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APPENDICES

A THEORETICAL JUSTIFICATIONS FOR LATENT SPACE TRANSLATION
ASSUMPTION

In this Section, we provide two Lemmas to theoretically support our Latent Space Translation as-
sumption for the Generalized-Forward Inverse (GFI) Framework.
Lemma A.1 (Forward Latent Space Translation Assumption). Let f : V → P be an arbitrary
forward operator mapping velocity maps V to seismic waveforms P . Let Ev : V → Ṽ and Dv : Ṽ →
V denote the encoder and decoder for the velocity space V , respectively. Similarly, let Ep : P → P̃
and Dp : P̃ → P denote the encoder and decoder for the seismic waveform space P . Here, ṽ ↑ Ṽ
and p̃ ↑ P̃ represent the latent space encodings. If we assume that the auto-encoder for the velocity
are optimal, i.e., Dv ↓ Ev(v) = v̂ ↔ v, then there exists a functional mapping in the latent space
Lṽ→p̃ : Ṽ → P̃ .

Proof. Given the forward operator f : V → P , by definition, for any v ↑ V , there exists p ↑ P such
that p = f(v).

Let the latent space representations ṽ ↑ Ṽ and p̃ ↑ P̃ be defined by the auto-encoders as follows:

ṽ = Ev(v), v̂ = Dv(ṽ) (10)
p̃ = Ep(p), p̂ = Dp(p̃) (11)

To construct the latent space mapping p̃ = Lṽ→p̃(ṽ), consider the sequence of compositions involv-
ing the encoders, decoders, and the forward operator f :

p̃ = Ep(p)

= Ep(f(v)) (since p = f(v))
= Ep(f(v̂)) (assuming reconstruction: v̂ ↔ v)
= Ep(f(Dv(ṽ))) (since v̂ = Dv(ṽ)) (12)

Thus, by definition of the composition of functions, the latent space mapping can be expressed as:

Lṽ→p̃ = Ep ↓ f ↓Dv (13)

Lemma A.2 (Inverse Latent Space Translation Assumption). Let f↑1 : P → V be an arbitrary
inverse operator mapping seismic waveforms P to velocity maps V that is unique. Let Ep : P → P̃
and Dp : P̃ → P denote the encoder and decoder for the seismic waveform space P , respectively.
Similarly, let Ev : V → Ṽ and Dv : Ṽ → V denote the encoder and decoder for the velocity space
V . Here, p̃ ↑ P̃ and ṽ ↑ Ṽ represent the latent space encodings. If we assume that the auto-encoder
for the seismic waveform space is optimal, i.e., Dp ↓ Ep(p) = p̂ ↔ p, then there exists a functional
mapping in the latent space Lp̃→ṽ : P̃ → Ṽ .

Proof. Given the inverse operator f↑1 : P → V , by definition, for any p ↑ P , there exists v ↑ V
such that v = f↑1(p).

Let the latent space representations p̃ ↑ P̃ and ṽ ↑ Ṽ be defined by the auto-encoders as follows:

p̃ = Ep(p), p̂ = Dp(p̃) (14)
ṽ = Ev(v), v̂ = Dv(ṽ) (15)
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To construct the latent space mapping ṽ = Lp̃→ṽ(p̃), consider the sequence of compositions involv-
ing the encoders, decoders, and the inverse operator f↑1:

ṽ = Ev(v)

= Ev(f
↑1(p)) (since v = f↑1(p))

= Ev(f
↑1(p̂)) (assuming reconstruction: p̂ ↔ p)

= Ev(f
↑1(Dp(p̃))) (since p̂ = Dp(p̃)) (16)

Thus, by definition of the composition of functions, the latent space mapping can be expressed as:

Lp̃→ṽ = Ev ↓ f↑1 ↓Dp (17)

Dataset Examples Velocity shape Waveform shape

FlatVel-A 30,000 (1, 70, 70) (5, 1000, 70)
FlatVel-B 30,000 (1, 70, 70) (5, 1000, 70)

CurveVel-A 30,000 (1, 70, 70) (5, 1000, 70)
CurveVel-B 30,000 (1, 70, 70) (5, 1000, 70)
FlatFault-A 60,000 (1, 70, 70) (5, 1000, 70)
FlatFault-B 60,000 (1, 70, 70) (5, 1000, 70)

CurveFault-A 60,000 (1, 70, 70) (5, 1000, 70)
CurveFault-B 60,000 (1, 70, 70) (5, 1000, 70)

Style-A 67,000 (1, 70, 70) (5, 1000, 70)
Style-B 67,000 (1, 70, 70) (5, 1000, 70)

Table 2: Statistics on the number of samples, the size of the velocity and waveforms for each dataset
in OpenFWI Deng et al. (2022).

