Supplementary material for '"Towards a Unified
Analysis of Kernel-based Methods Under Covariate
Shift"'

The supplemental material is organized as follows. Section [A]provides the results of all the additional
synthetic experiments and real data results for various kernel-based methods and the detailed settings.
Section [B] describes the algorithm details we use in Section [A] In Section [C| we provide some
useful lemmas and all the technical proofs of the theoretical results in the main text. The python
code implementing the proposed method is available at https://github.com/WangCaixing-96/
Kernel CS.

A Additional numerical results

In this section, we provide more experiment results, including KRR (Section [A.T]), KQR for various 7
and 7 (Section[A.2), kernel logistic regression (KLR) (Section[A.3) and multi-source real data studies
(Section[A.4), that further confirm our theoretical findings. Section[A.5]and Section[A.6]are devoted
to introducing KLIEP and IWCV. We also add some discussion on Assumption 2 of the main text in
Section

A.1 Kernel ridge regression

For the squared loss, we consider the following two examples.

Example S1: The response y is generated by y = fo(z) + oe, where fo(x) = e 2 and £ ~
N(0, 1). The source and target distributions are p (x) ~ N(ju1,0%) and pL (x) ~ N(uz,03) with
w1 =0, g = 0.8,0% = 0.5,03 = 0.3 for the uniformly bounded case and p; = 0, yp = 1.5,0% =
0.3,02 = 0.5 for the moment bounded case, respectively. The noise level o is set to 0.05 for both
uniformly bounded and moment bounded cases. The results are shown in Figure

Example S2: The response y is generated by y = fo(x) + oe, where x = (2,71, 22) €
R3, fo(x) = sin(2mxo) — =% ~72 and e ~ N (0, 1). Let g(xo; o, 8) denote the probability density
function of Beta distribution with parameters «, 8. It is easy to see that the importance ratio ¢(x)
for this case is not uniformly bounded but second moment bounded if and only if oy < ag, 2ap >
s, 2P > Bsor By < Bs, 20 > g, 2B: > Bs. In the 3-dimensional KRR experiment, we consider
03(x) = g(zo; as, Bs) and pL(x) = g(zo; ar, Bt) with ay = 2.5, 8, = 1.5,04 = 3, 8; = 4 for
the uniformly bounded case and oy = 4,35, = 1,4 = 3, 8¢ = 6 for the moment bounded case,
respectively. The noise level o is set to 0.3 for both uniformly bounded and moment bounded cases.
The results are shown in Figure

From (d) in Figures[T]and 2] we observe that for the moment bounded case, the TIRW estimator has a
great improvement compared to the unweighted estimator, even for the choice of A that is far away
from the optimum. Nevertheless, for the bounded case, we can see from (a) in FigureE] and Figure
[2]that there has a negligible gap between the performance of the unweighted estimator and that of
the TIRW estimator as long as we choose A that is close to optimum. For the poor choice of A, the
TIRW estimator still performs significantly better. From (b) and (e) in Figures[I]and 2] it is shown
that the error curve has an explicit gap with those of weighted estimators for the moment bounded
case, whereas it is very close for the uniformly bounded case. From (c) and (f) in Figures [I|and 2] we
observe that the target data size m has a subtle influence on our estimators.
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Figure 1: Average MSE for unweighted KRR, TIRW KRR with true weight and estimated weight, respectively
(The top panel is for the bounded case and the bottom is for the moment bounded case; in (a) and (d), the
curves are plotted with respect to log;, A with n = 500, m = 1000; in (b) and (e) the curves are plotted with
respect to n with fixed m = 1000, A = 107%; in (c) and (f), the curves are plotted with respect to m with fixed

n=>500,A=10"%
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Figure 2: Average MSE for unweighted KRR, TIRW KRR with true weight and estimated weight, respectively
(The top panel is for the bounded case and the bottom is for the moment bounded case; in (a) and (d), the curves
are plotted with respect to log,, A with n = 500, m = 1000; in (b) and (e) the curves are plotted with respect
to n with fixed m = 1000, A\ = 5 x 107°; in (c) and (f), the curves are plotted with respect to m with fixed

n=>500,A=5x1079)

A.2 Kernel quantile regression

For the check loss, we consider the following two examples.

Example S3: This example continues to study the KQR with a 1-dimensional covariate under the
same setting as in the main text. Here we further conduct experiments for various combinations of

7€{0.3,0.5,0.7} and r € {0,1}.



Example S4: The response y is generated by y = fo(x) + (1 + rxo)o(e — t; (7)), x =
(g, z1,72) " € R3, where fo(x) = sin(1.57x) — e=*1=73 1, denotes the CDF function of
t-distribution with 4 degrees of freedom and ¢ ~ t,. We consider p3(x) = g(zo;as, Bs) and
pL(x) = g(wo; o, Bt) with g = 2.5, By = 1.5, o = 3, B; = 6 for the uniformly bounded case and
as = 5.5, 8, = 1.5, ax = 3, 8 = 6 for the moment bounded case, respectively. We set r = 0 and
o = 0.3 for the homoscedastic case and » = 1 and o = 0.3 for the heteroscedastic case, respectively.

Note that the numerical results are provided in Sections Specifically, Figures 3] in
Section[A.2.T| present the results for the uniformly bounded case in Example S3, and the results for
the moment bounded case in Example S3 are presented in Figure ] of Section[A.2.2] Moreover,
Figure[5]in Section[A.2.3| presents the results for the uniformly bounded case in Example S4 with
various combinations of 7 € {0.3,0.5,0.7} and r € {0, 1}, and the results for the moment bounded
case in Example S4 are presented in Figure[6]of Section[A.2.4]

It is thus clear that the TIRW estimator is robust for different combinations of 7 and r. Specifically,
the TIRW estimator takes a significant advantage over the unweighted estimator when the important
ratio is indeed unbounded. Nevertheless, for the bounded case, the TIRW estimator seems to be not
necessary since if the choice of turning parameter is nearly-optimal or the source data size is relatively
enough, there is a negligible gap between the TIRW estimator and the unweighted estimator.

