We perform a sensitivity analysis (see Appendix E) and
set β0 empirically to 0.001 for the sub-sampled target version of Office-31 and 0.0001 for that of
Office-Home. We report the average accuracy from three independent runs. All experiments are
conducted using a single Nvidia Tesla V100 GPU except for the DomainNet experiment, where we
use four V100 GPUs.

In both the single and multi-source settings, we set β0 = 0, which corresponds to using a uniform
prior. We do not perform any additional hyper-parameter searches. The cross-entropy and transport
losses are equally weighted. We run each experiment for 10,000 iterations for the single-source
setting. For the multi-source setting, we train the model for 75,000 iterations.

In the class imbalance setting, we follow the experimental protocol in Tachet des Combes et al. [18]
and quote the results directly when available. We perform a sensitivity analysis on the parameter,
β0, and present the result in Table 8. In the sub-sampled target datasets, we empirically set β0 to
0.001 for Office-31 and 0.0001 for Office-Home. For sub-sampled source datasets, we set β0 to
0 in all experiments. In all of the above settings, we run three independent experiments using the
seeds {0, 1, 2}.
In the source-private domain adaptation setting, we implement our method using the same setup as
Liang et al. [31]. We use all the same hyper-parameters except for the maximum number of epochs
and target batch size. We set the number of epochs to 70 for Office-31 and 100 for Office-Home.
The target batch size is set to 96. We change the two parameters to adjust for the number of data
seen since SHOT goes through the whole training set at every 15 iterations. We use the same random
seeds, {2019, 2020, 2021}, as the original paper.

18

E Additional experimental results

Details on the synthetic experiment (Figure 2). In this experiment, we provide an illustration
of our method as well as the baseline, DANN, on a toy dataset. We sample two dimensional
data from multivariate Gaussian distributions with different means but the same covariance matrix,

Σ =

[
0.5 −0.3
−0.3 0.5

]
. In each domain, we draw 300 examples. We draw 250 of the green class

from N ([7, 5.5],Σ) and 50 of the red class from N ([4, 3.5],Σ). In the target domain, we draw 50
of the green class from N ([7.5, 3.5],Σ) and 250 of the red class from N ([4.4, 5],Σ). We utilize a
three-layer feature encoder with hidden dimension 15 and output dimension 2 to visualize the latent
space. The classifier is a linear layer.

Visualization of transport probabilities. In Figure 5, we visualize transport probabilities on a
sample batch of data for PCT and POT. As explained earlier, OT is equivalent to solving a balanced-
constrain K-means when M is divisible by K so we set M = K = 31. In Figure 5b, we can
see that OT gives equal weight to all the assigned points, and each row (class) contains only one
active cell, meaning that each data point is assigned into a distinct cluster. In Figure 5a, the active
cells in πθ(µk |f

t
j) usually correspond to those in πθ(f tj |µk). However, the magnitudes often

differ: πθ(µk |f
t
j) takes into account the uncertainty in the classes whereas πθ(f tj |µk) considers

the uncertainty of the target features. πθ(µk |f
t
j) will have at least one active cell across the rows

(every data point is close to some prototype), while πθ(f tj |µk) will have at least one active cell
across the columns (every prototype is close to some target feature).

(a)

(b)

Figure 5: Visualization of transport probabilities for PCT and POT. The rows correspond to different
µk whereas the columns correspond to different f tj .

19

Figure 6: Test error vs. training time in minutes for different algorithms trained on the task A→W.

(a) (b) (c)

(d) (e) (f)

Figure 7: TSNE visualizations on the Office-31 dataset. The plots in each column correspond to each
transfer task: (a),(d) to A→D, (b),(e) to D→A, and (c),(f) to W→D. Plots in the top row highlight
class information whereas those in the bottom row exhibit domain information. In the top row, each
plot shows that both the source (dots ·) and target (crosses ×) features are close to the prototypes
(black stars ?). In the bottom row, we can see that the blue dots (source domain) are close to the red
dots (target domain).

20

Sensitivity analysis. In Table 8, we can see that β0 works well in the range of 0.0001 − 0.01.
Generally, β0 should be set to a small value because the average predictions of a single mini-batch
can be noisy. Thus, we give more weight to the weighted sum of the past average predictions over
multiple mini-batches, which are more stable.