B DATASET DESCRIPTION

The OpenFWI comprises multi-structural benchmark datasets of significant size that can be used for
solving full waveform inversion (FWI) using machine learning techniques (Deng et al., 2022). In
particular, the repository contains 3 major groups of data: (1) Vel Family, (2) Fault Family, and (3)
Style Family. These groups represent simple to complex sub-surface geological settings with seismic
velocity and waveforms information. The Vel family is the simplest geological patterns including
four datasets - (1) FlatVel-A (FVA), (2) FlatVel-B (FVB), (3) CurveVel-A (CVA), and (4) CurveVel-
B (CVB). The difference between FlatVel and CurveVel is that the former represents low-energy
geological environments where the rock layers are deposited horizontally and the latter consists of
curved layers which are formed due to structural deformation of flat layers. The Fault family also
has four datasets - (1) FlatFault-A (FFA), (2) FlatFault-B (FFB), (3) CurveFault-A (CFA), and (4)
CurveFault-B (CFB). Unlike Vel datasets, the Fault family contains fault-like deformations, which is
fracturing of rocks under certain pressure conditions. Due to the presence of faults, the Fault family
becomes more complicated and challenging to model. The Style family has two datasets - (1) Style-
A (STA), and (2) Style-B (STB). This dataset is generated using the style transfer method where the
COCO dataset (Lin et al., 2014) is set as the content images and the Marmousi dataset is set as the
style image. This is the most complex OpenFWI dataset as it represents highly complex geological
settings where the velocity is changing rapidly and abruptly. In summary, the details about the Vel
and Fault datasets are described in table 2.

The waveform data is represented as (# source ↗ recording time ↗ receiver length) whereas the
velocity follow (1 ↗ depth ↗ receiver length) shape. In seismic surveys, the wave arrival time is
recorded at the surface and thus, the waveform data for a single source is represented as a function of
time and receiver length. In total, there are 5 seismic sources uniformly spaced along the surface, and
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wavefields are recorded by 70 receivers (uniformly spaced) along the surface for 1000 milliseconds.
Therefore, the seismic wavefields are of the shape (5↗1000↗70). On the other hand, velocity maps
are represented as functions of spatial dimensions, depth and horizontal coverage, and thus have the
shape (1↗ 70↗ 70).

C PRIOR WORKS IN DL4SI AS SPECIAL CASES OF GFI

Figure 9 provides additional schematic illustrations of prior works in DL4SI such as InversionNet,
WaveformNet, and AutoLinear as special cases of our proposed GFI framework.

Figure 9: Prior Works exprerssed as GFI

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 CYCLE LOSS FOR INVERTIBLE X-NET

Given the velocity maps v and the waveforms p, the predictions for the waveform and velocity can
be obtained using the Invertible X-Net as follows:

p̂ = fv→p(v) = Dp ↓ Lṽ→p̃ ↓ Ev(v) (18)
v̂ = fp→v(p) = Dv ↓ Lp̃→ṽ ↓ Ep(p) (19)

Now, the Invertible X-Net architecture can be further applied on p̂ and v̂ to create the following
transformations:

ˆ̂p = fv→p(v̂) = Dp ↓ Lṽ→p̃ ↓ Ev(v̂) (20)
ˆ̂v = fp→v(p̂) = Dv ↓ Lp̃→ṽ ↓ Ep(p̂) (21)

The cycle-loss for Invertible X-Net can be mathematically defined as follows:

Lcycle = L(p, ˆ̂p) + L(v, ˆ̂v) (22)

where L is the loss function that can be MSE, MAE or Elastic Loss. Note that the formulation of
Cycle-Loss does not rely on paired examples, and can be applied on un-paired data as well. The
combined loss function including cycle-loss can be given as:

LX-Net (Cycle) = Lforward + Linverse + Lcycle (23)

For training Invertible X-Net (Cycle) model, we use loss function shown in Equation 23.
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D.2 ADDITIONAL TRAINING DETAILS

For training, we normalize the velocity using min-max normalization and seismic waveform using
standard normalization to rescale the data to mean 0 and standard deviation as 1. Table 5 shows
other hyperparameter details for training Latent U-Net and Invertible X-Net models on OpenFWI
datasets.

Since the baseline models have different normalization schemes than our models, we compare model
predictions during evaluation by unnormalizing the predictions to original domains. For exam-
ple, AutoLinear uses min-max normalization for velocity and a combination of log-normalization
xnorm = (loge(1+ |x|)↘sign(x) followed by min-max in the log-normalized domain for waveform.
We unnormalized both the velocity and waveform predictions so that we can measure and visualize
errors in the predictions in the original space, allowing easy comparison across models.

D.3 MODEL ARCHITECTURE

We summarize details related to model architecture, layers, and number of parameters related to
seismic and velocity encoder-decoder architecture in Table 3, and regarding the latent models used
for translation in Table 4. Further, we compare our model parameters with baseline models in Table
6.