A.2.1 Uniformly bounded case in Example S3
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Figure 3: Average MSE and empirical excess risk for unweighted KQR, TIRW KQR with true weight and
estimated welght respectively (in the left panel, the curves are plotted with respect to log,, A with n =
500, m = 1000; in the middle panel, the curves are plotted with respect to n with fixed m = 1000, A = 107%;
in the right panel, the curves are plotted with respect to m with fixed n = 500, A = 10™*)
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A.2.2 Moment bounded case in Example S3
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Figure 4: Average MSE and empirical excess risk for unweighted KQR, TIRW KQR with true weight and
estimated weight, respectively (in the left panel, the curves are plotted with respect to log,, A with n =
500, m = 1000; in the middle panel, the curves are plotted with respect to n with fixed m = 1000, A = 10™*;
in the right panel, the curves are plotted with respect to m with fixed n = 500, A = 10~*%)



A.2.3 Uniformly bounded case in Example S4
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Figure 5: Average MSE and empirical excess risk for unweighted KQR, TIRW KQR with true weight and
estimated weight, respectively (in the left panel, the curves are plotted with respect to log;, A with n =
500, m = 1000; in the middle panel, the curves are plotted with respect to n with fixed m = 1000, A = 10™%;
in the right panel, the curves are plotted with respect to m with fixed n = 500, A = 10™*)
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Figure 6: Average MSE and empirical excess risk for unweighted KQR, TIRW KQR with true weight and
estimated weight, respectively (in the left panel, the curves are plotted with respect to log;, A with n =
500, m = 1000; in the middle panel, the curves are plotted with respect to n with fixed m = 1000, A = 10™%;
in the right panel, the curves are plotted with respect to m with fixed n = 500, A = 10™*)
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A.3 Kernel logistic regression

For the logistic loss function, we consider the following example.
Example S5: The response y is generated by Py = 1|x) = m where x =

(z0,21,22)T € R3 and f(x) = —22 + 3sin(37m0) + €1 2. We consider p3 (x) = g(xo; s, Bs)
and pl (x) = g(xo; ay, B¢) with ag = 2.5, B, = 2,y = 3, B; = 4 for the uniformly bounded case
and as = 4,85 = 1, ¢ = 3, 5; = 6 for the moment bounded case, respectively. Note that for any

-~

learned f, the classification rule is specified as sign(f(x)). Figure presents the results for the
uniformly bounded case, and the results for the moment bounded case are presented in Figure 8]
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in (c) and (f), the curves are plotted with respect to m with fixed n = 500, A\ = 5 x 107°)
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Clearly, Figure [/|demonstrates that the difference between the performance of the TIRW estimator
and the unweighted estimator is very close under the uniformly bounded case, which confirms our
theoretical findings. In addition, as we found in the other examples, we can conclude from (a) and (d)
in Figure [§] that the performance of the TIRW estimator, in terms of both misclassification rate and
empirical excess risk, maintains relative stability for different choices of A. But if we don’t select A
carefully, the unweighted estimator performs extremely poor. Other cases in Figure [§|confirm that
the TIRW estimator takes a remarkable benefit.

A.4 Real applications for multi-source datasets

In this section, we apply KSVM to a wide range of real datasets that are available in the UCI
archive https://archive.ics.uci.edu/ml/datasets.php, including the ionosphere dataset,
the dry bean dataset, the magicO4 dataset, and the banknote authentication dataset. Specifically, the
ionosphere dataset contains 350 instances and 34 covariates, and we select all the instances with
3-7-th covariates into the model. The dry bean dataset contains 13611 instances and 16 covariates,
and we randomly select 30% of this dataset with the 1-8-th covariates. The magic04 dataset contains
19019 instances and 10 covariates, and we randomly select 10% of this dataset with the 2-10-th
covariates. The banknote authentication dataset contains 1372 instances and 4 covariates. The
numerical performance is summarized in the following table.

Table 1: Classification performance on multi-source datasets.

Dataset Estimator C =0.01 C=0.1 C=1 C =10 C =100
Tonosphere Unweighted 0.260 £ 0.007  0.266 +0.013  0.602 £ 0.098 0.637 +0.104 0.625 4+ 0.102
TIRW 0.740 £ 0.007 0.749 +£0.015 0.735+0.108 0.665+0.108 0.643 £+ 0.103
Dry Bean Unweighted 0.266 +0.008 0.616 £0.012 0.748 £0.014 0.719+0.021 0.668 £ 0.020
TIRW 0.824 £0.022 0.773+£0.013 0.764+0.014 0.713 £0.022 0.696 + 0.028
Magic04 Unweighted 0.621 £0.006 0.625 +0.007 0.779£0.011 0.752+0.012 0.744 +£0.012
TIRW 0.621 £0.006 0.624 +0.007 0.804 +£0.041 0.768 +0.011 0.748 +0.013
Authentication Unweighted 0.237 £0.007 0.718 = 0.031 0.940 £0.033 0.920+0.036 0.919 4+ 0.036
TIRW 0.811 +£0.037 0.986 +0.015 0.973+0.023 0.928 +0.032 0.919 4+ 0.036

As shown in Table([T] the TIRW estimator outperforms the unweighted estimator on each dataset for
almost all the choices of C'\. We also observe that the unweighted estimator has a much less satisfying
accuracy of prediction for small choices of Cy. Nevertheless, with importance ratio correction, the
accuracy rate has been significantly improved for small choices of C'y, even attaining nearly optimal
for the first two datasets. For a large choice of C), these two estimators have a negligible gap in
accuracy rate.

