
Supplementary material for "Towards a Unified
Analysis of Kernel-based Methods Under Covariate

Shift"

The supplemental material is organized as follows. Section A provides the results of all the additional
synthetic experiments and real data results for various kernel-based methods and the detailed settings.
Section B describes the algorithm details we use in Section A. In Section C, we provide some
useful lemmas and all the technical proofs of the theoretical results in the main text. The python
code implementing the proposed method is available at https://github.com/WangCaixing-96/
Kernel_CS.

A Additional numerical results

In this section, we provide more experiment results, including KRR (Section A.1), KQR for various τ
and r (Section A.2), kernel logistic regression (KLR) (Section A.3) and multi-source real data studies
(Section A.4), that further confirm our theoretical findings. Section A.5 and Section A.6 are devoted
to introducing KLIEP and IWCV. We also add some discussion on Assumption 2 of the main text in
Section A.7.

A.1 Kernel ridge regression

For the squared loss, we consider the following two examples.

Example S1: The response y is generated by y = f0(x) + σε, where f0(x) = e−
1
x2 and ε ∼

N(0, 1). The source and target distributions are ρSx(x) ∼ N(µ1, σ
2
1) and ρTx (x) ∼ N(µ2, σ

2
2) with

µ1 = 0, µ2 = 0.8, σ2
1 = 0.5, σ2

2 = 0.3 for the uniformly bounded case and µ1 = 0, µ2 = 1.5, σ2
1 =

0.3, σ2
2 = 0.5 for the moment bounded case, respectively. The noise level σ is set to 0.05 for both

uniformly bounded and moment bounded cases. The results are shown in Figure 1

Example S2: The response y is generated by y = f0(x) + σε, where x = (x0, x1, x2)
⊤ ∈

R3, f0(x) = sin(2πx0)− e−x2
1−x2

2 and ε ∼ N(0, 1). Let g(x0;α, β) denote the probability density
function of Beta distribution with parameters α, β. It is easy to see that the importance ratio ϕ(x)
for this case is not uniformly bounded but second moment bounded if and only if αt < αs, 2αt ≥
αs, 2βt ≥ βs or βt < βs, 2αt ≥ αs, 2βt ≥ βs. In the 3-dimensional KRR experiment, we consider
ρSx(x) = g(x0;αs, βs) and ρTx (x) = g(x0;αt, βt) with αs = 2.5, βs = 1.5, αt = 3, βt = 4 for
the uniformly bounded case and αs = 4, βs = 1, αt = 3, βt = 6 for the moment bounded case,
respectively. The noise level σ is set to 0.3 for both uniformly bounded and moment bounded cases.
The results are shown in Figure 2

From (d) in Figures 1 and 2, we observe that for the moment bounded case, the TIRW estimator has a
great improvement compared to the unweighted estimator, even for the choice of λ that is far away
from the optimum. Nevertheless, for the bounded case, we can see from (a) in Figure 1 and Figure
2 that there has a negligible gap between the performance of the unweighted estimator and that of
the TIRW estimator as long as we choose λ that is close to optimum. For the poor choice of λ, the
TIRW estimator still performs significantly better. From (b) and (e) in Figures 1 and 2, it is shown
that the error curve has an explicit gap with those of weighted estimators for the moment bounded
case, whereas it is very close for the uniformly bounded case. From (c) and (f) in Figures 1 and 2, we
observe that the target data size m has a subtle influence on our estimators.
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(a) (b) (c)

(d) (e) (f)

Figure 1: Average MSE for unweighted KRR, TIRW KRR with true weight and estimated weight, respectively
(The top panel is for the bounded case and the bottom is for the moment bounded case; in (a) and (d), the
curves are plotted with respect to log10 λ with n = 500,m = 1000; in (b) and (e) the curves are plotted with
respect to n with fixed m = 1000, λ = 10−4; in (c) and (f), the curves are plotted with respect to m with fixed
n = 500, λ = 10−4)

(a) (b) (c)

(d) (e) (f)

Figure 2: Average MSE for unweighted KRR, TIRW KRR with true weight and estimated weight, respectively
(The top panel is for the bounded case and the bottom is for the moment bounded case; in (a) and (d), the curves
are plotted with respect to log10 λ with n = 500,m = 1000; in (b) and (e) the curves are plotted with respect
to n with fixed m = 1000, λ = 5 × 10−5; in (c) and (f), the curves are plotted with respect to m with fixed
n = 500, λ = 5× 10−5)

A.2 Kernel quantile regression

For the check loss, we consider the following two examples.

Example S3: This example continues to study the KQR with a 1-dimensional covariate under the
same setting as in the main text. Here we further conduct experiments for various combinations of
τ ∈ {0.3, 0.5, 0.7} and r ∈ {0, 1}.
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Example S4: The response y is generated by y = f0(x) + (1 + rx0)σ(ε − t−1
4 (τ)), x =

(x0, x1, x2)
⊤ ∈ R3, where f0(x) = sin(1.5πx0) − e−x2

1−x2
2 , t4 denotes the CDF function of

t-distribution with 4 degrees of freedom and ε ∼ t4. We consider ρSx(x) = g(x0;αs, βs) and
ρTx (x) = g(x0;αt, βt) with αs = 2.5, βs = 1.5, αt = 3, βt = 6 for the uniformly bounded case and
αs = 5.5, βs = 1.5, αt = 3, βt = 6 for the moment bounded case, respectively. We set r = 0 and
σ = 0.3 for the homoscedastic case and r = 1 and σ = 0.3 for the heteroscedastic case, respectively.

Note that the numerical results are provided in Sections A.2.1–A.2.4. Specifically, Figures 3 in
Section A.2.1 present the results for the uniformly bounded case in Example S3, and the results for
the moment bounded case in Example S3 are presented in Figure 4 of Section A.2.2. Moreover,
Figure 5 in Section A.2.3 presents the results for the uniformly bounded case in Example S4 with
various combinations of τ ∈ {0.3, 0.5, 0.7} and r ∈ {0, 1}, and the results for the moment bounded
case in Example S4 are presented in Figure 6 of Section A.2.4.

It is thus clear that the TIRW estimator is robust for different combinations of τ and r. Specifically,
the TIRW estimator takes a significant advantage over the unweighted estimator when the important
ratio is indeed unbounded. Nevertheless, for the bounded case, the TIRW estimator seems to be not
necessary since if the choice of turning parameter is nearly-optimal or the source data size is relatively
enough, there is a negligible gap between the TIRW estimator and the unweighted estimator.

A.2.1 Uniformly bounded case in Example S3

(1a) τ = 0.3 and r = 0 (1b) τ = 0.3 and r = 0 (1c) τ = 0.3 and r = 0

(1d) τ = 0.3 and r = 0 (1e) τ = 0.3 and r = 0 (1f) τ = 0.3 and r = 0

(2a) τ = 0.5 and r = 1 (2b) τ = 0.5 and r = 1 (2c) τ = 0.5 and r = 1

(2d) τ = 0.5 and r = 1 (2e) τ = 0.5 and r = 1 (2f) τ = 0.5 and r = 1
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(3a) τ = 0.5 and r = 0 (3b) τ = 0.5 and r = 0 (3c) τ = 0.5 and r = 0

(3d) τ = 0.5 and r = 0 (3e) τ = 0.5 and r = 0 (3f) τ = 0.5 and r = 0

(4a) τ = 0.7 and r = 1 (4b) τ = 0.7 and r = 1 (4c) τ = 0.7 and r = 1

(4d) τ = 0.7 and r = 1 (4e) τ = 0.7 and r = 1 (4f) τ = 0.7 and r = 1

(5a) τ = 0.7 and r = 0 (5b) τ = 0.7 and r = 0 (5c) τ = 0.7 and r = 0

(5d) τ = 0.7 and r = 0 (5e) τ = 0.7 and r = 0 (5f) τ = 0.7 and r = 0

Figure 3: Average MSE and empirical excess risk for unweighted KQR, TIRW KQR with true weight and
estimated weight, respectively (in the left panel, the curves are plotted with respect to log10 λ with n =
500,m = 1000; in the middle panel, the curves are plotted with respect to n with fixed m = 1000, λ = 10−4;
in the right panel, the curves are plotted with respect to m with fixed n = 500, λ = 10−4)