D.3.1 LATENT U-NET

Latent U-Net architectures are specifically adapted to subsurface imaging by employing U-Net-
based encoder-decoder pairs designed to handle domain-specific input and output dimensions, such
as velocity maps and seismic waveforms, while enabling latent dimension processing. Both the
Large and Small variants utilize identical encoder and decoder designs, featuring 5 layers in the en-
coder and 6 layers in the decoder. These layers operate on an embedding dimension of 128x70x70,
with channel sizes ranging from 8 to 128 in the encoder and 128 to 1 (velocity) or 128 to 5 (wave-
form) in the decoder.

The Large Latent U-Net incorporates 2 depth levels and 4 convolutional blocks per depth level in its
latent space translation model, resulting in a total parameter size of 34.96M. The Small variant, de-
signed for reduced complexity, includes 1 convolutional block per depth level in its latent translation
model, reducing the total parameter size to 18.13M.

D.3.2 INVERTIBLE X-NET

Invertible X-Net leverages an iUNet-based architecture to achieve bidirectional mappings, en-
abling consistent forward (velocity-to-waveform) and inverse (waveform-to-velocity) transforma-
tions within a shared framework. iUNet introduces invertible coupling blocks, ensuring bijectivity
for the latent space translation model. Max pooling is replaced with orthogonal convolutional fil-
ters for downsampling, while upsampling is performed using orthogonal deconvolution filters to
maintain invertibility.

While the latent space translation model in Invertible X-Net is fully invertible due to its iUNet
structure, the encoder-decoder pairs are not invertible. Therefore, Invertible X-Net as a whole is
not fully invertible. However, by employing two separate encoder-decoder pairs for velocity and
waveform domains, Invertible X-Net achieves an architecture that enables bidirectional mappings
between the two domains while preserving consistency.

Invertible X-Net features 4 depth levels, with 4 invertible coupling blocks per level, and adopts an
encoder-decoder structure similar to Latent U-Net, with 5 encoder layers and 6 decoder layers, an
embedding dimension of 128x70x70, and channel sizes ranging from 8 to 128. The latent translation
model - iUNet consists of 25.78M parameters, contributing to a total model size of 26.06M.
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Table 3: Architecture Details of Seismic Waveform and Velocity Encoder-Decoder models.

Model #Layers
#Embedding

Dim
Channels #Params

Velocity Encoder 5 128x70x70 [8, 16, 32, 64, 128] 11632
Velocity Decoder 6 128x70x70 [128, 64, 32, 16, 1, 1] 27877

Seismic Waveform
Encoder

5 128x70x70 [8, 16, 32, 64, 128] 55680

Seismic Waveform
Decoder

6 128x70x70 [128, 64, 32, 16, 5, 5] 186497

Table 4: Architecture details of Latent U-Net and IU-Net latent space translation models

Model #Depths
#Conv blocks/

Coupling Blocks
#Params

Latent U-Net 2 4 34.68M
IU-Net 4 4 25.78M

Table 5: Hyperparameter details for training Latent U-Net and Invertible X-Net models.

Model #Epochs Optimizer LR LR Scheduler
Latent U-Net 450 Adam 2e-3 StepLR

Invertible X-Net 450 Adam 2e-3 StepLR

Table 6: Comparison of encoder, decoder, and latent model parameters for our model (Latent U-Net
and Invertible X-Net) with other baseline models. The parameters for Latent U-Nets and Invertible
X-Nets are calculated for Latent dimension 70.

Model
#Vel Encoder

Params
#Vel Decoder

Params
#Amp Encoder

Params
#Amp Decoder

Params
#Translation

Params
#Total
Params

FNO - - - - - 7.38M
InversionNet - 9.34M 35.76M - Identity 24.41M
VelocityGAN - 9.34M 35.76M - Identity 24.41M

Autolinear 12.98M 9.98M 2.29M 10.18M 16.5K 35.45M
Latent U-Net(Small) 11.6K 27.88K 55.68K 186.5K 17.86M 18.13M
Latent U-Net(Large) 11.6K 27.88K 55.68K 186.5K 34.68M 34.96M

Invertible X-Net 11.6K 27.88K 55.68K 186.5K 25.78M 26.06M
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(a) Inverse problem (b) Forward problem

Figure 10: Comparison of Latent U-Nets (Small and Large), Invertible X-Net, Invertible X-Net
(Cycle) with different baseline methods across different OpenFWI datasets.

E ADDITIONAL RESULTS

E.1 ADDITIONAL INVERSE MODELING RESULTS

We provide more detailed comparison of our models with other baseline models in Table 7. Our
proposed models consistently outperform baseline models on multiple datasets indicating superior
generalizability on in-distributions examples.