A.5 Kaullback-Leibler importance estimation procedure

In this section, we introduce the importance ratio estimation procedure based on Kullback-Leibler
divergence (Sugiyama et al., 2007b). Recall that we have the source input data X7, ..., x> generated
from p5 and the target input data x{ , ..., x~. generated from pL and our goal is to estimate the ratio
#(x). Since pL(x) = ¢(x)p3(x), the true ratio ¢(x) can be correctly identified by solving the
population version of the optimization task that

minimize KL (px (%) ]| 9(x)p5 (%)), (1
g X

where KL(pl|q) = [ p(x) log %d x denotes Kullback-Leibler divergence between P and @) with

probability densities p and g respectively. Note that either the bounded case or second moment
bounded case considered in the main text, p (x) is absolutely continuous with respect to p% (x),
which ensures the optimization problem (T)) is well defined. Since

KL(E (9 l9)p0) = [ ) log (g()’;?p(s"(i()) ax
~ [ stion (20 ) ax— [ st g axiix

X
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we can rewrite the objective function as — [ pZ (x) log(g(x))d x by ignoring the constant term. It can

be approximated by its empirical version that —-L 3" | log g(x7) with g(x) = 2221 ap K (xg, x)
and {x1,...,X;} denoting a subset of target input data with bas a pre-fixed number and K (-, -)
denoting some certam kernel functlon Since the true ratio ¢(x) is non-negative and satis-
fies 121 ! d(x7) ~ [o(x dx = 1. We add some constraints that oz > 0 and

Ly Zk 1 akK(xk, J) = 1 Th1s leads to the optimization problem:

b
1 m
maximum — Y lo apK (x5, x5 |,
BT 2y g<z )

st. ap>0,k=1,...,0,

A.6 Importance weighted cross validation

Sugiyama et al.| (2007a) points out that cross-validation (CV) on the unweighted training data
introduces an additional source of bias in making predictions on test data due to covariate shift.
They propose a method called importance weighted cross validation IWCV) according to important
ratio to compensate for the effect of covariate shift. First, one can randomly divide the training set
{(x4,:)}™, into b disjoint non-empty subsets {7;}%_,. Then, denoting the learned function by

using dataset {7}, as f;. Instead of the classical CV procedure, the IWCV aims to minimize

b
szcv—gkz_: T Z ¢(X1)L(yufk(xi))'

(%x4,yi) €Tk

A.7 Discussion on Assumption 2

Assumption 2 in the main text is a local cy-strongly convexity condition on the expected loss function
with respect to £2(X, PS) and £L2(X, PT) at f*. So verifying Assumption 2 is equivalent to
verifying the local ¢y strongly convexity of the loss function. Here are some examples:

* For the squared loss L(y, f(x)) = (y — f(x))?, note that for any y € R, the function
2z — (y — 2)? is strongly convex with parameter cq = 1, so f — L(y, f(x)) satisfies the
condition in Assumption 2 with ¢ = 1.

» For the Huber loss L(y, f(x)) = (y — f(x))?,if |y — f(x)| < 8:6]y — f(x)| — 507,
otherwise, since this loss function is locally equivalent to the squared loss, so it is locally
strongly convex under mild tail condition on y — f*(x).

* For the check loss L(y, f(x)) = (y — f(x)) (T — Ity<f(x)})- the local strong convexity

holds if the conditional density of y — f*(x) given x is bounded away from ¢ uniformly
(Lianl 2022).

For the other loss functions, including logistic loss and hinge loss, more detailed discussions and
verifications can be found on Pages 470-472 in|Wainwright (2019). Interested readers are referred to
it for more details.

B Algorithm details

In this section, we provide the computing details for different loss functions considered in our
experiments.

Kernel ridge regression. For the squared loss, the minimizer f takes the form of f(x) =
S @K (x;,x), due to the representer theorem (Smale & Zhou, [2007). Let & = (@1, ..., Q) | €
R", then the solution is given by @ = (KWK + nAK) "KWY = (WK + n\)"! Wy. Here
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K is n x n invertible matrix with elements K (x;,x;), W is a diagonal matrix with W;; = ggn(xl)
and Y = (y1,...,Yn) ", Where ¢,,(x) is the truncation version of the KLIEP estimator ¢(x).

Kernel quantile regression. For the check loss, there is no explicit form for the solution. Then, we
attempt to search the optimal solution based on the solution of the dual problem (Takeuchi et al.
2006). In the presence of covariate shift, we derive the dual problem to be the following convex
optimization task (Boyd & Vandenberghel 2004) that

1
minimize -a' Ka—-Y' e,
st. Cx(r— l)gn(xi) <a; < C’,\Tgn(xi), forl <i<n,
Ta = 0,

where 1 denotes the vector whose elements are 1, Y = (y1,...,%,) " and C = 1/(n\). b s the dual
variable to the constraint I a = 0.

Kernel support vector machine. For the hinge loss, we also solve the duality problem (Scholkopf]
et al.| [2002). Specifically, in the presence of covariate shift, we solve the following convex optimiza-
tion task that

1 +~ o
minimize inTKn ~1n,
st. ¥y'n=0,
Ognlgcx\(gn(xl% izla"'7na

where K denotes the n x n matrix with entries K(zi,2)yy; and & = (01Y1, ..., My ) |- bis the
dual variable to the constrainty 'n = 0.