4



A.2.2 Moment bounded case in Example S3

(1a) τ = 0.3 and r = 0 (1b) τ = 0.3 and r = 0 (1c) τ = 0.3 and r = 0

(1d) τ = 0.3 and r = 0 (1e) τ = 0.3 and r = 0 (1f) τ = 0.3 and r = 0

(2a) τ = 0.5 and r = 1 (2b) τ = 0.5 and r = 1 (2c) τ = 0.5 and r = 1

(2d) τ = 0.5 and r = 1 (2e) τ = 0.5 and r = 1 (2f) τ = 0.5 and r = 1

(3a) τ = 0.5 and r = 0 (3b) τ = 0.5 and r = 0 (3c) τ = 0.5 and r = 0

(3d) τ = 0.5 and r = 0 (3e) τ = 0.5 and r = 0 (3f) τ = 0.5 and r = 0
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(4a) τ = 0.7 and r = 1 (4b) τ = 0.7 and r = 1 (4c) τ = 0.7 and r = 1

(4d) τ = 0.7 and r = 1 (4e) τ = 0.7 and r = 1 (4f) τ = 0.7 and r = 1

(5a) τ = 0.7 and r = 0 (5b) τ = 0.7 and r = 0 (5c) τ = 0.7 and r = 0

(5d) τ = 0.7 and r = 0 (5e) τ = 0.7 and r = 0 (5f) τ = 0.7 and r = 0

Figure 4: Average MSE and empirical excess risk for unweighted KQR, TIRW KQR with true weight and
estimated weight, respectively (in the left panel, the curves are plotted with respect to log10 λ with n =
500,m = 1000; in the middle panel, the curves are plotted with respect to n with fixed m = 1000, λ = 10−4;
in the right panel, the curves are plotted with respect to m with fixed n = 500, λ = 10−4)
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A.2.3 Uniformly bounded case in Example S4

(1a) τ = 0.3 and r = 1 (1b) τ = 0.3 and r = 1 (1c) τ = 0.3 and r = 1

(1d) τ = 0.3 and r = 1 (1e) τ = 0.3 and r = 1 (1f) τ = 0.3 and r = 1

(2a) τ = 0.3 and r = 0 (2b) τ = 0.3 and r = 0 (2c) τ = 0.3 and r = 0

(2d) τ = 0.3 and r = 0 (2e) τ = 0.3 and r = 0 (2f) τ = 0.3 and r = 0

(3a) τ = 0.5 and r = 1 (3b) τ = 0.5 and r = 1 (3c) τ = 0.5 and r = 1

(3d) τ = 0.5 and r = 1 (3e) τ = 0.5 and r = 1 (3f) τ = 0.5 and r = 1
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(4a) τ = 0.5 and r = 0 (4b) τ = 0.5 and r = 0 (4c) τ = 0.5 and r = 0

(4d) τ = 0.5 and r = 0 (4e) τ = 0.5 and r = 0 (4f) τ = 0.5 and r = 0

(5a) τ = 0.7 and r = 1 (5b) τ = 0.7 and r = 1 (5c) τ = 0.7 and r = 1

(5d) τ = 0.7 and r = 1 (5e) τ = 0.7 and r = 1 (5f) τ = 0.7 and r = 1

(6a) τ = 0.7 and r = 0 (6b) τ = 0.7 and r = 0 (6c) τ = 0.7 and r = 0

(6d) τ = 0.7 and r = 0 (6e) τ = 0.7 and r = 0 (6f) τ = 0.7 and r = 0

Figure 5: Average MSE and empirical excess risk for unweighted KQR, TIRW KQR with true weight and
estimated weight, respectively (in the left panel, the curves are plotted with respect to log10 λ with n =
500,m = 1000; in the middle panel, the curves are plotted with respect to n with fixed m = 1000, λ = 10−4;
in the right panel, the curves are plotted with respect to m with fixed n = 500, λ = 10−4)
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A.2.4 Moment bounded case in Example S4

(1a) τ = 0.3 and r = 1 (1b) τ = 0.3 and r = 1 (1c) τ = 0.3 and r = 1

(1d) τ = 0.3 and r = 1 (1e) τ = 0.3 and r = 1 (1f) τ = 0.3 and r = 1

(2a) τ = 0.3 and r = 0 (2b) τ = 0.3 and r = 0 (2c) τ = 0.3 and r = 0

(2d) τ = 0.3 and r = 0 (2e) τ = 0.3 and r = 0 (2f) τ = 0.3 and r = 0

(3a) τ = 0.5 and r = 1 (3b) τ = 0.5 and r = 1 (3c) τ = 0.5 and r = 1

(3d) τ = 0.5 and r = 1 (3e) τ = 0.5 and r = 1 (3f) τ = 0.5 and r = 1
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(4a) τ = 0.5 and r = 0 (4b) τ = 0.5 and r = 0 (4c) τ = 0.5 and r = 0

(4d) τ = 0.5 and r = 0 (4e) τ = 0.5 and r = 0 (4f) τ = 0.5 and r = 0

5a) τ = 0.7 and r = 1 5b) τ = 0.7 and r = 1 5c) τ = 0.7 and r = 1

5d) τ = 0.7 and r = 1 5e) τ = 0.7 and r = 1 5f) τ = 0.7 and r = 1

(6a) τ = 0.7 and r = 0 (6b) τ = 0.7 and r = 0 (6c) τ = 0.7 and r = 0

(6d) τ = 0.7 and r = 0 (6e) τ = 0.7 and r = 0 (6f) τ = 0.7 and r = 0

Figure 6: Average MSE and empirical excess risk for unweighted KQR, TIRW KQR with true weight and
estimated weight, respectively (in the left panel, the curves are plotted with respect to log10 λ with n =
500,m = 1000; in the middle panel, the curves are plotted with respect to n with fixed m = 1000, λ = 10−4;
in the right panel, the curves are plotted with respect to m with fixed n = 500, λ = 10−4)
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A.3 Kernel logistic regression

For the logistic loss function, we consider the following example.
Example S5: The response y is generated by P (y = 1|x) = 1

1+exp(−f(x)) where x =

(x0, x1, x2)
⊤ ∈ R3 and f(x) = −x20 + 3 sin(3πx0) + ex

2
1−x2

2 . We consider ρSx(x) = g(x0;αs, βs)
and ρTx (x) = g(x0;αt, βt) with αs = 2.5, βs = 2, αt = 3, βt = 4 for the uniformly bounded case
and αs = 4, βs = 1, αt = 3, βt = 6 for the moment bounded case, respectively. Note that for any
learned f̂ , the classification rule is specified as sign(f̂(x)). Figure 7 presents the results for the
uniformly bounded case, and the results for the moment bounded case are presented in Figure 8.

(a) (b) (c)

(d) (e) (f)

Figure 7: Average misclassification rate and empirical excess risk for unweighted KLR, TIRW KLR with true
weight and estimated weight, respectively (in (a) and (d), the curves are plotted with respect to log10 λ with
n = 500,m = 1000; in (b) and (e) the curves are plotted with respect to n with fixed m = 1000, λ = 5×10−5;
in (c) and (f), the curves are plotted with respect to m with fixed n = 500, λ = 5× 10−5)

(a) (b) (c)

(d) (e) (f)

Figure 8: Average misclassification rate and empirical excess risk for unweighted KLR, TIRW KLR with true
weight and estimated weight, respectively (in (a) and (d), the curves are plotted with respect to log10 λ with
n = 500,m = 1000; in (b) and (e) the curves are plotted with respect to n with fixed m = 1000, λ = 5×10−5;
in (c) and (f), the curves are plotted with respect to m with fixed n = 500, λ = 5× 10−5)
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Clearly, Figure 7 demonstrates that the difference between the performance of the TIRW estimator
and the unweighted estimator is very close under the uniformly bounded case, which confirms our
theoretical findings. In addition, as we found in the other examples, we can conclude from (a) and (d)
in Figure 8 that the performance of the TIRW estimator, in terms of both misclassification rate and
empirical excess risk, maintains relative stability for different choices of λ. But if we don’t select λ
carefully, the unweighted estimator performs extremely poor. Other cases in Figure 8 confirm that
the TIRW estimator takes a remarkable benefit.