Additionally, we also show zero shot generalization of our models on the Marmousi and Overthrust
dataset in Tables 8. Our model Invertible X-Net shows generalizability in SSIM indicating that
overall prediction has better geological understanding than other baseline models.

Table 7: Comparison of our models (Latent U-Net (Large) and Invertible X-Net) with other baseline
models for the inverse problem across 10 OpenFWI datasets. The bold highlights the best perform-
ing model on that dataset.

Metric Model FVA FVB CVA CVB FFA FFB CFA CFB STA STB Average Rank

MAE ≃
InversionNet 19.67 52.77 102.77 224.57 25.80 158.31 38.90 246.94 93.96 103.37 2.8
Auto-Linear 12.16 70.05 110.72 273.02 24.55 181.39 41.38 268.47 107.85 95.63 3.5
Latent U-Net 9.01 28.11 48.05 123.56 30.91 92.91 27.05 185.22 67.00 71.41 1.3

Invertible X-Net 23.80 34.94 57.86 139.81 59.45 94.11 198.56 181.03 67.09 121.42 2.7

MSE ≃
InversionNet 1002.74 17271.62 36438.33 188044.46 4081.10 68214.92 9490.73 136327.84 23626.76 58622.35 2.8
Auto-Linear 1053.03 33907.57 42391.39 236457.48 5952.25 81789.80 13715.42 154713.12 31274.60 21819.14 3.5
Latent U-Net 216.92 6464.06 12609.65 91784.50 2348.22 33935.12 3771.38 93249.92 14353.55 14564.94 1.3

Invertible X-Net 1245.52 6969.42 14659.46 96121.90 7719.55 32559.95 77105.41 86512.36 13106.96 31550.22 2.4

SSIM ⇐
InversionNet 0.9894 0.9461 0.8073 0.6726 0.9765 0.7208 0.9566 0.6136 0.8858 0.6314 3
Auto-Linear 0.9887 0.9044 0.8056 0.6169 0.97 0.6865 0.9424 0.5695 0.8422 0.7274 3.8
Latent U-Net 0.9967 0.9809 0.9273 0.8156 0.991 0.8515 0.98 0.6930 0.9298 0.8064 1.3

Invertible X-Net 0.9917 0.9769 0.9135 0.8076 0.9826 0.8532 0.9316 0.7116 0.9360 0.7913 1.9
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Table 8: Comparison of our models (Latent U-Net (Large) and Invertible X-Net) on real world like
datasets - Marmousi, Overthrust, Marmousi Smooth, Overthrust Smooth for the Inverse Problem.
The bold highlights the best performing model on that dataset.

Metric Model Marmousi Overthrust Marmousi Smooth Overthrust Smooth

MAE ≃
InversionNet 282.39 273.80 179.34 148.34

Auto-Linear 285.38 298.89 206.38 207.41
Latnet U-Net 322.13 264.40 242.71 198.53

Invertible X-Net 298.39 308.50 245.86 258.26

MSE ≃
InversionNet 160084.5 135988.73 67978.40 37804.58

Auto-Linear 159517.41 157434.56 78207.07 71128.92
Latnet U-Net 217508.17 122398.64 112685.39 69122.58

Invertible X-Net 180250.47 179093.10 107344.46 124700.75

SSIM ⇐
InversionNet 0.46 0.4519 0.6044 0.7217

Auto-Linear 0.438 0.4097 0.5423 0.6447
Latnet U-Net 0.438 0.4807 0.6371 0.7031

Invertible X-Net 0.504 0.4827 0.6633 0.6952

E.2 ADDITIONAL FORWARD MODELING RESULTS

Similar to the inverse problem, we provide detailed comparison of our models with other baseline
models in Table 9 and 10. Our proposed models consistently outperform baseline models on multiple
datasets indicating superior in-distributions generalizability.

Table 9: Comparison of our models (Latent U-Net (Large) and Invertible X-Net) with other baseline
models for the forward problem across 10 OpenFWI datasets. The bold highlights the best perform-
ing model on that dataset.

Metric Model FVA FVB CVA CVB FFA FFB CFA CFB STA STB Average Rank

MAE ≃
FNO 0.0077 0.0385 0.0700 0.1405 0.0282 0.0829 0.0605 0.1075 0.0292 0.0379 2.4

Auto-Linear 0.0340 0.0906 0.0744 0.1537 0.0541 0.1048 0.0703 0.1356 0.0492 0.0584 3.9
Latent U-Net 0.0389 0.0473 0.0581 0.1098 0.0512 0.059 0.0576 0.0891 0.0269 0.0354 2.3

Invertible X-Net 0.0257 0.0527 0.0532 0.0887 0.0457 0.0477 0.0404 0.0671 0.0235 0.0341 1.4