Table 8: Accuracy (%) on the task (A→ sW) for the sub-sampled (target) Office-31 for different
values of β0 (ResNet-50).

β0 1 0.1 0.01 0.001 0.0001 0

37.8 80.2 88.5 88.9 88.5 87.2

E.1 Full experimental results

Due to space constraints, we report the average accuracy of different transfer tasks of a dataset in
some experiments. Below, we present the full tables, which include the average accuracy of the
individual tasks.

E.1.1 Ablation study

Table 9: Accuracy (%) of PCT on Office-31 under different variants (ResNet-50).
Method A→W D→W W→ D A→ D D→ A W→ A Avg

PCT w/o (Lt→µ) 92.7 98.1 99.8 92.0 75.3 73.6 88.6
PCT w/o (Lµ→t) 84.4 98.5 99.9 89.8 69.0 64.0 84.3
POT 94.1 97.6 97.8 89.7 74.0 74.1 87.9
POT-Sinkhorn 94.4 98.1 98.3 89.6 75.3 74.0 88.3
w/o stop-grad µ 92.4 98.8 100.0 93.4 75.8 73.8 89.0
c(µk,f

t
j) = exp(−µTk f

t
j) 90.4 98.9 100.0 89.9 72.8 69.5 86.9

PCT (Ours) 94.6± 0.5 98.7± 0.4 99.9± 0.1 93.8± 1.8 77.2± 0.5 76.0± 0.9 90.0

E.1.2 Sub-sampled setting

Table 10: Accuracy (%) on the sub-sampled (source) Office-31 for unsupervised domain adaptation
(ResNet-50).

Method sA→W sD→W sW→ D sA→ D sD→ A sW→ A Avg

ResNet-50 70.7 95.3 97.3 75.8 56.8 58.4 75.7
DANN 77.7 93.8 96.0 75.5 56.6 57.5 76.2
JAN 77.6 91.7 92.6 77.8 64.5 65.1 78.2
CDAN 84.6 96.8 98.3 82.5 62.5 65.0 81.6
IWDANN 88.4 97.0 98.7 81.6 65.0 64.9 82.6
IWJAN 83.3 96.3 98.8 84.6 65.3 67.4 82.6
IWCDAN 87.3 97.7 99.0 86.6 66.5 66.3 83.9

PCT-Uniform (Ours) 92.4± 1.2 97.8± 0.4 99.4± 0.0 91.1± 2.2 73.9± 0.5 73.0± 1.1 87.9

Table 11: Accuracy (%) on the sub-sampled (target) Office-31 for unsupervised domain adaptation
(ResNet-50).

Method A→ sW D→ sW W→ sD A→ sD D→ sA W→ sA Avg

ResNet-50 68.4 96.7 99.3 68.9 62.5 60.7 76.1
DANN 76.3 88.0 93.0 72.9 62.3 63.1 75.9
JAN 78.5 89 92.1 81.4 62.9 64.9 78.1
CDAN 85.8 97.6 99.9 85.2 64.9 64.6 83.0
IWDANN 76.4 97.1 100.0 82.7 59.0 59.9 79.2
IWJAN 83.6 97.9 99.7 86.2 64.0 65.6 82.8
IWCDAN 87.9 97.7 100.0 86.2 64.8 64.1 83.5

PCT-Uniform (Ours) 86.4± 0.86 97.3± 0.3 100.0± 0.5 88.5± 0.8 69.5± 0.9 70.5± 0.7 85.4
PCT-Learnable (Ours) 88.1± 0.5 98.5± 0.4 99.9± 0.17 90.4± 1.7 69.9± 0.37 71.3± 0.51 86.4

21

Table 12: Accuracy (%) on the sub-sampled (source) Office-Home for unsupervised domain adapta-
tion (ResNet-50).
Method sAr→ Cl sAr→ Pr sAr→ Rw sCl→ Ar sCl→ Pr sCl→ Rw sPr→ Ar sPr→ Cl sPr→ Rw sRw→ Ar sRw→ Cl sRw→ Pr Avg