A.4 Real applications for multi-source datasets

In this section, we apply KSVM to a wide range of real datasets that are available in the UCI
archive https://archive.ics.uci.edu/ml/datasets.php, including the ionosphere dataset,
the dry bean dataset, the magic04 dataset, and the banknote authentication dataset. Specifically, the
ionosphere dataset contains 350 instances and 34 covariates, and we select all the instances with
3-7-th covariates into the model. The dry bean dataset contains 13611 instances and 16 covariates,
and we randomly select 30% of this dataset with the 1-8-th covariates. The magic04 dataset contains
19019 instances and 10 covariates, and we randomly select 10% of this dataset with the 2-10-th
covariates. The banknote authentication dataset contains 1372 instances and 4 covariates. The
numerical performance is summarized in the following table.

Table 1: Classification performance on multi-source datasets.

Dataset Estimator C = 0.01 C = 0.1 C = 1 C = 10 C = 100

Ionosphere Unweighted 0.260± 0.007 0.266± 0.013 0.602± 0.098 0.637± 0.104 0.625± 0.102
TIRW 0.740± 0.007 0.749± 0.015 0.735± 0.108 0.665± 0.108 0.643± 0.103

Dry Bean Unweighted 0.266± 0.008 0.616± 0.012 0.748± 0.014 0.719± 0.021 0.668± 0.020
TIRW 0.824± 0.022 0.773± 0.013 0.764± 0.014 0.713± 0.022 0.696± 0.028

Magic04 Unweighted 0.621± 0.006 0.625± 0.007 0.779± 0.011 0.752± 0.012 0.744± 0.012
TIRW 0.621± 0.006 0.624± 0.007 0.804± 0.041 0.768± 0.011 0.748± 0.013

Authentication Unweighted 0.237± 0.007 0.718± 0.031 0.940± 0.033 0.920± 0.036 0.919± 0.036
TIRW 0.811± 0.037 0.986± 0.015 0.973± 0.023 0.928± 0.032 0.919± 0.036

As shown in Table 1, the TIRW estimator outperforms the unweighted estimator on each dataset for
almost all the choices of Cλ. We also observe that the unweighted estimator has a much less satisfying
accuracy of prediction for small choices of Cλ. Nevertheless, with importance ratio correction, the
accuracy rate has been significantly improved for small choices of Cλ, even attaining nearly optimal
for the first two datasets. For a large choice of Cλ, these two estimators have a negligible gap in
accuracy rate.

A.5 Kullback-Leibler importance estimation procedure

In this section, we introduce the importance ratio estimation procedure based on Kullback-Leibler
divergence (Sugiyama et al., 2007b). Recall that we have the source input data xS

1 , ...,x
S
n generated

from ρSx and the target input data xT
1 , ...,x

T
m generated from ρTx and our goal is to estimate the ratio

ϕ(x). Since ρTx (x) = ϕ(x)ρSx(x), the true ratio ϕ(x) can be correctly identified by solving the
population version of the optimization task that

minimize
g(x)

KL
(
ρTx (x)∥g(x)ρSx(x)

)
, (1)

where KL(p∥q) =
∫
p(x) log p(x)

q(x)dx denotes Kullback–Leibler divergence between P and Q with
probability densities p and q respectively. Note that either the bounded case or second moment
bounded case considered in the main text, ρTx (x) is absolutely continuous with respect to ρSx(x),
which ensures the optimization problem (1) is well defined. Since

KL(ρTx (x)∥g(x)ρSx(x)) =
∫
ρTx (x) log

(
ρTx (x)

g(x)ρSx(x)

)
dx

=

∫
ρTx (x) log

(
ρTx (x)

ρSx(x)

)
dx−

∫
ρTx (x) log g(x)dx,
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we can rewrite the objective function as −
∫
ρTx (x) log(g(x))dx by ignoring the constant term. It can

be approximated by its empirical version that − 1
m

∑m
i=1 log g(x

T
i ) with g(x) =

∑b
k=1 αkK(xk,x)

and {x1, ...,xb} denoting a subset of target input data with b as a pre-fixed number and K(·, ·)
denoting some certain kernel function. Since the true ratio ϕ(x) is non-negative and satis-
fies 1

n

∑n
i=1 ϕ(x

S
i ) ≈

∫
ϕ(x)ρSx(x)dx = 1. We add some constraints that αk ≥ 0 and

1
m

∑n
i=1

∑b
k=1 αkK(xk,x

S
i ) = 1. This leads to the optimization problem:

maximum
α∈Rb

1

m

m∑
i=1

log

(
b∑

k=1

αkK(xk,x
T
i )

)
,

s.t. αk ≥ 0, k = 1, ..., b,

1

m

n∑
i=1

b∑
k=1

αkK(xk,x
S
i ) = 1.

A.6 Importance weighted cross validation

Sugiyama et al. (2007a) points out that cross-validation (CV) on the unweighted training data
introduces an additional source of bias in making predictions on test data due to covariate shift.
They propose a method called importance weighted cross validation (IWCV) according to important
ratio to compensate for the effect of covariate shift. First, one can randomly divide the training set
{(xi, yi)}ni=1 into b disjoint non-empty subsets {Ti}bk=1. Then, denoting the learned function by
using dataset {Tk}k ̸=j as f̂j . Instead of the classical CV procedure, the IWCV aims to minimize

R̂IWCV =
1

b

b∑
k=1

1

|Tk|
∑

(xi,yi)∈Tk

ϕ(xi)L
(
yi, f̂k(xi)

)
.

A.7 Discussion on Assumption 2

Assumption 2 in the main text is a local c0-strongly convexity condition on the expected loss function
with respect to L2(X , PS

x ) and L2(X , PT
x ) at f∗. So verifying Assumption 2 is equivalent to

verifying the local c0 strongly convexity of the loss function. Here are some examples:

• For the squared loss L(y, f(x)) = (y − f(x))2, note that for any y ∈ R, the function
z → (y − z)2 is strongly convex with parameter c0 = 1, so f → L(y, f(x)) satisfies the
condition in Assumption 2 with c0 = 1.

• For the Huber loss L(y, f(x)) = (y − f(x))2, if |y − f(x)| ≤ δ; δ|y − f(x)| − 1
2δ

2,
otherwise, since this loss function is locally equivalent to the squared loss, so it is locally
strongly convex under mild tail condition on y − f∗(x).

• For the check loss L(y, f(x)) = (y − f(x))
(
τ − I{y≤f(x)}

)
, the local strong convexity

holds if the conditional density of y − f∗(x) given x is bounded away from c0 uniformly
(Lian, 2022).

For the other loss functions, including logistic loss and hinge loss, more detailed discussions and
verifications can be found on Pages 470-472 in Wainwright (2019). Interested readers are referred to
it for more details.

B Algorithm details

In this section, we provide the computing details for different loss functions considered in our
experiments.

Kernel ridge regression. For the squared loss, the minimizer f̂ takes the form of f̂(x) =∑n
i=1 α̂iK(xi,x), due to the representer theorem (Smale & Zhou, 2007). Let α̂ = (α̂1, ..., α̂n)

⊤ ∈
Rn, then the solution is given by α̂ = (KWK+ nλK)−1KWy = (WK+ nλI)−1 Wy. Here
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K is n× n invertible matrix with elements K(xi,xj), W is a diagonal matrix with Wii = ϕ̂n(xi)

and y = (y1, ..., yn)
⊤, where ϕ̂n(x) is the truncation version of the KLIEP estimator ϕ̂(x).