MSE ≃
FNO 0.0004 0.0066 0.0259 0.0825 0.0059 0.0358 0.0251 0.0471 0.0041 0.0053 1.9

Auto-Linear 0.0084 0.0427 0.0303 0.1045 0.0217 0.0625 0.033 0.0866 0.0174 0.0173 3.7
Latent U-Net 0.0173 0.0127 0.0160 0.0489 0.0344 0.0175 0.0442 0.0297 0.0053 0.0082 2.6

Invertible X-Net 0.0062 0.0176 0.0175 0.0305 0.0185 0.0117 0.0126 0.0163 0.004 0.0087 1.8

SSIM ⇐
FNO 0.9967 0.9781 0.8881 0.8354 0.9667 0.8702 0.9166 0.8160 0.9655 0.9417 3.1

Auto-Linear 0.9694 0.9289 0.9038 0.8567 0.9470 0.8736 0.9253 0.8188 0.9569 0.9300 3.5
Latent U-Net 0.9764 0.9779 0.9237 0.89 0.9659 0.9283 0.9571 0.8636 0.9819 0.9702 2.3

Invertible X-Net 0.9887 0.9782 0.9559 0.9221 0.9744 0.954 0.9757 0.9156 0.989 0.9805 1.1

E.3 IMPORTANCE OF COMBINED LOSS FUNCTION FOR INVERTIBLE-XNET

In this section, we focus on the training of the Invertible X-Net model using a combined loss func-
tion (incorporating both the forward and inverse problems), as opposed to training it solely with a
forward loss function. Figure 11 shows that when model is trained using only forward loss, then
its performance falls short compared to the Latent U-Net (Large) model. This discrepancy can be
attributed to the fact that the Latent U-Net has a higher model complexity than Invertible X-Net,
despite their similar sizes. Nonetheless, when the Invertible X-Net model is trained with combined
loss (forward and inverse), the model is able to outperform Latent U-Net model with a good mar-
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Table 10: Comparison of our models (Latent U-Net (Large) and Invertible X-Net) on real world like
datasets - Marmousi, Overthrust, Marmousi Smooth, Overthrust Smooth for the Forward Problem.
The bold highlights the best performing model on that dataset.

Metric Model Marmousi Overthrust Marmousi Smooth Overthrust Smooth

MAE ≃
FNO 0.1484 0.2726 0.1077 0.1892

Auto-Linear 0.2818 0.3018 0.2821 0.2730
Latnet U-Net 0.1338 0.2502 0.1013 0.1875

Invertible X-Net 0.1425 0.2311 0.1056 0.2062

MSE ≃
FNO 0.1110 0.580 0.0811 0.3495

Auto-Linear 0.4227 0.6203 0.5325 0.5593
Latnet U-Net 0.1116 0.5494 0.0927 0.4133

Invertible X-Net 0.1168 0.4026 0.08130 0.5049

SSIM ⇐
FNO 0.8148 0.7404 0.9021 0.8447

Auto-Linear 0.6344 0.672 0.6670 0.7192
Latnet U-Net 0.8343 0.7700 0.9143 0.8626

Invertible X-Net 0.827 0.7863 0.9112 0.8500

gin. This highlights the value of joint training, demonstrating that simultaneously learning both the
forward and inverse problems can lead to better results than learning the two models separately.

In Figures 12 and 13, we illustrate asymmetry in learning the translation for the forward and inverse
problems using CVB and CFA datasets. From the figures, we observe that the model learns the
inverse mapping in the initial epochs and gradually starts to learn the solution to the forward prob-
lem in later epochs. Since the network optimizes the combined loss function on both velocity and
waveform together, the gradients from the combined loss help the model to achieve better forward
solution. This corroborates with our hypothesis that the model trained on combined loss is able to
learn the connection between forward and inverse problem.

Figure 11: Comparison of Latent U-Net (Large), Invertible X-Net, Invertible X-Net (Forward Only),
and Invertible X-Net (Cycle) on the forward problem across various OpenFWI datasets.

E.4 ZERO-SHOT PERFORMANCE

In this part, we provide detailed insights into zero shot performance of our models (Latent U-Net
(Large) and Invertible X-Net) with other baselines across all datasets. This investigation helps us
understand overall out-of-distribution generalization of a model and underscore the importance of
learning the translation problem in the latent space.
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E.5 INVERSE PROBLEM

Figure 14 and 15 show generalization performance of Invertible X-Net and Latent U-Net (Large)
models respectively on the inverse problem using MAE, MSE, and SSIM metrics. As described
in the main paper, we show models trained across all dataset as rows and evaluated across all test
datasets as columns. For comparison, we evaluate metrics such as MAE, MSE, and SSIM and
calculate its difference between our models and other baseline models. For MAE and MSE, when
the color intensity is blue, our model show better generalizability and vice-versa whereas, for SSIM,
when the color intensity is red indicates better generalization of our model and vice-versa.