ResNet-50 35.7 54.7 62.6 43.7 52.5 56.6 44.3 33.0 65.2 57.1 40.5 70.0 51.4
DANN 36.1 54.2 61.7 44.3 52.6 56.4 44.6 37.1 65.2 56.7 43.2 69.9 51.8
JAN 34.5 56.9 64.5 46.2 56.8 59.0 50.6 37.2 70.0 58.7 40.6 72.00 53.9
CDAN 38.9 56.8 64.8 48.0 60.0 61.2 49.7 41.4 70.2 62.4 47.0 74.7 56.3
IWDANN 39.8 63.0 68.7 47.4 61.1 60.4 50.4 41.6 72.5 61.0 49.4 76.1 57.6
IWJAN 36.2 61.0 66.3 48.7 59.9 61.9 52.9 37.7 70.9 60.3 41.5 73.3 55.9
IWCDAN 43.0 65.0 71.3 52.9 64.7 66.5 54.9 44.8 75.9 67.0 50.5 78.6 61.2

PCTUniform (Ours) 51.9± 0.2 69.7± 0.9 76.5± 0.3 63.3± 1.3 70.8± 0.4 71.1± 0.5 66.0± 0.8 49.9± 0.7 80.2± 0.5 73.1± 0.6 58.6± 0.7 83.2± 0.8 67.8

Table 13: Accuracy (%) on the sub-sampled (target) Office-Home for unsupervised domain adaptation
(ResNet-50).
Method Ar→ sCl Ar→ sPr Ar→ sRw Cl→ sAr Cl→ sPr Cl→ sRw Pr→ sAr Pr→ sCl Pr→ sRw Rw→ sAr Rw→ sCl Rw→ sPr Avg

ResNet-50 41.5 65.8 73.6 52.2 59.5 63.6 51.5 36.4 71.3 65.2 42.8 75.4 58.2
DANN 47.8 55.9 66.0 45.3 54.8 56.8 49.4 48.0 70.2 65.4 55.5 72.7 58.3
JAN 45.8 69.7 74.9 53.9 63.2 65.0 56 42.5 74 65.9 47.4 78.8 61.4
CDAN 51.1 69.7 74.6 56.9 60.4 64.6 57.2 45.5 75.6 68.5 52.7 79.8 63.0
IWDANN 48.7 62.0 71.6 50.4 57.0 60.3 51.4 41.1 69.9 62.6 51.0 77.2 58.6
IWJAN 44.0 71.9 75.1 55.2 65.0 67.7 57.1 42.4 74.9 66.1 46.1 78.5 62.0
IWCDAN 52.3 72.2 76.3 56.9 67.3 67.7 57.2 46.0 77.8 67.3 53.8 80.6 64.6

PCT-Uniform (Ours) 55.8± 0.5 77.6± 0.6 80.4± 0.3 65.1± 1.2 72.3± 2.0 74.7± 0.2 67.0± 1.5 50.9± 1.0 81.1± 0.3 72.6± 0.2 57.0± 0.2 84.0± 0.2 69.8
PCT-Learnable (Ours) 57.5± 0.4 78.2± 0.2 80.5± 0.0 66.7± 0.6 74.3± 1.3 75.4± 0.5 64.6± 1.5 50.7± 1.4 81.3± 0.4 72.9± 0.3 57.3± 0.9 83.5± 0.15 70.2

E.1.3 Source-private setting

Table 14: Accuracy (%) on the source-private Office-31 for unsupervised domain adaptation (ResNet-
50).

Method A→W D→W W→ D A→ D D→ A W→ A Avg

Source Model Only 76.8 95.3 98.7 80.8 60.3 63.6 79.3
SHOT-Psuedo-Label 90.8 96.6 99.3 93.2 72.1 73.5 87.6
SHOT-IM 91.2 98.3 99.9 90.6 72.5 71.4 87.3
SHOT 90.1 98.4 99.9 94.0 74.7 74.3 88.6

PCT (Ours) 91.7± 0.8 97.9± 0.3 99.9± 0.2 92.2± 1.1 74.0± 1.6 74.6± 0.3 88.4

Table 15: Accuracy (%) on the source-private Office-Home for unsupervised domain adaptation
(ResNet-50).
Method Ar→ Cl Ar→ Pr Ar→ Rw Cl→ Ar Cl→ Pr Cl→ Rw Pr→ Ar Pr→ Cl Pr→ Rw Rw→ Ar Rw→ Cl Rw→ Pr Avg