Kernel quantile regression. For the check loss, there is no explicit form for the solution. Then, we
attempt to search the optimal solution based on the solution of the dual problem (Takeuchi et al.,
2006). In the presence of covariate shift, we derive the dual problem to be the following convex
optimization task (Boyd & Vandenberghe, 2004) that

minimize
1

2
α⊤Kα− y⊤α,

s.t. Cλ(τ − 1)ϕ̂n(xi) ≤ αi ≤ Cλτ ϕ̂n(xi), for 1 ≤ i ≤ n,

1⃗⊤α = 0,

where 1⃗ denotes the vector whose elements are 1, y = (y1, ..., yn)
⊤ and Cλ = 1/(nλ). b is the dual

variable to the constraint 1⃗⊤α = 0.

Kernel support vector machine. For the hinge loss, we also solve the duality problem (Schölkopf
et al., 2002). Specifically, in the presence of covariate shift, we solve the following convex optimiza-
tion task that

minimize
1

2
η⊤K̃η − 1⃗⊤η,

s.t. y⊤η = 0,

0 ≤ ηi ≤ Cλϕ̂n(xi), i = 1, · · · , n,
where K̃ denotes the n× n matrix with entries K(xi, xj)yiyj and α = (η1y1, ..., ηnyn)

⊤. b is the
dual variable to the constraint y⊤η = 0.

Kernel logistic regression. For the logistic loss, we use the Newton–Raphson algorithm to
solve the optimization task (Keerthi et al., 2005). Let Ki correspond the i-th row of K and
ϕ̂ = (ϕ̂(x1), ..., ϕ̂(xn))

⊤, p = (p1, ..., pn)
⊤ with pi = exp(Kiα)

1+exp(Kiα) . We conduct the iterative
algorithm

αk+1 = αk − J(αk)
−1F (αk) =(KWK+ λK)−1(KWKαk +Ky⊙(1− p)⊙ ϕ̂)

=(WK+ λI)−1(WKαk + y⊙(1− p)⊙ ϕ̂),

where W denotes the diagonal matrix with Wii = ϕ̂n(xi)pi(1− pi) and a⊙ c = (a1c1, ..., ancn)
⊤

for two vectors a and c.

C Technical proofs

This part provides the proofs of all the theorems and corollaries in the main text. Note that our
theoretical analysis mainly employs the symmetrization technique and concentration inequality in
learning theory. For the second moment bounded case, Section C.1 is devoted to the proof of Theorem
3 that indicates the TIRW estimator achieves optimal rate, and Section C.2 gives the proof of Theorem
2 showing the sub-optimal rate for the unweighted estimator. For the uniformly bounded case, Section
C.3 presents the proof of Theorem 1 to show the optimal rate for the unweighted estimator, which
follows a similar argument as in Section C.2. Section C.4 gives the detailed derivation of all the
corollaries. Section C.5 discusses the results of the minimax lower bound when some specified
loss functions are used. In Section C.6, we further discuss the theoretical gap with the importance
ratio replaced by its plugin estimator and potential future direction. For ease of notation, we discard
the superscripts of xS

i and ySi to xi and yi in our proofs, that is, {xi, yi}ni=1 is driven from the
source model. Additionally, we define Pφ := ES [φ(x, y)] and Pnφ := (1/n)

∑n
i=1 φ(xi, yi) for a

measurable function φ(x, y), and clarify that the expectation E[·] in our proof is taking with respect
to all random variables contained in it. Note that we remain ∥f∗∥K in our proof and the theoretical
results in the main text can be obtained by letting ∥f∗∥K = 1.

C.1 Proof of Theorem 3

The following Lemma states Talagrand’s concentration inequality for random elements taking values
in some space Z . One can refer to Bousquet (2002) for detailed proof.
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Lemma C.1.1. Let Z1, . . . , Zn be independent random elements taking values in some space Z and
let Ξ be a class of real-valued functions on Z , if we have

∥ξ∥ ≤ ηn and
1

n

n∑
i=1

Var (ξ (Zi)) ≤ ζ2n, ∀ξ ∈ Ξ.

Define Z := supξ∈Ξ

∣∣ 1
n

∑n
i=1 (ξ (Zi)− Eξ (Zi))

∣∣. Then for t > 0

P

(
Z ≥ E(Z) + t

√
2 (ζ2n + 2ηnE(Z)) +

2ηnt
2

3

)
≤ exp

(
−nt2

)
.

The following Lemma is the core of our proofs. It bounds the supremum of the difference between
the empirical average dependent on the source data and the target expectation within a local ball
using the Rademacher complexity function and Lemma C.1.1.

Lemma C.1.2. For any radii δ > 0, we define event K(δ) as

sup
f∈Θ(δ)

∣∣∣∣∣ 1n
n∑

i=1

ϕn(xi)
(
L(yi, f(xi))− L(yi, f

∗(xi))
)
− ET [L(y, f(x))− L(y, f∗(x))]

∣∣∣∣∣ ≤ M(δ),

where Θ(δ) := {f ∈ HK | ∥f − f∗∥T ≤ δ, and ∥f − f∗∥K ≤ 3∥f∗∥K} and M(δ) =

C
√
β2 log nR(δ), then K(δ) holds with probability at least 1− n−c3 .

Before providing the detailed proof of Lemma C.1.2, we give some discussions to il-
lustrate the motivation of the proof. Specifically, Lemma C.1.2 states a general uni-
form law for the Lipschitz loss functions under covariate shift. Note that by the em-
pirical process theory, the empirical average 1

n

∑n
i=1 ϕn(xi)

(
L(yi, f(xi)) − L(yi, f

∗(xi)))
approximates its population counterpart ES [ϕn(x)(L(y, f(x)) − L(y, f∗(x)))] uniformly on
some function class. When the truncation γn diverges fast enough as n grows, the
quantity |ES [ϕn(x)(L(y, f(x)) − L(y, f∗(x)))] − ET [L(y, f(x)) − L(y, f∗(x))]| is negligi-
ble. Therefore, it is expected that 1

n

∑n
i=1 ϕn(xi)

(
L(yi, f(xi)) − L(yi, f

∗(xi))) is close
to ET [L(y, f(x)) − L(y, f∗(x))] uniformly. Our proof is precisely motivated by this in-
tuition. Moreover, in the proof, we decompose the total error into the empirical error
supf∈Θ(δ) | 1n

∑n
i=1 ϕn(xi)

(
L(yi, f(xi))−L(yi, f∗(xi)))−ES [ϕn(x)(L(y, f(x))−L(y, f∗(x)))]|

and the approximation error supf∈Θ(δ) |ES [ϕn(x)(L(y, f(x))− L(y, f∗(x)))]−ET [L(y, f(x))−
L(y, f∗(x))]|. Recall that ϕn(x) = min{ϕ(x), γn}, and here, the truncation parameter γn plays a
key role in balancing such two errors. For example, a fast diverging γn may reduce the approximation
error but compromise the empirical error. Therefore, an optimal γn is the one that diverges at a certain
rate (i.e., γn = O(

√
n)) to achieve the optimal tradeoff between empirical and approximation errors.

Proof of Lemma C.1.2. We first make the following decomposition that

sup
f∈Θ(δ)

∣∣∣∣∣ 1n
n∑

i=1

ϕn(xi)
(
L(yi, f(xi))− L(yi, f

∗(xi))
)
− ET [L(y, f(x))− L(y, f∗(x))]

∣∣∣∣∣
≤ sup

f∈Θ(δ)

∣∣∣∣∣ 1n
n∑

i=1

ϕn(xi)
(
L(yi, f(xi))− L(yi, f

∗(xi))
)
− ES [ϕn(x) (L(y, f(x))− L(y, f∗(x)))]

∣∣∣∣∣︸ ︷︷ ︸
Empirical error D1

+ sup
f∈Θ(δ)

|ES [ϕn(x) (L(y, f(x))− L(y, f∗(x)))]− ET [L(y, f(x))− L(y, f∗(x))]|︸ ︷︷ ︸
Approximation error D2

.