From Figure 14, we observe that the Invertible X-Net shows superior generalization over the base-
line models (AutoLinear, InversionNet, and VelocityGAN) across all metrics except on the FVB
dataset. Figure 14 (d) compare Invertible X-Net with Latent U-Net (Large) model where we see
that Invertible X-Net shows better generalization on complex datasets such as CFB, STA, and STB
datasets, while Latent U-Net is better on relatively simpler datasets such as CVA, CFA, and more.
Similarly, Figure 15 shows the comparison of Latent U-Net (Large) model with other baseline mod-
els. As expected, we observe that our model is able to generalize much better than all the baseline
models.

E.6 FORWARD PROBLEM

Similar to the inverse problem, we analyze out-of-distribution generalization of our models against
baseline models across all evaluation metrics.

Figures 16 and 17 compares the performance of our models Invertible X-Net and Latent U-Net
(Large) against baselines. In Figure 16, we observe strong generalization of Invertible X-Net over
all baselines - AutoLinear, FNO, and WaveformNet. Figure 16 (d) shows the comparative perfor-
mance of Invertible X-Net against Latent U-Net (Large) where we see that Invertible X-Net domi-
nates overall across all metrics. In Figure 17, we compare the Latent U-Net (Large) model against
same baselines as above. The figure indicates Latent U-Net (Large) model has much stronger gen-
eralizability than baseline models consistently.

F ABLATION STUDIES

F.1 EFFECT OF VARYING LATENT SPACE SIZES

Figure 18a (a) shows how the performance of Latent U-Net model is affected with change in the
latent space size. As the latent space size is reduced, the MAE and MSE metrics for mapping seismic
waveform to velocity is increasing, while the SSIM is decreasing. The impact is more pronounced
on complex datasets such as B group of datasets. These datasets represent geologically complex
datasets and therefore may require larger latent space to encode geological heterogeneity. In Figure
18b, we compare the large Latent U-Net with the small Latent U-Net model, while latent space size
is also reduced. We observe that the performance gap between the two models reduces as the latent
space size is also reduced. This underscore the importance of latent space size for encoding the
geological features for an effective translation.

Further, we provide visualizations of the first two primary PCA and t-SNE components of the ve-
locity latent space in Figure 19 and 20 respectively. We take the encoder trained on a dataset and
get the latent space encoding on several datasets. This visualization shows the in-distribution and
out-of-distribution generality of our encoders and highlights the importance of the manifold for la-
tent space translation. Overall, we observe that the larger latent space 70↗ 70 have better structure
than 8 ↗ 8, indicating that the ideal size of latent space should be decided based on the complexity
of dataset and problem being solved.

F.2 EFFECT OF SKIP CONNECTIONS FOR LATENT U-NET

In this section, we study the impact of skip connections of Latent U-Net model for the inverse
problem. Figure 21 shows how the MAE and MSE are increasing and SSIM is decreasing when the
latent space size is decreasing from 70↗70 to 8↗8. We observe that the impact of skip connections
is more pronounced at smaller latent space size as opposed to larger space.
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F.3 EFFECT OF MANIFOLD LEARNING

Figure 22 for Latent U-Net Small further elaborates on our finding that direct translation learning
consistently outperforms the two-stage approach, where translation follows reconstruction.

G NOISE EXPERIMENTS

Table 11: Quantitative results on CurveFault-B with Gaussian noise of varying variance ω2 added
during testing for the inverse problem.

Model ω2 = 0 ω2 = 1e-5 ω2 = 5e-5 ω2 = 1e-4 ω2 = 5e-4
PSNR=84.07dB PSNR=77..08dB PSNR=74.07dB PSNR=67.08dB

MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM
Latnet U-Net 185.22 93248.64 0.6930 185.54 93538.78 0.6926 187.03 94674.546 0.6917 188.56 95777.95 0.6906 195.94 101444.7 0.6844
Degradation (%) (-) (-) (-) 0.17% 0.31% 0.05% 0.97% 1.52% 0.20% 1.80% 2.71% 0.35% 5.78% 8.78% 1.24%
Invertible X-Net 180.97 86465.25 0.7117 181.32 86673.38 0.7115 182.83 87674.14 0.7106 184.17 88585.86 0.7097 192.22 94728.94 0.7036
Degradation (%) (-) (-) (-) 0.19% 0.24% 0.02% 1.02% 1.39% 0.15% 1.76% 2.45% 0.27% 6.21% 9.55% 1.13%
Auto-Linear 268.47 154713.10 0.5695 270.29 156201.81 0.5682 277.05 162156.50 0.5632 285.34 169892.26 0.5572 325.02 211616.29 0.5190
Degradation (%) (-) (-) (-) 0.67% 0.96% 0.21% 3.19% 4.81% 1.10% 6.28% 9.81% 2.15% 21.06% 36.77% 8.86%

Table 12: Quantitative results on FlatFault-B with Gaussian noise of varying variance ω2 added
during testing for the inverse problem.