Kernel logistic regression. For the logistic loss, we use the Newton—Raphson algorithm to
solve the optimization task (Keerthi et al., [2005). Let K; correspond the ¢-th row of K and

¢ = ((;As(xl),...7qA5(xn))T, p = (p1,..,pn) | with p; = %. We conduct the iterative
algorithm

a1 = o — J (o) T F(en) = (KWK + AK) (KW Kay, + Ky O(1 - p) © @)
WK+ ) " (WKa, +YO(1 —p) O ¢),

where W denotes the diagonal matrix with W;; = $n(xi)pi(1 —pi)anda®c = (acy, ..., ancy)
for two vectors a and c.

T

C Technical proofs

This part provides the proofs of all the theorems and corollaries in the main text. Note that our
theoretical analysis mainly employs the symmetrization technique and concentration inequality in
learning theory. For the second moment bounded case, Section|C.I]is devoted to the proof of Theorem
3 that indicates the TIRW estimator achieves optimal rate, and Section|C.2] gives the proof of Theorem
2 showing the sub-optimal rate for the unweighted estimator. For the uniformly bounded case, Section
[C3|presents the proof of Theorem 1 to show the optimal rate for the unweighted estimator, which
follows a similar argument as in Section Section gives the detailed derivation of all the
corollaries. Section [C.3] discusses the results of the minimax lower bound when some specified
loss functions are used. In Section|C.6] we further discuss the theoretical gap with the importance
ratio replaced by its plugin estimator and potential future direction. For ease of notation, we discard
the superscripts of x; and y? to x; and y; in our proofs, that is, {x;,y;}"_, is driven from the
source model. Additionally, we define Py := Eglp(x,y)] and P,y := (1/n) Y1 | ¢(x;,y;) fora
measurable function (X, y), and clarify that the expectation E[] in our proof is taking with respect
to all random variables contained in it. Note that we remain || f*|| x in our proof and the theoretical
results in the main text can be obtained by letting || f*|| x = 1.

C.1 Proof of Theorem 3

The following Lemma states Talagrand’s concentration inequality for random elements taking values
in some space Z. One can refer to Bousquet| (2002) for detailed proof.
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Lemma C.1.1. Let Z1,...,Z, be independent random elements taking values in some space Z and
let E be a class of real-valued functions on Z, if we have

€l < npn  and ZVar )< (3 VeeE.

Define Z := supcz | = 1" (£(Z:) — BE(Z ’ Then fort > 0

2
P (Z > E(Z)+t/2(2 +20,E(Z)) + 277;:15 > < exp (—nt?).

The following Lemma is the core of our proofs. It bounds the supremum of the difference between
the empirical average dependent on the source data and the target expectation within a local ball
using the Rademacher complexity function and Lemma [C.1.1]

Lemma C.1.2. For any radii § > 0, we define event K(§) as

sup
1€0(9)

Z% i) (L(yi, f(x:)) = Lyi, f*(x:))) = Br [L(y, f(%)) = L(y, f*(x))]| < M(9),

where ©(6) = {f € Hk | [If = [z < b,and |[f = [k < 3[|f*[lx} and M(6) =

Cy/B?lognR(0), then K(d) holds with probability at least 1 — n~°.

Before providing the detailed proof of Lemma [C.I.2] we give some discussions to il-
lustrate the motivation of the proof.  Specifically, Lemma [C.I1.7] states a general uni-
form law for the Lipschitz loss functions under covariate shift. Note that by the em-
pirical process theory, the empirical average + 7" &, (x;)(L(yi, f(x:)) — L(ys, [*(x3)))
approximates its population counterpart Fg[¢n,(x)(L(y, f(x)) — L(y, f*(x)))] uniformly on
some function class. = When the truncation <, diverges fast enough as n grows, the
quantity |Es[én(x)(L(y, f(x)) — L(y. f*x))] — Er[L(y. f(x)) — L(y. f*x))]| is negligi-
ble. Therefore, it is expected that L 3" | ¢, (x;)(L(yi, f(x:)) — L(yi, f*(x;))) is close
to Er[L(y, f(x)) — L(y, f*(x))] uniformly. Our proof is precisely motivated by this in-
tuition. Moreover, in the proof, we decompose the total error into the empirical error
SUDfeos) I 2uiet @n (%) (L(Yi, f(xi)) = Ly, £*(x:))) = Bsldn (%) (L(y, f (%)) = Ly, f* (x)))]]
and the approximation error sup ycg s) | Es[¢n (%) (L(y, f (%)) — L{y, f*(x)))] = Er[L(y, f(x)) -
L(y, f*(x))]|- Recall that ¢,,(x) = min{¢(x), v, }, and here, the truncation parameter -,, plays a
key role in balancing such two errors. For example, a fast diverging ,, may reduce the approximation
error but compromise the empirical error. Therefore, an optimal ,, is the one that diverges at a certain
rate (i.e., 7, = O(y/n)) to achieve the optimal tradeoff between empirical and approximation errors.

Proof of Lemma [C.1.2] We first make the following decomposition that

fglé%) % Z dn (%) (L (i, f(%:)) — L(yi, f*(x3))) — Er [L(y, f(x)) — L(y, f*(X))}|
< S % Z dn (%) (L(ys, f(x:)) — Lyi, ¥ (%3))) — Es [¢n(x) (L(y, f(x)) — L(y, f*(X)))]‘

Empirical error D4

+ sup |Eg [¢n (%) (L(y, f(x)) — L(y, f*(x)))] = Er [L(y, f(x)) = L(y, " (x)]| -

Approximation error Do

Then, we only need to bound D; and D, separately. To bound D;, we firstly use the standard
symmetrization technique in empirical process (Pollard, [2012; [Wainwright, 2019) to bound E[D;]
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that
E[Di] = E| sup |(Po = P)éu(x) (L(y, /() = L(y, f*(x))) |

Fee(s)
(i) 2 *
< 2] s \Zmn ) (Dl F6<2)) — Ly 7 (<)) | @
(17) 4CL
7E 0;Pn z Xi) — * X ’
- [fgé}()ﬁ) Z &n( ) — I ( ))}

where {0;}’s denote the Rademacher Varlables taking values in {—1, 1} with equal probability, the
inequality (i) is from the symmetrization technique that for any class of measurable function F,
we have Efsup,c (P, — P)¢] < 2E[sup,c #(1/n) Y211 0ip(xi,y:)]. The inequality (ii) follows
from the fact that the loss function is ¢ -Lipschitz continuous and the Ledoux—Talagrand contraction
inequality (Wainwright, 2019).