Then, we only need to bound D1 and D2 separately. To bound D1, we firstly use the standard
symmetrization technique in empirical process (Pollard, 2012; Wainwright, 2019) to bound E[D1]
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that
E[D1] = E

[
sup

f∈Θ(δ)

∣∣(Pn − P )ϕn(x) (L(y, f(x))− L(y, f∗(x)))
∣∣]

(i)

≤ 2

n
E
[

sup
f∈Θ(δ)

∣∣ n∑
i=1

σiϕn(xi)
(
L(yi, f(xi))− L(yi, f

∗(xi))
)∣∣]

(ii)

≤ 4cL
n
E
[

sup
f∈Θ(δ)

∣∣ n∑
i=1

σiϕn(xi)(f(xi)− f∗(xi))
∣∣],

(2)

where {σi}′s denote the Rademacher variables taking values in {−1, 1} with equal probability, the
inequality (i) is from the symmetrization technique that for any class of measurable function F ,
we have E[supφ∈F (Pn − P )φ] ≤ 2E[supφ∈F (1/n)

∑n
i=1 σiφ(xi, yi)]. The inequality (ii) follows

from the fact that the loss function is cL-Lipschitz continuous and the Ledoux–Talagrand contraction
inequality (Wainwright, 2019).

For any f ∈ Θ(δ), we denote g = f − f∗ ∈ HK and then, there holds g =
∑∞

j=1 gjψj with
gj =

∫
X f(x)ψj(x)ρ

T
x (x)dx. Clearly, we have ∥g∥T ≤ δ and ∥g∥K ≤ 3∥f∗∥K , which implies that∑∞

j=1 g
2
j ≤ δ2 and

∑∞
j=1 g

2
j /µj ≤ 9∥f∗∥2K . Combining these two results, there holds

∞∑
j=1

g2j
min(δ2, µj∥f∗∥2K)

≤ 10. (3)

Then, we have ∣∣∣ n∑
i=1

σiϕn(xi)(f(xi)− f∗(xi))
∣∣∣ = ∣∣∣ n∑

i=1

σiϕn(xi)

∞∑
j=1

gjψj(xi)
∣∣∣

=
∣∣∣ ∞∑
j=1

gj√
min(δ2, µj∥f∗∥2K)

√
min(δ2, µj∥f∗∥2K)

n∑
i=1

σiϕn(xi)ψj(xi)
∣∣∣

(i)

≤
√
10


∞∑
j=1

min(δ2, µj∥f∗∥2K)

(
n∑

i=1

σiϕn(xi)ψj(xi)

)2


1/2

,

(4)

where the inequality (i) follows from Cauthy-Schwarz inequality and the fact (3). Moreover, by
plugging (4) into (2), we have

E[D1] ≤
4
√
10cL
n

E
[ ∞∑
j=1

min(δ2, µj∥f∗∥2K)

(
n∑

i=1

σiϕn(xi)ψj(xi)

)2 ]1/2
(i)

≤ 4
√
10cL
n


∞∑
j=1

min(δ2, µj∥f∗∥2K)Ex,σ

[
n∑

i=1

σiϕn(xi)ψj(xi)

]2
1/2

(ii)
=

4
√
10cL
n


∞∑
j=1

min(δ2, µj∥f∗∥2K)

n∑
i=1

Ex,σ

[
σ2
i ϕ

2
n(xi)ψ

2
j (xi)

]
1/2

(iii)

≤ 4
√
10cL
n


∞∑
j=1

min(δ2, µj∥f∗∥2K)

n∑
i=1

E[ϕ2(xi)]


1/2

,

where the first inequality (i) follows from Jensen’s inequality, the second inequality (ii) follows from
the fact that Ex,σ[σiϕn(xi)ψj(xi)] = 0 for each i, and the last inequality (iii) follows from the
assumption that∥ψj∥∞ ≤ 1 for all j ≥ 1 and the fact that ϕn(xi) ≤ ϕ(xi). Note that E[ϕ2(xi)] ≤
β2, and thus we have

E(D1) ≤ 4
√
10

√√√√β2c2L
n

∞∑
j=1

min(δ2, µj∥f∗∥2K) = 4
√
10β2cLR(δ). (5)
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Next, we turn to bound D1 −E(D1). Recall that
∑∞

j=1

g2
j

min(δ2,µj∥f∗∥2
K)

≤ 10 and ∥ψj∥∞ ≤ 1, and
then there holds

|g(x)| =

∣∣∣∣∣∣
∞∑
j=1

gjψj(x)

∣∣∣∣∣∣
(i)

≤

√√√√ ∞∑
j=1

g2j
min(δ2, µj∥f∗∥2K)

√√√√ ∞∑
j=1

min(δ2, µj∥f∗∥2K)ψ2
j (x)

≤

√√√√10

∞∑
j=1

min(δ2, µj∥f∗∥2K) =
√
10nR(δ),

where the first inequality (i) follows from Cauthy-Schwarz inequality. Consequently, we have
|ϕn(xi) (L(yi, f(xi))− L(yi, f

∗(xi)))| ≤ γn |(L(yi, f(xi))− L(yi, f
∗(xi)))|

≤ γncL |g(xi)| ≤ γncL
√
10nR(δ) =

√
10β2ncLR(δ),

where we use γn =
√
nβ2. Furthermore, we have

E
[{
ϕn(xi) (L(yi, f(xi))− L(yi, f

∗(xi)))
}2] ≤ c2LE

[
ϕ2n(xi)g

2(xi)
]
≤ 10nβ2c2LR

2(δ),

where we use the fact that E[ϕ2n(xi)] ≤ E[ϕ2(xi)] ≤ β2. Clearly, all the required conditions
in Lemma C.1.1 are satisfied by taking ηn =

√
10β2ncLR(δ) and ζ2n = 10nβ2c2LR

2(δ). Let

t =
√

c3 logn
n , with probability at least 1− n−c3 , there holds that

D1 − E[D1] ≤
√
c3 log n

n

(
20nβ2c2LR

2(δ) + 4ncL
√
10β2R(δ)E[D1]

)
+

2
√

10β2c3cL
3

log nR(δ)

(i)

≤3cL
√
20c3β2 log nR(δ) +

2
√
10β2c3cL
3

log nR(δ)

≤

(
3cL

√
20c3 +

2
√
10c3cL
3

)√
β2 log nR(δ),

(6)
where the first inequality (i) follows from (5).

Then, combining (5) and (6), with probability at least 1− n−c3 , we have

D1 ≤ C
√
β2 log nR(δ), (7)

where C = 4
√
10cL + 3cL

√
20c3 +

2
√

10β2c3cL
3 .

Now we turn to bound D2. Note that
D2 ≤ sup

f∈Θ(δ)

∣∣ET [L(y, f(x))− L(y, f∗(x))]− ET

[
I{ϕ(x)≤γn} (L(y, f(x))− L(y, f∗(x)))

]∣∣+
γn sup

f∈Θ(δ)

∣∣ES

[
I{ϕ(x)>γn} (L(y, f(x))− L(y, f∗(x)))

]∣∣
= sup

f∈Θ(δ)

∣∣ET

[
I{ϕ(x)>γn} (L(y, f(x))− L(y, f∗(x)))

]∣∣+
γn sup

f∈Θ(δ)

∣∣ES

[
I{ϕ(x)>γn} (L(y, f(x))− L(y, f∗(x)))

]∣∣
≤ ET

[
I{ϕ(x)>γn} sup

f∈Θ(δ)

|L(y, f(x))− L(y, f∗(x))|

]
+

γnES

[
I{(ϕ(x)>γn} sup

f∈Θ(δ)

|L(y, f(x))− L(y, f∗(x))|

]
≤ cLET

[
I{ϕ(x)>γn}

]
sup
g

∥g∥∞ + γncLES

[
I{ϕ(x)>γn}

]
sup
g

∥g∥∞

(i)

≤ β2cL
γn

√
10nR(δ) + γn

β2cL
γ2n

√
10nR(δ) ≤ 2

√
10β2cLR(δ),

(8)
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where the inequality (i) follows from Markov inequality.