Model ω2 = 0 ω2 = 1e-5 ω2 = 5e-5 ω2 = 1e-4 ω2 = 5e-4
PSNR=84.07dB PSNR=77..08dB PSNR=74.07dB PSNR=67.08dB

MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM
Latnet U-Net 92.93 33925.46 0.8515 93.47 34137.49 0.8511 95.43 34907.52 0.8499 98.19 36002.58 0.8482 108.83 40770.50 0.8417
Degradation (%) (-) (-) (-) 0.58% 0.62% 0.05% 2.68% 2.89% 0.18% 5.66% 6.12% 0.38% 17.10% 20.17% 1.15%
Invertible X-Net 94.05 32548.49 0.8532 96.23 33283.08 0.8529 104.75 36522.60 0.85 110.30 39016.04 0.8474 122.66 45509.88 0.8382
Degradation (%) (-) (-) (-) 2.31% 2.25% 0.03% 11.37% 12.20% 0.37% 17.27% 19.87% 0.67% 30.41% 39.82% 1.76%
Auto-Linear 181.39 81789.80 0.6865 187.40 85327.79 0.6821 206.58 98616.76 0.6664 221.79 110396.50 0.6511 283.50 167482.73 0.5796
Degradation (%) (-) (-) (-) 3.31% 4.32% 0.64% 13.88% 20.57% 2.93% 22.26% 34.97% 5.16% 56.28% 104.77% 15.57%

Table 13: Quantitative results on CurveFault-B with Gaussian noise of varying variance ω2 added
during testing for the forward problem.

Model ω2 = 0 ω2 = 1e-5 ω2 = 5e-5 ω2 = 1e-4 ω2 = 5e-4
PSNR=56.02dB PSNR=49.03dB PSNR=46.02dB PSNR=39.03dB

MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM
Latnet U-Net 0.0891 0.0297 0.8636 0.0891 0.0297 0.8635 0.0892 0.0297 0.8634 0.0897 0.0301 0.8630 0.0966 0.0396 0.8565
Degradation (%) (-) (-) (-) 0% 0% 0.01% 0.13% 0.30% 0.01% 0.60% 1.40% 0.06% 8.37% 33.47% 0.82%
Invertible X-Net 0.0671 0.0163 0.9157 0.0672 0.0164 0.9156 0.0674 0.0164 0.9152 0.0678 0.0166 0.9147 0.0719 0.0193 0.9090
Degradation (%) (-) (-) (-) 0.07% 0.07% 0.009% 0.42% 0.54% 0.04% 1.00% 1.68% 0.10% 7.08% 18.18% 0.73%
Auto-Linear 0.1356 0.0866 0.8188 0.1356 0.0868 0.8187 0.1360 0.0873 0.8183 0.1365 0.088 0.8179 0.139 0.0919 0.8159
Degradation (%) (-) (-) (-) 0.06% 0.14% 0.01% 0.34% 0.78% 0.05% 0.70% 1.61% 0.09% 2.53% 6.03% 0.35%

H ADDITIONAL VISUALIZATIONS

Here, we provide additional visualization of the waveform and velocity predictions for baselines
and our models, namely Latent-UNet (small), Latent-UNet (large), Invertible-XNet, and Invertible-
XNet (cycle), for both forward and inverse problems. Please note that we show the prediction of
seismic waveform and velocity in the original space by unnormalizing the predictions for every
model (Figures 23 - 34).
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Table 14: Quantitative results on FlatFault-B with Gaussian noise of varying variance ω2 added
during testing for the forward problem.

Model ω2 = 0 ω2 = 1e-5 ω2 = 5e-5 ω2 = 1e-4 ω2 = 5e-4
PSNR=56.02dB PSNR=49.03dB PSNR=46.02dB PSNR=39.03dB

MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM
Latent U-Net 0.0594 0.0175 0.9283 0.0594 0.0175 0.9283 0.0598 0.0179 0.9279 0.0606 0.0187 0.9271 0.0694 0.0325 0.9178
Degradation (%) (-) (-) (-) 0% 0% 0% 0.66% 2.16% 0.04% 1.99% 6.99% 0.12% 16.87% 85.99% 1.12%
Invertible X-Net 0.0477 0.0117 0.9540 0.0478 0.0117 0.9540 0.0482 0.0119 0.9536 0.0487 0.0122 0.9531 0.0535 0.016 0.9463
Degradation (%) (-) (-) (-) 0.17% 0.33% 0% 0.94% 1.88% 0.04% 1.93% 4.26% 0.10% 12.16% 36.39% 0.80%
Auto-Linear 0.1048 0.0625 0.8736 0.1051 0.0628 0.8734 0.1061 0.0641 0.8726 0.1072 0.0656 0.8717 0.112 0.0727 0.868
Degradation (%) (-) (-) (-) 0.25% 0.54% 0.02% 1.19% 2.59% 0.11% 2.24% 5.06% 0.21% 6.86% 16.37% 0.64%

