
A Method Details

Listing 1 Full Numpy example of the parameterization and computation of a 1D S4D-Lin model
def parameters(N, dt_min=1e-3, dt_max=1e-1):

Initialization
log_dt = np.random.rand() * (np.log(dt_max)-np.log(dt_min)) + np.log(dt_min)
A = -0.5 + 1j * np.pi * np.arange(N//2) # S4D-Lin initialization
B = np.ones(N//2) + 0j
C = np.random.randn(N//2) + 1j * np.random.randn(N) # Variance preserving initialization
return log_dt, np.log(-A.real), A.imag, B, C

def kernel(L, log_dt, log_A_real, A_imag, B, C):
Discretization (e.g. bilinear transform)
dt, A = np.exp(log_dt), -np.exp(log_A_real) + 1j * A_imag
dA, dB = (1+dt*A/2) / (1-dt*A/2), dt*B / (1-dt*A/2)

Computation (Vandermonde matrix multiplication - can be optimized)
Return twice the real part - same as adding conjugate pairs
return 2 * ((B*C) @ (dA[:, None] ** np.arange(L))).real

def forward(u, parameters):
L = u.shape[-1]
K = kernel(L, *parameters)
Convolve y = u * K using FFT
K_f, u_f = np.fft.fft(K, n=2*L), np.fft.fft(u, n=2*L)
return np.fft.ifft(K_f*u_f, n=2*L)[..., :L]

A.1 Proofs

We prove Theorem 3, and then show why this it is a surprising result that is not true in general to
low-rank perturbations of SSMs.

We start with the interpretation of the S4-LegS matrix shown in [10], which corresponds to Fig. 1
(Left).
Theorem 5. Let A,B,P be the matrices defined in equation (4). The SSM kernels Kn(t) =
e⊤n e

tAB have the closed form formula

Kn(t) = Ln(e
−t)e−t

where Ln are the Legendre polynomials shifted and scaled to be orthonormal on the interval [0, 1].
Lemma A.1. The functions Ln(e

−t) are a complete orthonormal basis with respect to the measure
ω(t) = e−t.

Proof. The polynomials are defined to be orthonormal on [0, 1], i.e.∫ 1

0

Ln(t)Lm(t) dt = δn,m.

By the change of variables t = e−s with dt
ds = −e−s,

−
∫ 0

−∞
Ln(e

−s)Lm(e−s)e−s ds = δn,m =

∫ ∞

0

Ln(e
−s)Lm(e−s)e−s ds

which shows the orthonormality.

Completeness follows from the fact that polynomials are complete.

Proof of Theorem 3. We start with the standard interpretation of SSMs as convolutional systems.
The SSM x′(t) = Ax(t) +Bu(t) is equivalent to the convolution

xn(t) = (u ∗Kn)(t) =

∫ t

−∞
u(s)Kn(t− s) ds =

∫ ∞

0

u(t− s)Kn(s) ds

14

for the SSM kernels (equation (3)).

Defining u(t)(s) = u(t− s), we can write this as

xn(t) = ⟨u(t),Kn⟩ω

where ω(s) = e−s and ⟨p(s), q(s)⟩ω =
∫∞
0

p(s)q(s)ω(s) ds is the inner product in the Hilbert space
of L2 functions with respect to measure ω.

By Theorem 5, the Kn are a complete orthonormal basis in this Hilbert space. There xn(t) represents
a decomposition of the function u(t) with respect to this basis, and can be recovered as a linear
combination of these projections

u(t) =

∞∑
n=0

xn(t)Kn.

Pointwise over the inner times s,

u(t)(s) =

∞∑
n=0

xn(t)Kn(s).

This implies that

u(t) = u(t)(0) =

∞∑
n=0

xn(t)Kn(0)

=

∞∑
n=0

xn(t)Ln(0) =

∞∑
n=0

xn(t)(2n+ 1)
1
2

= B⊤x(t)

Intuitively, due to the function reconstruction interpretation of HiPPO [10], we can approximate u(t)
using knowledge in the current state x(t). There in the limit N → ∞, the original SSM is equivalent
to

x′(t) = Ax(t) +Bu(t)

= Ax(t) +
1

2
Bu(t) +

1

2
Bu(t)

= Ax(t) +
1

2
BB⊤x(t) +

1

2
Bu(t)

= Ax(t) + PP⊤x(t) +
1

2
Bu(t)

= ANx(t) +
1

2
Bu(t)

General low-rank perturbations. Finally, we remark that this phenomenon where removing
the low-rank correction to a DPLR matrix approximates the original dynamics, is unique to this
HiPPO-LegS matrix. We note that if instead of PP⊤, a random rank-1 correction is added to the
HiPPO-LegS matrix in Theorem 3, the resulting SSM kernels look completely different and in fact
diverge rapidly as the magnitude of P increases (Fig. 4).

Similarly, Fig. 5a shows a new S4 variant called S4-FouT that is also DPLR [10], but removing the
low-rank component dramatically changes the SSM kernels.