Combining (7) and (8), with probability at least 1− n−c3 , there holds

D1 +D2 ≤ C
√
β2 log nR(δ) = M(δ),

where C = 4
√
10cL + 3cL

√
20c3 +

2
√

10β2c3cL
3 + 2

√
10cL. This completes the proof. ■

Following the Lemma C.1.2, we give the proof of Theorem 3.

Proof of Theorem 3. Denote δλ =
√
δ2n + 2c−1

0 λ∥f∗∥2K and note that M(δ)/δ is non-increasing in
δ, then

M(δλ)

δλ
≤ M(δn)

δn
≤ 1

2
c0δn ≤ 1

2
c0δλ,

where the second inequality follows from the definition of δn. Then, we have M(δλ) ≤ c0δ
2
λ/2.

In the following, we first establish the upper bound on L2(PT
x )-error by showing the following

inequality holds conditioning on the event K(δλ)

inf
f∈HK ,f /∈Θ(δλ)

1

n

n∑
i=1

ϕn(xi) {L(yi, f(xi))− L(yi, f
∗(xi))}+ λ∥f∥2K − λ∥f∗∥2K > 0, (9)

where the definitions of K(δλ) and Θ(δλ) are provided in Lemma C.1.2. Note that it suffices to
prove that (9) holds on the boundary of Θ(δλ), denoted by B(Θ(δλ)). To see this, for any f ∈ HK

and f /∈ Θ(δλ), by the convexity of the two sets HK and Θ(δλ), there exists 0 < α ≤ 1 such that
f̃ = αf + (1− α)f∗ ∈ B(Θ(δλ)). Applying Jensen’s inequality yields

ϕn(xi)
{
L(yi, f̃(xi))− L(yi, f

∗(xi))
}
+ λ∥f̃∥2K − λ∥f∗∥2K

≤ α
{
ϕn(xi) {L(yi, f(xi))− L(yi, f

∗(xi))}+ λ∥f∥2K − λ∥f∗∥2K
}
.

Therefore, we only need to show

1

n

n∑
i=1

ϕn(xi)
{
L(yi, f

∗(xi)))− L(yi, f̃(xi)
}
+ λ∥f∗∥2K − λ∥f̃∥2K < 0.

For f̃ ∈ B(Θ(δλ)), we consider the following two cases: (i) If ∥f̃ − f∗∥T = δλ and ∥f̃ − f∗∥K ≤
3∥f∗∥K , we have

1

n

n∑
i=1

ϕn(xi)
{
L(yi, f

∗(xi)))− L(yi, f̃(xi)
}
+ λ∥f∗∥2K − λ∥f̃∥2K

(i)

≤M(δλ)− ET

[
L(y, f̃(x))− L(y, f∗(x))

]
+ λ∥f∗∥2K − λ∥f̃∥2K

(ii)

≤M(δλ)− c0∥f̃ − f∗∥2T + λ∥f∗∥2K ≤ −c0
2
δ2λ + λ∥f∗∥2K = −c0

2
δ2n < 0,

where the inequality (i) follows from Lemma C.1.2, (ii) is from Assumption 2. If ∥f̃ − f∗∥T ≤ δλ
and ∥f̃ − f∗∥K = 3∥f∗∥K , we have

1

n

n∑
i=1

ϕn(xi)
{
L(yi, f

∗(xi)))− L(yi, f̃(xi)
}
+ λ∥f∗∥2K − λ∥f̃∥2K

≤M(δλ)− ET

[
L(y, f̃(x))− L(y, f∗(x))

]
+ λ∥f∗∥2K − λ∥f̃∥2K

≤M(δλ) + λ∥f∗∥2K − λ∥f̃∥2K
(i)

≤ c0
2
δ2λ − 3λ∥f∗∥2K =

c0
2
δ2n − 2λ∥f∗∥2K

(ii)
< 0,

where the inequality (i) follows from the fact that ∥f̃∥K ≥ 2∥f∗∥K by triangle inequality, and the
inequality (ii) follows from the definition of λ.
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Combining the above results, the inequality (9) holds. Then, we can conclude that

∥f̂ϕ − f∗∥2T ≤ δ2λ = δ2n + 2c−1
0 λ∥f∗∥2K

holds by the definition of f̂ϕ.

For the bound of excess risk, note that

EL
T (f̂

ϕ)− EL
T (f

∗)

(i)

≤EL
T (f̂

ϕ)− EL
T (f

∗)− 1

n

n∑
i=1

ϕn(xi)
(
L(yi, f̂

ϕ(xi))− L(yi, f
∗(xi))

)
+ λ∥f∗∥2K − λ∥f̂ϕ∥2K

(ii)

≤M(δλ) + λ∥f∗∥2K − λ∥f̂ϕ∥2K = M(δλ)− 2λ⟨f∗, f̂ϕ − f∗⟩K − λ∥f̂ϕ − f∗∥2K

≤c0δ
2
λ

2
+ 2λ∥f∗∥K∥f̂ϕ − f∗∥K − λ∥f̂ϕ − f∗∥2K

(iii)

≤ c0δ
2
λ

2
+ λ∥f∗∥2K + λ∥f̂ϕ − f∗∥2K − λ∥f̂ϕ − f∗∥2K

=
c0δ

2
λ

2
+ λ∥f∗∥2K =

1

2
c0δ

2
n + 2λ∥f∗∥2K ,

where the inequality (i) follows from the definition of f̂ϕ, (ii) is from Lemma C.1.2, and (iii) is from
the basic inequality. This completes the proof. ■

C.2 Proof of Theorem 2

To prove Theorem 2, we first provide a Lemma which is similar to Lemma C.1.2 and bounds the
regular supremum of empirical process within a local ball.

Lemma C.2.1. For any radii ν > 0, define the event K′(ν) as

sup
f∈Θ′(ν)

∣∣∣∣∣ 1n
n∑

i=1

(L(yi, f(xi))− L(yi, f
∗(xi)))− ES [L(y, f(x)− L(y, f∗(x))]

∣∣∣∣∣ ≤ M′(ν),

where Θ′(ν) :=
{
f ∈ HK | ∥f − f∗∥S ≤ c0ν

2/(cL
√
β2) and ∥f − f∗∥K ≤ 3∥f∗∥K}

}
, then

K′(ν) holds with probability at least 1− n−c2 .

Note that

c0∥f − f∗∥2T
(i)

≤ET [L(y, f(x))− L(y, f∗(x))] = ES [ϕ(x) (L(y, f(x))− L(y, f∗(x)))]

(ii)

≤ cL
√
β2∥f − f∗∥S ,

(10)

where the inequality (i) follows from Assumption 2, the inequality (ii) follows from Cauchy-Schwarz
inequality and the fact that the loss function is cL-Lipschitz continuous.

Denote

D = sup
f∈Θ′(ν)

∣∣∣∣∣ 1n
n∑

i=1

(
L(yi, f(xi))− L(yi, f

∗(xi))
)
− ES [L(y, f(x))− L(y, f∗(x))]

∣∣∣∣∣ .
To bound E[D], by following the similar argument as Lemma C.1.2, we have

E[D] ≤ 4cL
n
E
[

sup
f∈Θ′(ν)

∣∣∣∣∣
n∑

i=1

σi(f(xi)− f∗(xi))

∣∣∣∣∣ ]. (11)
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Denote g = f − f∗ ∈ HK and then, we have g =
∑∞

j=1 gjψj with gj =
∫
X f(x)ψj(x)ρ

T
x (x)dx

and∣∣∣∣∣
n∑

i=1

σi(f(xi)− f∗(xi))

∣∣∣∣∣ =
∣∣∣∣∣∣

n∑
i=1

σi

∞∑
j=1

gjψj(xi)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑
j=1

gj√
min(ν2, µj∥f∗∥2K)

√
min(ν2, µj∥f∗∥2K)

n∑
i=1

σiψj(xi)

∣∣∣∣∣∣
(i)

≤
√
10


∞∑
j=1

min(ν2, µj∥f∗∥2K)

(
n∑

i=1

σiψj(xi)

)2


1/2

,

(12)

where the inequality (i) follows from Cauthy-Schwarz inequality and the fact that∑∞
j=1

g2
j

min(ν2,µj∥f∗∥2
K)

≤ 10 by using ∥g∥T ≤ ν from (10) and ∥g∥K ≤ 3∥f∗∥K .

