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The supplementary materials consist of:1

1. Demonstration video.2

2. Details of dataset.3

3. Baseline approach.4

4. Analysis of experiment results.5

5. Details of our proposed method.6

6. Visualization of attention scores.7

1 Demonstration video8

In the supplementary video, we show 1) a brief introduction of our food scooping robot learning9

framework and 2) illustrations of scooping tasks and qualitative results.10

2 Details of Dataset11

In this section, we provide more details about the data collection and preparation process for training.12

2.1 Food Preparation13

We select a total of 12 categories of food items for our real-world experiment, with 6 categories used14

for training and the remaining 6 categories used for testing. To simplify the complexity, we have15

limited the differences between categories primarily to particle size and the amount of food items.16

Food in the Training Set. The food categories for training contain brown rice, mung bean, soybean,17

chocolate call, dried jujube, and cheese ball. For food items with small particles such as brown rice,18

mung bean, and soybean, we fill the bowl to approximately 2/3 of its capacity. This threshold ensures19

that the interaction can be carried out without the risk of spilling the food items. For food items with20

large particles such as chocolate balls, dried jujube, and cheese balls, we select more than one piece21

but fewer than a certain number based on their size. This is done to prevent the spoon from getting22

stuck or breaking the food items when there is insufficient space in the bowl for the spoon to reach23

them.24

Food in the Testing Set. The food categories for testing contain sago, red bean, orange, macadamia,25

penne, and fruit candy. In the testing set, we have designed three levels of difficulty to evaluate the26

performance of the models. Both the Basic and Extended settings in the evaluation include sago,27

red bean, orange, and macadamia, and the peculiar setting includes penne and fruit candy.28
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• Basic Setting: In this setting, the conditions are kept identical to the training set. For food items29

with small particles, the bowl is filled to approximately 2/3 of its capacity. For food items with large30

particle sizes, more than one entity is included in the bowl.31

• Extended Setting: In this setting, we change the combination of properties related to particle size32

and amount of food items. We want to explore different scenarios to evaluate the performance of our33

model under varying conditions. For food items with small particles, we fill the bowl with a smaller34

quantity of these items. The intention is to keep the height of the food in the bowl similar to that of35

the food items with large particles in the Basic setting. Conversely, we increase the amount of food36

items with large particles.37

• Peculiar Setting: These food items in the peculiar setting had unique features, such as different38

shapes, colors, or textures, that are not present in the training set. By introducing these visually39

distinct food items, we aim to challenge the model’s capacity to recognize and handle novel objects40

effectively.41

2.2 Manipulation Policy42

During the data collection phase, we employ two distinct manipulation policies to ensure the suc-43

cessful scooping of the food items. To prevent spilling, we adopt a specific policy for scooping44

up food items with small particles. The strategy involves positioning the spoon at a shallow depth45

under the height of the food items. By adopting this approach, the risk of spillage can be minimized46

and the food items were securely contained within the spoon during the scooping process. When47

dealing with food items that have large particles, we position the spoon at the lowest point within the48

bowl and gently push the items toward the edge. This allows the food to roll into the spoon and is49

able to successfully scoop up without any spillage. Figure 1 shows the end-effector positions during50

manipulation in the training dataset.51

Figure 1: Visualization of End-effector Position During Manipulation.

2.3 Implementing Detail of Overall Scooping Task52

The task is divided into three stages: interacting, scooping, and transferring. Among these stages,53

only the scooping stage requires learning. The overall task follows a predefined procedure. The54

interaction data is collected by replaying the recorded end-effector trajectory. The model then be-55

gins predicting the scooping stage. Once the scooping stage is completed, the transferring stage is56

initiated. The trajectory for the transferring stage is obtained by averaging all training data. Consid-57

ering that the ending position of the scooping stage for every testing food tends to be relatively close58

to initial position of the transferring stage, the Panda arm then proceeds to move to the first point59
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using simple motion planning. Once the transition is complete, the rest of the trajectory is replayed60

accordingly.61

3 Baseline Approach62

This section provides detailed explanations of the baselines in comparison with SCONE.63

3.1 BC-based Method64

When adopting Learning from Demonstration (LfD), behavior cloning (BC) is a straightforward65

approach for direct learning from both observation and action. We conducted the task using 466

different BC models, both with and without the inclusion of interacting data.67

BC one stage. In BC (one stage), we consider scooping and transferring as a single stage. This68

implies that the BC (one stage) model is required to learn the long-horizon task only through obser-69

vation, without any additional input.70

BC without interaction. The most basic method that learns the scooping task through observations.71