I CODE APPENDIX

All the code required to train and evaluate the proposed methods, as well as the baselines, has
been uploaded to an anonymous GitHub repository: https://github.com/KGML-lab/
Generalized-Forward-Inverse-Framework-for-DL4SI. The data and correspond-
ing processing code used in this work are sourced from the OpenFWI website: https://
openfwi-lanl.github.io/docs/data.html.
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(a) Epoch: 1

(b) Epoch: 10

(c) Epoch: 20

Figure 12: Training of Invertible X-Net model on the CVB dataset illustrating velocity and seismic
waveform learning with epochs.
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(a) Epoch: 1

(b) Epoch: 10

(c) Epoch: 20

Figure 13: Training of Invertible X-Net model on the CFA dataset illustrating velocity and seismic
waveform learning with epochs.

26



Published as a conference paper at ICLR 2025

(a) Invertible X-Net - AutoLinear

(b) Invertible X-Net - InversionNet

(c) Invertible X-Net - VelocityGAN

(d) Invertible X-Net - Latent U-Net (Large)

Figure 14: Out-of-distribution zero shot generalizations for the inverse problem of Invertible X-Net
with AutoLinear, InversionNet, VelocityGAN, Latent U-Net (Large).
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(a) Latent U-Net (Large) - AutoLinear

(b) Latent U-Net (Large) - InversionNet

(c) Latent U-Net (Large) - VelocityGAN

Figure 15: Out-of-distribution zero shot generalizations for the inverse problem of Latent U-Net
(Large) with AutoLinear, InversionNet, VelocityGAN.
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(a) Invertible X-Net - AutoLinear

(b) Invertible X-Net - FNO

(c) Invertible X-Net - WaveformNet

(d) Invertible X-Net - Latent-UNet (Large)

Figure 16: Out-of-distribution zero shot generalizations for the forward problem of Invertible X-Net
with AutoLinear, FNO, WaveformNet (U-Net like model), and Latent U-Net (Large).
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(a) Latnet U-Net (Large) - AutoLinear

(b) Latnet U-Net (Large) - FNO

(c) Latnet U-Net (Large) - WaveformNet

Figure 17: Out-of-distribution zero shot generalizations for the forward problem of Latent U-Net
with AutoLinear, FNO, and WaveformNet (U-Net like model).
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(a) Effect of Latent dimension on U-Net Large

(b) Effect of Latent dimension on U-Net Small in comparison to U-Net Small

Figure 18: Effect of the size of latent sizes on the performance of large and small Latent U-Net
(small and large) on the OpenFWI datasets.

Figure 19: Visualizing the PCA projection of Velocity latent space for 8↗ 8 and 70↗ 70.
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Figure 20: Comparing the t-SNE plot of latent space for velocity encoder.

Figure 21: Effect of the size of latent space and skip vs no skip connections on the performance of
large and small Latent U-Net models across OpenFWI datasets.
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(a) Latent U-Net Small (b) Invetible X-Net

Figure 22: Comparison of Latent U-Net’s and Invertible X-Net’s performance across three learning
objectives: translation directly, reconstruction followed by translation, and combined learning of
both, evaluated at different training fractions.
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Figure 23: Zero shot generalization results of model trained on Style-A dataset on Marmousi and
Overthrust dataset samples and their smoothened versions.

34



Published as a conference paper at ICLR 2025

Figure 24: Zero shot generalization results of model trained on Style-B dataset on Marmousi and
Overthrust dataset samples and their smoothened versions.
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Figure 25: Visualization of predictions for forward and inverse problems on FVA dataset.
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Figure 26: Visualization of predictions for forward and inverse problems on FVB dataset.
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Figure 27: Visualization of predictions for forward and inverse problems on CVA dataset.
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Figure 28: Visualization of predictions for forward and inverse problems on CVB dataset.
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Figure 29: Visualization of predictions for forward and inverse problems on FFA dataset.
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Figure 30: Visualization of predictions for forward and inverse problems on FFB dataset.
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Figure 31: Visualization of predictions for forward and inverse problems on CFA dataset.
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Figure 32: Visualization of predictions for forward and inverse problems on CFB dataset.
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Figure 33: Visualization of predictions for forward and inverse problems on STA dataset.
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Figure 34: Visualization of predictions for forward and inverse problems on STB dataset.
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