ResNet-50 44.6 67.3 74.8 52.7 62.7 64.8 53.0 40.6 73.2 65.3 45.4 78.0 60.2
SHOT 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8

PCT (Ours) 56.6± 1.1 77.0± 0.6 79.8± 0.5 68.3± 0.5 75.7± 0.4 75.5± 0.3 67.3± 1.3 55.1± 1.0 80.2± 0.9 74.4± 0.5 58.9± 0.5 83.2± 0.7 71.0

E.2 Additional Results

To further verify the efficacy of our framework, we provide additional results on the Cross-Digits,
Office-Caltech, Image-Clef, and VisDA under different settings.

E.2.1 Single-source setting

Table 16: Average Accuracy (%) on the Cross-Digits dataset for unsupervised domain adaptation
(ResNet-50).

Method MNIST→ USPS SVHN→MNIST USPS→MNIST Avg

CDAN 95.6 89.2 98.0 94.3
rRevGrad+CAT 94 98.8 96 96.3
ETD 96.4 97.9 96.3 96.9

PCT (Ours) 97.8± 0.1 98.9± 0.0 97.0± 0.6 98.0

22

Table 17: Average Accuracy (%) on the Office-Caltech dataset for unsupervised domain adaptation
(ResNet-50).

Method A→W A→D A→C D→A D→W D→C W→A W→D W→C C→A C→W C→D Avg

CDAN 99.3 96.8 95.4 94.7 100.0 94.6 95.7 100.0 94.5 94.8 95.9 92.4 96.2
MDD 98.3 98.0 94.8 95.3 98.6 94.3 95.6 100.0 94.9 95.8 96.3 98.7 96.7

PCT (Ours) 99.1 ± 0.1 98.5 ± 0.3 95.6 ± 0.1 96.3 ± 0.3 99.8 ± 0.17 95.1 ± 0.3 96.2 ± 0.1 100 ± 0.0 95.2 ± 0.2 95.8 ± 0.4 98.7 ± 0.4 96.6 ± 1.0 97.3

Table 18: Average Accuracy (%) on the Image-Clef dataset for unsupervised domain adaptation
(ResNet-50).

Method I→P P→I I→C C→I C→P P→C Avg

CDAN 77.7 90.7 97.7 91.3 74.2 94.3 87.7
rRevGrad+CAT 77.2 91 95.5 91.3 75.3 93.6 87.3
ETD 81 91.7 97.9 93.3 79.5 95 89.7

PCT (Ours) 78.5 ± 0.4 93.1 ± 0.2 97.0 ± 0.3 92.2 ± 0.2 75.7 ± 0.6 95.4 ± 0.4 88.7

E.2.2 Multi-source setting

Table 19: Average Accuracy (%) on the Office-31 dataset for ResNet50-based MSDA methods.
Category Method R → D R →W R → A Avg

Multi-source DCTN 99.3 98.2 64.2 87.2
MFSAN 99.5 98.5 72.7 90.2
SImpAl 99.2 97.4 70.6 89.0

Source- DAN 99.6 97.8 67.6 88.3
combined D-CORAL 99.3 98.0 67.1 88.1

RevGrad 99.7 98.1 67.6 88.5

PCT (Ours) 99.8± 0.0 98.5± 0.1 76.9± 0.6 91.7

E.2.3 Source-private setting

Table 20: Accuracy (%) on the VisDA-2017 dataset for unsupervised domain adaptation (ResNet-50).
ETN STA UAN DANCE PCT (Ours)

64.1 48.1 66.4 70.2 71.2± 0.8

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Section 4.1

(b) Did you describe the limitations of your work? [Yes] See Appendix A
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Appendix A
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See supplemen-
tary material

23

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4 and Appendix D

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section 4

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4 and Appendix D

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4
(b) Did you mention the license of the assets? [Yes] See Section 4. The code specifies a

license, but the datasets do not provide licenses.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Our code is included in the supplementary material.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

24