BC with food ID. To implement BC with food ID, we applied the trained classification model to the72

interaction data. The predicted food ID was then conditioned as a one-hot vector and concatenated73

with the observation zgi, serving as the input for the BC model.74

BC with interaction. In the case of BC with interaction, the input for the model is the concatenation75

of latent of observation and interaction data.76

3.2 Template Policy77

One of the approaches we explore in utilizing interaction data is the selection of trajectories from78

the pre-interacting data based on their similarity to the food categories in the training dataset. The79

template trajectory is obtained by averaging the sequences of end-effector pose of 6 different food80

categories respectively.81

Rand. Template. Random policy is selected arbitrarily.82

Classified Template. The template policy is selected accordingly based on the predicted category83

by the classifier.84

3.3 Dynamical System Model85

MTRNN. We utilized the multiple time scale recurrent neural network by [1] to update the initial86

parameter Cs0 using the interaction data in the testing stage.87

4 Analysis of Experiment Results88

4.1 Failure Cases89

During our real-world evaluation, the failure cases observed included instances of spilling (SP),90

insufficient food on the spoon (IF), failed attempts to scoop (FA), collisions (CO), and others (OT).91

We select the orange, sago, and penne as examples, and their results can be found in Table 1 and92

Table 2.93

Spilling (SP). Spilling happens at the end of the scooping process, especially when there is an94

excessive amount of food on the spoon. Consequently, during the stages of transferring or when95

withdrawing the spoon from the bowl, the excess food spills out.96

Insufficient food (IF). The failure case of insufficient food occurs when the amount of food on the97

spoon is unable to cover at least one-third of its surface area. This is frequently attributed to the98

spoon not being inserted deep enough into the bowl to effectively reach the desired food portion.99
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Basic - Orange

SP IF FA CO OT Failed

BC (one stage) 0 0 5 3 1 9

BC (w/o interact) 2 0 3 3 0 8

BC (w/ food id) 1 0 2 1 1 5

BC (w/ interact) 1 0 2 0 0 0

Rand. Template 0 0 5 0 0 5

Classified Template 0 0 0 0 0 0

MTRNN [1] 0 0 0 0 0 0

SCONE (Ours) 0 0 0 0 0 0

(a) Basic - Orange

Basic - Sago

SP IF FA CO OT Failed

BC (one stage) 0 0 0 0 10 10

BC (w/o interact) 8 0 0 0 0 8

BC (w/ food id) 1 0 2 1 1 5

BC (w/ interact) 2 0 2 8 0 10

Rand. Template 2 0 2 0 0 4

Classified Template 10 0 0 0 0 10

MTRNN [1] 0 0 0 0 0 0

SCONE (Ours) 1 0 0 0 0 1

(b) Basic - Sago

Table 1: Basic - Failure Cases

Extended - Sago

SP IF FA CO OT Failed

BC (one stage) 0 0 0 0 10 10

BC (w/o interact) 5 1 0 1 0 7

BC (w/ food id) 1 0 2 1 1 5

BC (w/ interact) 0 4 0 3 0 7

Rand. Template 3 4 0 0 0 7

Classified Template 0 0 0 0 0 0

MTRNN [1] 0 5 0 5 0 10

SCONE (Ours) 3 1 0 0 0 4

(a) Extended - Sago

Peculiar - Penne

SP IF FA CO OT Failed

BC (one stage) 1 0 8 3 0 9

BC (w/o interact) 1 0 6 1 0 8

BC (w/ food id) 0 0 5 1 0 6

BC (w/ interact) 1 0 0 4 0 5

Rand. Template 4 0 3 0 0 7

Classified Template 2 0 7 0 0 9

MTRNN [1] 2 0 0 0 0 2

SCONE (Ours) 2 0 1 0 0 3

(b) Peculiar - Penne

Table 2: Extended and Peculiar - Failure Cases

Failed Attempts (FA). Failed attempts to scoop are attributed to the same underlying reason as100

insufficient food. In these cases, the spoon fails to acquire any amount of food, rather than scooping101

up an insufficient quantity.102

Collisions (CO). Relying on vision-based information can lead to incorrect decisions when facing103

out-of-distribution situations. In such scenarios, collisions between the spoon and the bowl may104

occur.105

Others (OT). In addition to the failure cases mentioned earlier, there are instances where the task106

cannot be successfully completed or the food ends up being damaged.107

4.2 Result Analysis108

Table 1: Orange. The BC-based baselines achieved low task success rates due to the high incidence109

of failed attempts because the weight of the orange used in the testing set is heavier than the foods110

in the training set. By contrast, the MTRNN and SCONE models exhibited stable performance due111

to their ability to learn and understand the conditions for successful scooping from the provided112

demonstrations. The classified template method also achieved higher performance due to its ability113

to select suitable templates for food items.114
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Figure 2: Details of Each Module in SCONE

Table 1: Sago. The BC-based baselines encountered challenges in providing correct predictions,115

causing several failure cases during the manipulation. Moreover, the template-based method has116

been limited by its reliance on the predictions from the classifier. In cases where the classifier117

selected a template intended for food items with large particles, it often resulted in spillage. The118

