
A Implementation Details

A.1 Masking Strategy

We use span masking (Joshi et al., 2020) as our masking strategy. For each iteration, we sample and
mask a span of text, until the ratio of masked tokens has reached the threshold. We follow the settings
in (Joshi et al., 2020). The span length l is generated from a geometric distribution l ∼ Geo(p),
where p is set to 0.2 and l is clipped at lmax = 10. As in BERT (Devlin et al., 2018), 15% of the
input tokens will be masked: 80% of them are replaced by [MASK], 10% are replaced by random
tokens and 10% are kept as the original tokens.

A.2 GraphFormers’ Workflow

Algorithm 1 provides the pseudo-code of GraphFormers’ workflow. We use original Multi-Head
Attention in the first Transformer layer (Transformers[0]), and asymmetric Multi-Head Attention in
the rest Transformer layers (Transformers[1..L− 1]). In original Multi-Head Attention, Q, K, V
are computed as:

Q = Hl
gW

Q
j ; K = Hl

gW
K
j ; V = Hl

gW
V
j . (1)

In asymmetric Multi-Head Attention, Q, K, V are computed as:

Q = Hl
gW

Q
j ; K = Ĥl

gW
K
j ; V = Ĥl

gW
V
j . (2)

In the above equations, Hl
g are token-level embeddings, Ĥl

g are graph-augmented token-level embed-
dings, and WQ

j , WK
j , and WV

j are the projection matrices of Multi-Head Attention, corresponding
to the j-th attention head.

In each step, we extract the embeddings of [CLS] tokens as node-level embeddings Zl
g. The

node-level embeddings Zl
g and a learnable bias vector b are processed by the GNN component,

which is a Multi-Head Attention layer. The output GNN-processed node-level embeddings Ẑl
g are

concatenated with the original token-level embeddings Hl
g, which generates the graph-augmented

token-level embeddings Ĥl
g . Then Ĥl

g are processed by the Transformer component using asymmetric
Multi-Head Attention. At last, the node-level embedding of the center node hx is returned as the
representation of the graph.

B Training Details

As shown in Table 1, we present the hyperparameters used for training GraphFormers. The model is
trained for at most 100 epochs on all datasets. For the stability of the training process, we optimally
tune the learning rate as 1e−5 for Product, 1e−6 for DBLP, and 5e−6 for Wiki. We use an early
stopping strategy on P@1 with a patience of 2 epochs and Adam (Kingma and Ba, 2014) with β1=0.9,
β2=0.999, ε=1e-8 for optimization. We pad the sequence length to 32 for Product and DBLP, 64
for Wiki, depending on different text length of each dataset. To make full use of the GPU memory,
we set the batch size as 240 for Product and DBLP, 160 for Wiki. Each training sample includes 12
nodes: 1 query with its 5 neighbours, and 1 keyword with its 5 neighbours. The training is on 8×
Nvidia V100-16GB GPU clusters. The training of GraphFormers takes 58.8, 117.6, 151.2 hours on
average to converge on each of the experimental datasets (Product, DBLP, Wiki). We use Python3.6
and PyTorch 1.6.0 for implementation. The random seeds of PyTorch and NumPy are fixed as 42.
For two-stage training, the training processes of the two stages share the same settings as above.

1

Algorithm 1: GraphFormers’ Workflow in PyTorch-Like Style

Input:
Hg[0]: initial token-level embeddings (summation of word embeddings and position

embeddings)
Output:
hx: output embeddings

B: batch size
N: number of nodes in the graph (0th node represents the center node)
SL: sequence length
D: hidden dimension
L: number of GNN-nested Transformer layers
b: learnable bias vector for nodes

token-level embeddings: BxNxSLxD
Hg[1] = Transformers[0](Hg[0].view(B * N, SL, D), asymmetric = False).view(B, N, SL,

D) # "asymmetric = False" means we use original Multi-Head Attention in the
Transformer

for l in range(1, L):

node-level embeddings: BxNxD
Zg[l] = Hg[l][:, :, 0]

GNN-processed node-level embeddings: BxNxD
Zg_hat[l] = MultiHeadAttention(Zg[l], b)

graph-augmented token-level embeddings: BxNx(SL+1)xD
Hg_hat[l] = Concat([Zg_hat[l][:, :, None, :], Hg[l]], dim = 2)

token-level embeddings: BxNxSLxD
Hg[l + 1] = Transformers[l](Hg_hat[l].view(B * N, SL + 1, D), asymmetric = True).

view(B, N, SL, D) # "asymmetric = True" means we use asymmetric Multi-Head
Attention in the Transformer

graph representations: BxD
hx = Hg[L][:, 0, 0, :]

return hx

Table 1: Hyperparameters for training GraphFormers

Optimizer Adam
Adam β1 0.9
Adam β2 0.999
Adam ε 1e-8

PyTorch random seed 42
NumPy random seed 42

Product DBLP Wiki
Max training epochs 100 100 100

Learning rate 1e-5 1e-6 5e-6
Sequence length 32 32 64

Batch size 240 240 160

2

	Implementation Details
	Masking Strategy
	GraphFormers’ Workflow

	Training Details