For any f € ©(§), we denote g = f — f* € Hg and then, there holds g = Z;ilgjwj with
95 = [ F(x)0;(x)pk (x)dx. Clearly, we have ||g||7 < § and ||g||x < 3||f*||x, which implies that
ooy g; <o0%and 307 g7 /g <9I F 1% Combining these two results, there holds

< 10. 3
Z 52,ug||f*||2 )< ©

=1
Then, we have

| iamn(xi)(f(xi) )| = | iaiasn(xi) iwj(xi)

\Z NI S fmin(a2, 5 ) Zamn ) (x;)
v ] K

“

. 9y 1/2
< me 2l %) <Zm¢n(xi)¢j(xi)> ;
i=1

where the inequality (1) follows from Cauthy-Schwarz inequality and the fact (). Moreover, by
plugging (@) into (2)), we have

By < W10 [me sl 1) (Zmn >> 1"

('L) 4\/ CL

/\@

1/2

[e'S)
Zmln 2 1L 1% Exeo

Zaz¢n ¢J( )1

i=1

1/2
(i) 4W/10cr | o= . ; n
= > min(8%, il £51%) Y | Bxo [07 67 (x:)87 (%5)]
j=1 i=1
1/2

% willFII%) Y Bl x)l p

=1

(ii1) 44/10c, |
- .
< - 22: min(

where the first inequality (i) follows from Jensen’s inequality, the second inequality (ii) follows from
the fact that Ex ,[0¢n(X;)1j(X;)] = 0 for each 4, and the last inequality (iii) follows from the
assumption that||¢);||oc < 1 forall j > 1 and the fact that ¢,,(x;) < ¢(x;). Note that E[¢?(x;)] <
(32, and thus we have

E(Dy) < 4vT0, | 2 Z n(82, 13| £+ %) = 4v/108%e R(6). 5)
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Next, we turn to bound Dy — E(Dy). Recall that > :;‘;1 G Zj'”f*HQ )
W K
then there holds

>0 (i) | &
x)| = ;gj¢j < $Z min 527N1Hf*||K szln s 1] ‘f*HQ )"/}2 (x)

Jj=1

<10 and ||¢)}]|cc < 1, and

j=1

< J 10> " min(02, 4 /%) = VI0nR(S),

where the first inequality (i) follows from Cauthy-Schwarz inequality. Consequently, we have
|Pn (%) (L(ys, £(%:)) = L(ys, [ (%)) < v [(L(ys, £ (%)) — Lys, £7(x2)))]
< Yner |9(x%:)] < AnepV10nR(6) = 1/1082ner, R(0),

where we use vy,, = /n/32. Furthermore, we have

E[{%(’%) (L(ys, f(xi)) — L(yi, [ (xi))) }2} < L E [¢2 (%) g% (x:)] < 10n8%c] R*(9),

where we use the fact that E[¢2(x;)] < E[¢?(x;)] < 2. Clearly, all the required conditions

in Lemma are satisfied by taking 7, = /103?nc . R(6) and (2 = 10nS3%c? R?(5). Let
t=4/ c"’l%, with probability at least 1 — n~, there holds that

D, — E[D1] g\/ CSI% (20nﬁ202LRz(5) v 4ncL\/1Oﬁ2R(5)E[D1]> + 2\/10# log nR(0)

(1) 24/1032
<3cp\/20c3B2 lognR(d) + % log nR(4)

2
<3CL\/2003 T fc?’“) VA2 lognR(8

(6)
where the first inequality (i) follows from (3).

Then, combining (3) and (6)), with probability at least 1 — n~“, we have
D, < C+/B?lognR(0), @)
where C' = 4v/10c, + 3cr+/20c3 + 7”10ﬁm

Now we turn to bound D5. Note that
D2 < f:lé)r()(;) ‘ET [L(ya f(X)) - L(yv f*(X))] - ET [I{¢(x)§%} (L(ya f(X)) - L(ya f*(X)))] | +

L |Es [I{s0>7,) (L(y: f(X)) = L{y, £*(x)))]|

sup |ET (Lo 5my (L(ys f(X)) — Ly, f*(x)))] | +

feo(s
Yo sup |Es [Iigx)sy,y (L(y, (%)) = L(y, *(x)))] |
F€06(9)
< Er | I{p(x) >} fég%) |L(y, f(x)) — L(y, f*(x))|

’YnES

T{(¢(x) >} fgg%) |L(y, f(x)) — L(y, f*(X))I]

< cLBr [I1ot05vm} ) SUP |9]loo + ¥ncLEs [T{otx)>4n}] 5P |9l o
g g

(4) 2 2
< ﬂCL\/IOnR(é)Jr'yn%\/lOnR(é)§2 108%¢, R(5),

Tn n

®)
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where the inequality (i) follows from Markov inequality.
Combining (7) and (8), with probability at least 1 — n 3, there holds

Dy + Dy < C/B%lognR(5) = M(9),
where C = 4+/10cy, + 3cp,+/20¢3 + 7”105% + 24/10¢y,. This completes the proof. [ |

Following the Lemma|[C.1.2] we give the proof of Theorem 3.