MTRNN and the proposed SCONE method demonstrated their ability to overcome this challenge,119

achieving a higher success rate.120

Table 2: Extended Sago. The number of spillages (SP) decreases significantly compared to the121

basic settings because the amount of sago been reduced, but there was an increase in the occurrence122

of insufficient food (IF) cases, due to the improper depth insertion of the spoon into the bowl in most123

of the methods. The Select Template model classified sago as chocolate balls, resulting in 10 suc-124

cessful trials when following the corresponding template. MTRNN demonstrated poor performance125

under this particular setting. During the scooping stage, it showed a hovering behavior within the126

bowl and occasionally collided with it. However, SCONE is capable of handling the challenging127

setting, achieving a success rate of 6 out of 10.128

Table 2: Penne. To test the models’ generalization abilities, we conducted experiments using129

peculiar-shaped foods such as penne and fruit candy. Though the color of penne looks familiar130

to soy beans, the shapes of them are totally different, which led to failed attempts (FA) when em-131

ploying the soy bean template. While MTRNN was able to handle penne, the jittering trajectory132

could lead to instability and spillage (SP), which we would like to avoid in real-world evaluation.133

Our SCONE behaved more stable and maintained a smooth trajectory.134

5 Details of Proposed Method135

See Figure 2 for detailed information on each encoding module. All the observation inputs are RGB-136

D images, which are processed through corresponding convolutional layers to extract features.137

Global temporal encoder. The global temporal encoder takes as input a sequence of current obser-138

vations of length N. In our implementation, we set N to 10, which means that the model can access139

the previous 10 observations within a time window of 1 second. This allows the model to capture140

the temporal dynamics and dependencies in the input data. Then, the sequences of RGB and depth141

images are processed separately by their respective encoders, and the output features are concate-142

nated and flattened into a one-dimensional embedding. To further reduce the dimensionality of the143

features, a fully-connected layer is applied to downsample the features to the dimension of 128.144

Interactive encoder. We utilize an interactive encoder to process the sequence of observations cap-145

tured during the interaction stage. The number of frames K is set to 7. Similar to the encoding146

process in the global temporal encoder, both RGB and depth images within the sequence are pro-147
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Figure 3: Visualization of Attention Scores. The upper is the manipulation process of brown rice,
and the lower is the manipulation process of chocolate ball.

cessed independently through their respective convolutional layers. The output features from these148

layers are then concatenated to form a sequence of feature maps, capturing the visual information149

from both modalities. Then, we introduce the multi-head self-attention mechanism, allowing the150

model to focus on relevant parts of the input sequence. The output features passed through a fully-151

connected layer, which reduces their dimension to 128.152

State retrieval module. The state retrieval module tasks the current local observation and the se-153

quence of interaction as inputs. For the current local observation, which consists of cropped RGB-D154

images captured at the current time step, we pass them through an encoding module to obtain latent155

embeddings. These embeddings are then concatenated with the current end-effector pose, result-156

ing in the latent state representation denoted as zcropped. Regarding the sequence of interaction, we157

apply the same encoding layers to process the observations and obtain corresponding feature em-158

beddings. Similar to the current local observation, we also concatenate the end-effector poses with159

the encoded features, creating a sequence of states in the interaction. To retrieve the critical state160

information, we use zcropped as a query and compute its relationship with the sequence of states161

in the interaction. This is achieved by employing cross-attention mechanisms that output weighted162

feature embeddings. These embeddings are then flattened and downsampled to a dimension of 32,163

obtaining the zsrm. Furthermore, we also downsample the latent state representation zcropped to a164

dimension of 32.165

6 Visualization of Attention Scores166

Figure 3 shows more examples of visualization for attention scores. Based on the results, it is167

evident that the model can accurately capture the state information without human labeling; this168

is demonstrated by the consistent patterns observed in the changing attention scores over time at169

each trial. Overall, our analysis reveals that frame 1 and frame 3 exhibit higher attention scores170

compared to other frames. We attribute this to the presence of important state information related to171

the spoon’s contact with the food items under specific end-effector poses. These frames can be seen172

as providing subgoal-like cues, guiding the model in the scooping task. Additionally, we observed173

that in food items with large particles, frame 3 tends to have higher attention scores than frame174

1 initially. This is because the state captured in frame 3 is more similar to the state prior to the175

scooping action in scenarios involving large particles. On the other hand, we noticed that the highest176
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attention score for frame 1 typically occurs close to the timing of the actual scooping action. This177

suggests that frame 1 serves as a general guide for determining ”how” and ”where” to scoop up the178

food items. These findings highlight the model’s ability to effectively identify and utilize critical179

state information from the interacting data to inform its scooping strategy.180
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