Plugging (12) into (11), we have

E[D] ≤ 4
√
10cL
n

E
[ ∞∑
j=1

min(ν2, µj∥f∗∥2K)

(
n∑

i=1

σiψj(xi)

)2 ]1/2
(i)

≤ 4
√
10cL
n


∞∑
j=1

min(ν2, µj∥f∗∥2K)Ex,σ

[ n∑
i=1

σiψj(xi)
]2

1/2

(ii)

≤ 4
√
10cLR(ν),

(13)

where the inequality (i) follows from Jensen’s inequality, the inequality (ii) is from the fact that
Ex,σ[σiψj(xi)] = 0, for each i and the the assumption that ∥ψj∥∞ ≤ 1, for all j ≥ 1.

Next, we turn to bound the term D − E[D] and following the similar argument as (12) yields that

|g(x)| ≤

√√√√ ∞∑
j=1

g2j
min(ν2, µj∥f∗∥2K)

√√√√ ∞∑
j=1

min(ν2, µj∥f∗∥2K)ψ2
j (x) ≤

√
10nR(ν).

Consequently, we have

|L(yi, f(xi))− L(yi, f
∗(xi))| ≤ cL|g(xi)| ≤

√
10ncLR(ν),

and

E [(L(yi, f(xi))− L(yi, f
∗(xi)))]

2 ≤ c2LE
[
g2(xi)

]
≤ 10nc2LR

2(ν).

Then conditions in Lemma C.1.1 are satisfied with ηn =
√
10ncLR(ν) and ζ2n = 10nc2LR

2(ν). Let

t =
√

c2 logn
n , with probability at least 1− n−c2 , there holds that

D − E[D] ≤
√
c2 log n

n

(
20nc2LR

2(ν) + 4cL
√
10nR(ν)E[D]

)
+

2
√
10c2cL
3

log n√
n
R(ν)

(i)

≤cL

√
20c2 log n

n
(n+ 8

√
n)R(ν) +

2
√
10c2cL
3

log n√
n
R(ν)

(ii)

≤

(
3cL

√
20c2 +

√
20c2cL
3

)√
log nR(ν)

(14)

where the inequality (i) follows from (13), and the inequality (ii) follows from the fact that logn
n < 1/2,

for n ≥ 2.

Combining (13) and (14), with probability at least 1− n−c2 , we have

D ≤ C
√
log nR(ν), (15)
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where C = 4
√
10cL/

√
log 2 + 3cL

√
20c2 +

√
20c2cL/3. Thus we complete the proof by taking

M′(ν) = C
√
log nR(ν) . ■

Proof of Theorem 2. Let δ = c0ν
2/(cL

√
β2), Q(δ) = M′

(
(c−1

0 cL
√
β2δ)1/2

)
, the function

class G(δ) = Θ′
(
(c−1

0 cL
√
β2δ)1/2

)
and the event P(δ) = K′

(
(c−1

0 cL
√
β2δ)1/2

)
. Denote δλ =√

δ2n + 2c−1
0 λ∥f∗∥2K with Q(δ) ≤ c0δ

2/2. Since M′(ν)/ν is non-increasing in ν, then it is easy to
check Q(δ)/δ is non-increasing in δ by

Q(δ)

δ
=

M′
(
(c−1

0 cL
√
β2δ)1/2

)
(c−1

0 cL
√
β2δ)1/2

{
c0δ/(cL

√
β2)
}−1/2

,

hence we also have Q(δλ) ≤ c0δ
2
λ/2. Following a similar treatment as that in the proof of Theorem

3, we can show that

inf
f∈HK ,f /∈G(δλ)

1

n

n∑
i=1

{L(yi, f(xi))− L(yi, f
∗(xi))}+ λ∥f∥2K − λ∥f∗∥2K > 0. (16)

It implies by the definition of f̂ that ∥f̂ − f∗∥S ≤ δλ with probability at least 1− n−c2 . By (10), we
have

∥f̂ − f∗∥2T ≤ c−1
0 cL

√
β2δλ = c−1

0 cL
√
β2

√
δ2n + 2c−1

0 λ∥f∗∥2K ,

and

EL
T (f̂)− EL

T (f
∗) = ET [L(y, f(x))− L(y, f∗(x))] ≤ cL

√
β2

√
δ2n + 2c−1

0 λ∥f∗∥2K

with probability at least 1− n−c2 . ■

C.3 Proof of Theorem 1

Note that the density ratio is bounded that supx∈X ϕ(x) ≤ α, which implies

∥f − f∗∥T ≤
√
α∥f − f∗∥S . (17)

We can establish the similar result as that in Lemma (C.1.2) by taking Θ′(ν) := {f ∈ HK |
∥f − f∗∥S ≤ ν/

√
α and ∥f − f∗∥K ≤ 3∥f∗∥K}. Then, by choosing δ = ν/

√
α and following the

similar treatment as that in the proof of Theorem 2, we have

∥f̂ − f∗∥2S ≤ δ2n + 2c−1
0 λ∥f∗∥2K .

with probability at least 1 − n−c1 , where δn satisfies M′(
√
αδ) = C

√
log nR(

√
αδ) ≤ c0δ

2

2 .
Together with (17), we have

∥f̂ − f∗∥2T ≤ α
(
δ2n + 2c−1

0 λ∥f∗∥2K
)

with probability at least 1− n−c1 . On the other hand, by (10), there holds

EL
T (f̂)− EL

T (f
∗) = ET [L(y, f(x))− L(y, f∗(x))] ≤ cLα

√
(δ2n + 2c−1

0 λ∥f∗∥2K)

with probability at least 1− n−c1 . Thus we complete the proof. ■

Remark C.3.1. One can combine the proofs of Theorem 1 and Theorem 2 to find out why the
unweighted estimator for the bounded case achieves the optimal rate in terms of the L2(PT

x )-error,
rather than only attaining sub-optimal for the moment bounded case. Both the two proofs first bound
the supremum of empirical process under the classic regime, that is, without covariate shift. Then
the fundamental distinction lies in that the inequalities (10) and (17) give two different convergence
rates compared to ∥f̂ − f∗∥S .
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C.4 Proof of corollaries

Proof of Corollary 1. From the definition that d(δ) = min{j ≥ 1|µj ≤ δ2} and the assumption that
∥f∗∥2K = 1, we have

∞∑
j=1

min(δ2, µj∥f∗∥2K) =

d(δ)∑
j=1

min(δ2, µj) +

∞∑
j=d(δ)+1

min(δ2, µj) ≤ d(δ)δ2 + Cd(δ)δ2 ≍ d(δ)δ2,

where we use the definition of the regular kernel. So the inequality C
√
log nR(

√
αδ) ≤ c0δ

2

2 can be
simplified to √

α log n

n
d(
√
αδ) ≤ Cδ.

This proves the inequality (7) in the main text. For the finite-rank D case,
∑∞

j=1 min(δ2, µj) ≤ Dδ2,
which implies

δ2n ≤ C
Dα log n

n
.

Combining the choice of λ and Theorem 1 gives

∥f̂ − f∗∥2T ≍ EL
T (f̂)− EL

T (f
∗) ≤ C

Dα2 log n

n
.