Proof of Theorem 3. Denote 0, = \/ 62 + 2c5 ' \||£*||% and note that M(8)/ is non-increasing in
0, then
M) < M((Sn) 1

1
ol < =cob
5 S 5, S¢S gt

where the second inequality follows from the definition of &,. Then, we have M(8,) < ¢d% /2.

In the following, we first establish the upper bound on £2(P[')-error by showing the following
inequality holds conditioning on the event /C(d))

*Zaﬁn xi) {L(ys, f(x:)) = L(ys, £ (x))} + Al fl% = A >0, 9

fEHK,f¢@(5A

where the definitions of K(8,) and ©(8y) are provided in Lemma[C.1.2] Note that it suffices to
prove that (9) holds on the boundary of ©(d) ), denoted by B(O(dy)). To see this, for any f € H
and f ¢ ©(J)), by the convexity of the two sets H and ©(J) ), there exists 0 < « < 1 such that

f=oaf+(1—a)f* e B(O(J))). Applying Jensen’s inequality yields

b () { Ly, F)) = Ll 7)) } + MFIE = AL
< @ {n(%i) {L{yi, £x:)) = Ly, i)} + A% = M I3

Therefore, we only need to show
ln N Ly F5(x ) — L. f(x: AFEIZ = M FII2 <0
nzqﬁn(xz) (yir f7(%0))) = L(ys, f(x3) p + A% = Allfll% <O
i=1

For f € B(0(6y)), we consider the following two cases: (i) If || f — f*||z = dx and ||f — f*||x <
31 f* | i, we have

> ) { L 7 6e0)) = Ly Fx) b+ A e = Al

SM53) ~ Br Ly, F60) — L, 6] + AL ~ Al

(i) r3 * * C *
M) = collf = 113+ M e < =583+ Mf i = =302 <,

where the inequality (i) follows from Lemma C.1.2] (ii) is from Assumption 2. If || f — f* ||z < x
and || f — f*|lx = 3||f*| k., we have

> ) { L 7 6x00)) = Ly Fx) b+ A e = Al
<M(63) = Br [L(y, fx)) = Lly, £ ()] + AL I = M

(@) (4)
<M(@x) + AL 1% = Al Il S *5)\ SAIlf* HK—* — 2\ f*I% < O,

where the inequality (i) follows from the fact that || f||x > 2||f*| x by triangle inequality, and the
inequality (ii) follows from the definition of .
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Combining the above results, the inequality (9) holds. Then, we can conclude that
1F? = 1117 < 0% = 6n + 2¢0 " Al Il

holds by the definition of f*.

For the bound of excess risk, note that
EF(F?) — ER(F7)
(1) —~
<EF(f?) - EF _72% (L, F2(x3)) — Llyi, £*(x3))) + M5 = AP

(i) R R R
<M+ AIF % = AFPN% = M(8y) = 2X(F*, f2 — [k = AIFe — frlI%

C (52 * iy * 7 *
<%+2A||f IlIF? = f¥llc = MLF? = £l
)C 6 * Y *

=5 MW+ AT = £ 15 = AP = 1%

¢ 52

=S5 AT = geodh + A1 I

where the inequality (i) follows from the definition of f¢, (ii) is from Lemma , and (iii) is from
the basic inequality. This completes the proof. ]

C.2  Proof of Theorem 2

To prove Theorem 2, we first provide a Lemma which is similar to Lemma [C.1.2] and bounds the
regular supremum of empirical process within a local ball.

Lemma C.2.1. For any radii v > 0, define the event K'(v) as

n

sup (=37 (Ll F)) — Llyi, £ (x:))) — Es [Lly, £() — L{y, f*(x)]

fee'w) |1 i=1

where ©/(v) = {f € Hic | |f = £lls < cov/(eo/B?) and ||f = f*llxc < 31f* |1} }. then
K'(v) holds with probability at least 1 — n ™2,

Note that
coll £ — 117 %)ET [L(y, f(x)) = L(y, f*(x))] = Es [¢(x) (L(y, f(x)) — L(y, f*(x)))]
LI - s,

where the inequality (i) follows from Assumption 2, the inequality (ii) follows from Cauchy-Schwarz
inequality and the fact that the loss function is cy,-Lipschitz continuous.

(10)

Denote

n

Tll Z yu z L(yu f*(xl))) - ES’ [L(y7 f(X)) - L(ya f*(X))]| '

= sup

feo’(v) i=1

To bound E[D], by following the similar argument as Lemma|C.1.2] we have

E[D] < —LE{ sup
feorv)

oi(f(xi) - f"(Xi))‘ J an

i=1
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Denote g = f — f* € Hc and then, we have g = >-72 | g;4; with g; = [, f(x);(x)px (x)dx
and

o0

Zm(f(xz»)—f*(xi)) =) oY gii(xi)

i=1  j=1

Z < /min( ,,2 )\/min(ﬂ,ujllf*lli) ;Uﬂpj(xz‘) (12)

ugllf 1%
1/2
(4)

o0 n 2
20 {3 i ) (S msd)
j=1 i=1
where the inequality (i) follows from Cauthy-Schwarz inequality and the fact that
2
pOFa m < 10 by using [|g|l7 < v from (I0) and ||g|[x < 3[|f*| k-
Plugging (I2) into (IT), we have

n 2
pip) < 10 [me s £°1%) (Zaiwxxi)) [
1/2

() 4y/10c;, | S . . u 2
< S S min(? 1) B [ Y it ()]
j=1

=1

(13)

(i)
< 4V10cL R(v),

where the inequality (i) follows from Jensen’s inequality, the inequality (ii) is from the fact that
Ex s[oij(x;)] = 0, for each 7 and the the assumption that ||1);||oc < 1, forall j > 1.

Next, we turn to bound the term D — E[D] and following the similar argument as (T2)) yields that

90| < me T f*HQ S min(w2, | £+ %)) < VIORR().
b _7:1

Consequently, we have
Ly, f(x:)) = Ly, f*(x2))] < erlg(xi)| < V10neLR(v),
and
E[(L(yi, f(x:)) = Ly, f*(x))]” < L E [¢°(x:)] < 10n¢] R*(v).
Then conditions in Lemma are satisfied with 77,, = v/10ncr, R(v) and 2 = 10nc¢2 R?(v). Let
t =4/ 021%, with probability at least 1 — n ™2, there holds that

1 21 1
D — E[D] <\/C2 ogn (20nc%R2(u) + 4cL\/1OnR(1/)E[D]> + % (\’%‘R(y)
(@) 20cs logn 2v/10cocy, logn
< _—
_cL\/ ” (n+8vn)R(v) + 3 n R(v) (14)

(1)

< (3@% + \ﬁ@%) ViognR(v

where the inequality (i) follows from (T3)), and the inequality (ii) follows from the fact that 10ng <1/2,
forn > 2.

Combining (T3) and (T4), with probability at least 1 — n~ 2, we have
D < Cy/lognR(v), (15)
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where C' = 4v/10cy, /\/Tog 2 + 3c1,v/20¢; + v/20cocr, /3. Thus we complete the proof by taking
M (v) = Cy/lognR(v) . [ ]
Proof of Theorem 2. Let § = cov?/(cp+\/B2), Q(5) = M’ ((calcm/ﬁ%)l/z), the function
class G(8) = ©’ ((calcm/ﬁ%)lm) and the event P(§) = K’ ((Calcm/ﬁ%)l/?)_ Denote 6y =

\/52 + 2¢5 M| £*]|% with Q(8) < ¢d?/2. Since M’ (v)/v is non-increasing in v, then it is easy to
check Q(4)/4 is non-increasing in § by

"((egte 25)1/2 _
R

hence we also have Q(d) < ¢od3 /2. Following a similar treatment as that in the proof of Theorem
3, we can show that

jeﬁmng{ (i, £ (%)) = Lys, £*(x)} + A7 = Al > 0. 16)

It implies by the definition of f that || f — f*|lg < dx with probability at least 1 — n—2. By (T0), we
have

1F = 713 < e e VB20s = e e /B2 J02 + 265 Ao |%

and

ER(]) - ER(I") = Er [L(y, £(x)) — L(y, f* ()] < ex/B2\/52 + 25 AL f* 1%
with probability at least 1 — n~. ]
C.3 Proof of Theorem 1
Note that the density ratio is bounded that sup,  y ¢(x) < «, which implies
If = fllr < Vallf = fls- (17)
We can establish the similar result as that in Lemma (C.1.2) by taking ©'(v) := {f € Hk |

lf — f*lls <v/y/aand ||f — f*||k < 3| f*||k} Then, by choosing 6 = v/+/a and following the
similar treatment as that in the proof of Theorem 2, we have

IF = £71% < 65 + 2¢5 " AL -

with probability at least 1 — n~°!, where ¢, satisfies M'(y/ad) = CylognR(y/ad) < %.
Together with (I7), we have

1F = 117 < a (&7 + 2 AL 1% )
with probability at least 1 — n~“L. On the other hand, by (T0), there holds
EF(f) =& (f*) = Br[L(y, f(x)) — L(y, [*(%))] < CLOZ\/((S?L +2¢5 Al %)

with probability at least 1 — n~“*. Thus we complete the proof. ]

Remark C.3.1. One can combine the proofs of Theorem 1 and Theorem 2 to find out why the
unweighted estimator for the bounded case achieves the optimal rate in terms of the L?(PI')-error,
rather than only attaining sub-optimal for the moment bounded case. Both the two proofs first bound
the supremum of empirical process under the classic regime, that is, without covariate shift. Then
the fundamental distinction lies in that the inequalities (10) and give two different convergence

rates compared to HJ?— I*ls.
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C.4 Proof of corollaries

Proof of Corollary 1. From the definition that d(§) = min{j > 1|u; < 62} and the assumption that
Il£*|% = 1, we have

> min(%, | f*15) = D min(0% )+ > min(6%,p5) < d(9)0 + Cd(6)8% < d(9)8,
= = j=d(%)

where we use the definition of the regular kernel. So the inequality C'v/log nR(y/ad) <
simplified to

alogn

d(v/ad) < C6.

This proves the inequality (7) in the main text. For the finite-rank D case, Z;’;l min (62, p;) < D&,
which implies
52 Dalogn '

n

<C

n

Combining the choice of A and Theorem 1 gives

~ ~ 2
17— 1713 = ek(F) — ek(rr) < o 207108

For the eigenvalues with polynomial decay, such that y; < Cj§~2", so we have d(6) < C(1/5)1/T,
which implies that §,, satisfies

2r
2r—1 m
(bgna?r ) <O,

n
The simple derivation leads to the desired result. Thus we complete the proof. ]
Proof of Corollary 2. From the definition that d(§) = min{j > 1|u; < 62} and the assumption that
|l£*1|% = 1, we have

00 d(s) o
Zmin((SQ, i) = Zmin((SZ,/L] + Z min (62, j1;) < d(6)6* + Cd(8)6?,

where we use the definition of the regular kernel. So the inequality M(5) < §2/2 can be simplified
to

B2log? n
n

d(8) < Cb.