For the eigenvalues with polynomial decay, such that µj ≤ Cj−2r, so we have d(δ) ≤ C(1/δ)1/r,
which implies that δn satisfies (

log n

n
α

2r−1
2r

) 2r
2r+1

≤ Cδ2.

The simple derivation leads to the desired result. Thus we complete the proof. ■

Proof of Corollary 2. From the definition that d(δ) = min{j ≥ 1|µj ≤ δ2} and the assumption that
∥f∗∥2K = 1, we have

∞∑
j=1

min(δ2, µj) =

d(δ)∑
j=1

min(δ2, µj) +

∞∑
j=d(δ)+1

min(δ2, µj) ≤ d(δ)δ2 + Cd(δ)δ2,

where we use the definition of the regular kernel. So the inequality M(δ) ≤ δ2/2 can be simplified
to √

β2 log2 n

n
d(δ) ≤ Cδ.

This also proves the inequality (16) in the main text. For the finite-rank D case,
∑∞

j=1 min(δ2, µj) ≤
Dδ2, which implies

δ2n ≤ C
Dβ2 log2 n

n
. (18)

Combine (18), the choice of λ and Theorem 3, we have

∥f̂ϕ − f∗∥2T ≍ EL
T (f̂

ϕ)− EL
T (f

∗) ≤ C
Dβ2 log2 n

n
.

For the eigenvalues with polynomial decay, such that µj ≤ Cj−2r, so we have d(δ) ≤ C(1/δ)1/r.
According to inequality (16) in the main text, we have

δ2 +
β2 log2 n

n
d(δ) ≤ δ2 + C

β2 log2 n

n
(1/δ)1/r,
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which leads to an optimal choice δ2 = C(β
2 log2 n

n )
2r

2r+1 . ■

Proof of the sub-optimality of f̂ in moment bounded case. Now, we come to verify the result in
Table 1 for the unweighted estimator in the moment bounded case. For the kernel with finite R, the
inequality C

√
log nR((cL

√
β2δ/c0)

1/2) ≤ c0δ
2

2 can be simplified to√
log n

n
D
√
β2δ ≤ Cδ2.

Simple derivation yields δn ≤ ( logn
n D

√
β2)1/3. The desired convergence rate follows by setting

λ ≍ (
D
√

β2 logn

n )2/3. For the eigenvalues with polynomial decay, by the argument as before, the
inequality C

√
log nR((cL

√
β2δ/c0)

1/2) ≤ c0δ
2

2 can be simplified to√
log n

n
(
√
β2δ)

2r−1
2r ≤ Cδ2,

which leads to δ2n ≤ C( logn
n (β2)

2r−1
4r )

4r
6r+1 . Thus we complete the proof by applying Theorem 2

with λ ≍ ( logn
n (β2)

2r−1
4r )

4r
6r+1 . ■

Proof of the convergence rates with Gaussian kernel. At last, for Gaussian kernel, the eigenvalues
µj decay exponentially, that is µj ≍ e−Cj log j Bach & Jordan (2002). By the definition of d(δ), we
have d(δ) ≤ −C log δ2 for 0 < δ < 1. We first consider the moment bounded case. For the TIRW
estimator, by applying

∑∞
j=1 min(δ2, µj) ≤ Cd(δ)δ2, the inequality C

√
β2 log nR(δ) ≤ c0δ

2

2 can
be simplified to

Cβ2 (log n)
2

n
log(1/δ2) ≤ δ2,

which yields δ2n ≤ Cβ2 (logn)3

n . With λ ≍ β2 (logn)3

n , Theorem 3 implies

∥f̂ϕ − f∗∥2T ≍ EL
T (f̂)− EL

T (f
∗) ≤ Cβ2 (log n)

3

n
.

For the unweighted estimator, C
√
log nR((cL

√
β2δ/c0)

1/2) ≤ c0δ
2

2 can be simplified to

C

√√√√ log n

n
log

(
1√
β2δ

)√
β2δ ≤ δ2,

which yields δn ≤ C(
√
β2 (logn)2

n )1/3. With λ ≍ (
√
β2 (logn)2

n )2/3, Theorem 2 implies

∥f̂ − f∗∥2T ≍ EL
T (f̂)− EL

T (f
∗) ≤ C(β4 (log n)

2

n
)1/3.

We next consider the uniformly bounded case. For the TIRW estimator, it is straightforward to obtain
that

∥f̂ϕ − f∗∥2T ≍ EL
T (f̂)− EL

T (f
∗) ≤ Cα

(log n)3

n
.

For the unweighted estimator, the inequality C
√
log nR(

√
αδ) ≤ c0δ

2

2 can be simplified to

C

√
log n

n
log

(
1

αδ2

)
αδ2 ≤ δ2,

which yields δ2n ≤ Cα (logn)2

n . With λ ≍ Cα (logn)2

n , Theorem 1 implies

∥f̂ − f∗∥2T ≍ EL
T (f̂)− EL

T (f
∗) ≤ Cα2 (log n)

2

n
.
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C.5 Discussion on the minimax lower bound

Based on a standard application of Fano’s inequality, Ma et al. (2023) establish a minimax lower
bound for the regular kernel class by using the squared loss. For completeness of our paper, we
present the relevant result below, which gives a relatively conservative lower bound by only taking
the regression-based problems into consideration, which covers the squared loss and check loss. To
be specific, we suppose that the conditional density of ε := y − f∗(x) given x follows the normal
distribution with mean zero and variance σ2.
Theorem C.5.1. For any α > 0, there exists a pair of marginal distributions (PS

x , P
T
x ) with α-

uniformly bounded importance ratio and an orthonormal basis {ψj}j≥1 of L2(X , PT
x ) such that for

any regular kernel class with eigenvalues {µj}j≥1, we have

inf
f̂

sup
f∗∈BH(1)

E
[
∥f̂ − f∗∥2T

]
≥ C inf

δ>0

{
δ2 + σ2α

d(δ)

n

}
, (19)

where BH(1) = {f ∈ HK | ∥f∥K ≤ 1} represents the unit Hilbert ball.

By simply comparing the lower bound in (19) to the upper bound in (7) and (14) in the main text,
we can see that this lower bound is sharp since it is achieved by both the unweighted estimator
and the TIRW estimator up to a logarithmic factor. And hence, in the uniformly bounded case, the
unweighted estimator achieves minimax optimality, which indicates the TIRW estimator may not be
necessary. In the moment bounded case, the upper bound in Theorem 3 also attains the lower bound
in (19) up to logarithmic factors. For the reason that the second moment bounded class contains the
uniformly bounded class, we can conclude the TIRW estimator is still preserving minimax optimality,
whereas the unweighted estimator is far from optimal compared to the minimax lower bound.

C.6 Remark about the importance ratio

It is worthy pointing out that in practice, it is unrealistic to obtain the true importance ratio ϕ(x), and
it should be estimated from data, where we denote the estimator of ϕ(x) by ϕ̂(x). As illustrated in
Section 4 of the main text, we adopted the KLIEP algorithm (Sugiyama et al., 2007b) to obtain ϕ̂(x)
in all the numerical examples. While the theoretical results are established under the case thatϕ(x)
is known. We want to emphasize that to the best of our knowledge, such a gap commonly appears
in the existing literature, possibly due to inherent theoretical challenges. We decide to leave such a
promising topic as potential future work, and we add some detailed discussions on the possible route
for establishing the theoretical results. Specifically, the key step is that we need to bound the term

sup
f∈Θ(δ)

∣∣∣(1/n) n∑
i=1

(ϕ̂n(xi)− ϕn(xi))(L(yi, f(xi))− L(yi, f
∗(xi)))

∣∣∣.
Thus the strong convergence rate of ϕ̂n − ϕn is required. It’s important to note that the components
within this term are not independent, as the estimated importance ratio ϕ̂ relies on the source data. To
address these intricacies, advanced technical tools are essential. Once we successfully bound this
term, we can establish results similar to those presented in Theorem 3 by leveraging existing proof
techniques with slight modification.
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