This also proves the inequality (16) in the main text. For the finite-rank D case, Z;}il min(62, ;) <
D42, which implies

(18)

Combine (T8), the choice of A and Theorem 3, we have
Df2log?n
- .

7% — f13 =< EE(f*) — ek(f) < C

For the eigenvalues with polynomial decay, such that x; < Cj~2", so we have d(5) < C(1/8)'/".
According to inequality (16) in the main text, we have

B%log®n
n

21 2
52+ d(6) < 8% + 518 ™ 1y,
n
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2r

which leads to an optimal choice §? = C(@) T, |

Proof of the sub-optimality of fin moment bounded case. Now, we come to verify the result in
Table 1 for the unweighted estimator in the moment bounded case. For the kernel with finite R, the

inequality C'/log nR((cr\/ 25 /co)/?) < % can be simplified to

logn iy /525 < 2.
n

Simple derivation yields §,, < (k’%D\/ 32)1/3. The desired convergence rate follows by setting

A= (@)W 3. For the eigenvalues with polynomial decay, by the argument as before, the
inequality C'v/Tog n.R((cp\/B%5/co) /?) < % can be simplified to

logn (\V/B25)% 2 o2,

which leads to 07 < C/(=5% logn (52) 274771)% Thus we complete the proof by applying Theorem 2
with A = (1081 (32) %5t )t m
Proof of the convergence rates with Gaussian kernel. At last, for Gaussian kernel, the eigenvalues

p; decay exponentially, that is u; < e~¢71°87 Bach & Jordan|(2002). By the definition of d(J), we
have d(§) < —C'log 62 for 0 < § < 1. We first consider the moment bounded case. For the TIRW

estimator, by applying 377 min(6?, y1;) < Cd(8)d?, the inequality C\/? log nR(8) < # can
be simplified to
1 2
05 0B 1og(1/62) < 57,
which yields 62 < C 62%. With )\ < ﬁzw, Theorem 3 implies

—~ —~ 1 3
17— 113 = k() — k() < 0p?LBL

For the unweighted estimator, C'v/Tog nR((cr\/ 326 /co)'/?) < 60252 can be simplified to

log n

c lo

(\ﬁé)f(s«s?

which yields §,, < O(\/BQW)U?’. With A < (\/62%)2/3, Theorem 2 implies

~ ~ 1 2
T~ £1 = (D) — k() < o 1By

We next consider the uniformly bounded case. For the TIRW estimator, it is straightforward to obtain
that

1P — £ = E5(F) — ER(r) < 018",

n

For the unweighted estimator, the inequality Cv/log nR(y/ad) < C“‘s can be simplified to

O 8 100 (L) ao2 < 52,
n od?

which yields 62 < Ca 2" (log" . With A < Ca*22" (log’" , Theorem 1 implies

~

—~ 2
1F = F7112 = E£(F) — EE(*) < Ca? 18"

n



C.5 Discussion on the minimax lower bound

Based on a standard application of Fano’s inequality, Ma et al.[(2023) establish a minimax lower
bound for the regular kernel class by using the squared loss. For completeness of our paper, we
present the relevant result below, which gives a relatively conservative lower bound by only taking
the regression-based problems into consideration, which covers the squared loss and check loss. To
be specific, we suppose that the conditional density of € := y — f*(x) given x follows the normal

distribution with mean zero and variance 2.

Theorem C.5.1. For any a > 0, there exists a pair of marginal distributions (P2, PL) with a-
uniformly bounded importance ratio and an orthonormal basis {1} ;>1 of L2(X, PL') such that for
any regular kernel class with eigenvalues {1} j>1, we have

inf sup E [||ff f*||2‘T} > C int {52 +02ad(6)}, (19)
F feBu(n) 0>0 n

where By (1) = {f € Hi | ||fllx < 1} represents the unit Hilbert ball.

By simply comparing the lower bound in to the upper bound in (7) and (14) in the main text,
we can see that this lower bound is sharp since it is achieved by both the unweighted estimator
and the TIRW estimator up to a logarithmic factor. And hence, in the uniformly bounded case, the
unweighted estimator achieves minimax optimality, which indicates the TIRW estimator may not be
necessary. In the moment bounded case, the upper bound in Theorem 3 also attains the lower bound
in (T9) up to logarithmic factors. For the reason that the second moment bounded class contains the
uniformly bounded class, we can conclude the TIRW estimator is still preserving minimax optimality,
whereas the unweighted estimator is far from optimal compared to the minimax lower bound.

C.6 Remark about the importance ratio

It is worthy pointing out that in practice, it is unrealistic to obtain the true importance ratio ¢(x), and
it should be estimated from data, where we denote the estimator of ¢(x) by ¢(x). As illustrated in
Section 4 of the main text, we adopted the KLIEP algorithm (Sugiyama et al., 2007b) to obtain ¢(x)
in all the numerical examples. While the theoretical results are established under the case that¢(x)
is known. We want to emphasize that to the best of our knowledge, such a gap commonly appears
in the existing literature, possibly due to inherent theoretical challenges. We decide to leave such a
promising topic as potential future work, and we add some detailed discussions on the possible route
for establishing the theoretical results. Specifically, the key step is that we need to bound the term
n

sup |(1/m) D (@n () = () Ly £05:)) = Lwis £ ()

f€O(9) i=1

Thus the strong convergence rate of ¢,, — ¢,, is required. It’s important to note that the components

within this term are not independent, as the estimated importance ratio g/zS\ relies on the source data. To
address these intricacies, advanced technical tools are essential. Once we successfully bound this
term, we can establish results similar to those presented in Theorem 3 by leveraging existing proof
techniques with slight modification.
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