B Experiment Details

Ablation datasets training protocol. The architecture has 4 layers and hidden dimension H = 128,
resulting in around 100K trainable parameters. The A and B parameters were tied across the H SSM
copies; therefore the S4 models have only H × {num. layers} more parameters than S4D models,
arising from the P tensor in the DPLR representation A = Λ − PP⊤. This choice was made

15

(a) σ = 0.3 (b) σ = 0.4 (c) σ = 0.5

Figure 4: Basis kernels for (A+PP⊤,B) for HiPPO-LegS (A,B) and random i.i.d. Gaussian P with varying
std σ, illustrating that the SSM basis is very sensitive to low-rank perturbations. Note that the normal-HiPPO
matrix A(N) = A+PP⊤ for P with entries of magnitude N

1
2 which is far larger, highlighting how unexpected

the theoretical result Theorem 3 is.

(a) S4-FouT (b) Diagonal approximation to S4-FouT

Figure 5: (a) S4-FouT is a version of S4 that produces truncated Fourier basis functions choosing a particular
(A,B). This captures sliding Fourier transforms as a state space model. (b) Removing the low-rank term from
the FouT matrix does not approximate S4-FouT. This diagonal state matrix has real part 0 that produces infinite
oscillations and does not perform well empirically.

because it generally does not affect performance much, while reducing parameter count and ensuring
that S4 vs. S4D models have very similar numbers of parameters.

All results are averaged over 2 or 3 seeds.

All models use learning rate 0.004, 0.01 weight decay, and no other regularization or data augmenta-
tion. For the classification tasks (sCIFAR and SC). we use a cosine scheduler with 1 epoch warmup
and decaying to 0. For the regression task (BIDMC), we use a multistep scheduler following [21, 8].

Reported results are all best validation accuracy, except for the large models in Table 4.

Full results for parameterization ablations. Table 6 and Table 7 contain the raw results for Table 2
including standard deviations.

Full results for large models on ablations datasets. Tables 8 to 10 show full results comparing
our proposed methods against the best models from the literature; citations indicate numbers from
prior work.

Table 6: Full results for Table 2 (Left) including standard deviations.

Trainable B Method sCIFAR SC (AR) BIDMC (SpO2)

No Softmax 85.04 (0.22) 89.80 (0.21) 0.1299 (0.0048)
No Vandermonde 84.78 (0.16) 89.62 (0.03) 0.1355 (0.0039)
Yes Softmax 85.37 (0.43) 90.06 (0.11) 0.1170 (0.0039)
Yes Vandermonde 85.37 (0.43) 90.34 (0.18) 0.1274 (0.0020)

16

Table 7: Full results for Table 2 (Right) including standard deviations.

Discretization Real part sCIFAR SC (AR) BIDMC (SpO2)

Bilinear Exp 85.20 (0.18) 89.52 (0.01) 0.1193 (0.0069)
Bilinear - 85.35 (0.27) 90.58 (0.37) 0.1102 (0.0075)
Bilinear ReLU 85.06 (0.06) 90.22 (0.25) 0.1172 (0.0063)
ZOH Exp 85.02 (0.24) 89.93 (0.07) 0.1303 (0.0014)
ZOH - 85.15 (0.13) 90.19 (0.58) 0.1289 (0.0035)
ZOH ReLU 84.98 (0.72) 90.03 (0.13) 0.1232 (0.0065)

Table 8: (Sequential CIFAR image
classification. Test accuracy (Std. dev.)

Model SCIFAR

S4-LegS 91.80 (0.43)
S4-FouT 91.22 (0.25)
S4-(LegS/FouT) 91.58 (0.17)

S4D-LegS 89.92 (1.69)
S4D-Inv 90.69 (0.06)
S4D-Lin 90.42 (0.03)

Transformer [25] 62.2
FlexConv [20] 80.82
TrellisNet [2] 73.42
LSTM [12, 7] 63.01
r-LSTM [25] 72.2
UR-GRU [7] 74.4
HiPPO-RNN [6] 61.1
LipschitzRNN [4] 64.2

Table 9: (BIDMC Vital signs prediction.) RMSE for predicting respira-
tory rate (RR), heart rate (HR), and blood oxygen (SpO2).

Model HR RR SpO2

S4-LegS 0.332 (0.013) 0.247 (0.062) 0.090 (0.006)
S4-FouT 0.339 (0.020) 0.301 (0.030) 0.068 (0.003)
S4-(LegS/FouT) 0.344 (0.032) 0.163 (0.008) 0.080 (0.007)

S4D-LegS 0.367 (0.001) 0.248 (0.036) 0.102 (0.001)
S4D-Inv 0.373 (0.024) 0.254 (0.022) 0.110 (0.001)
S4D-Lin 0.379 (0.006) 0.226 (0.008) 0.114 (0.003)

UnICORNN [21] 1.39 1.06 0.869
coRNN [21] 1.81 1.45 -
CKConv 2.05 1.214 1.051
NRDE [15] 2.97 1.49 1.29
LSTM 10.7 2.28 -
Transformer 12.2 2.61 3.02
XGBoost [23] 4.72 1.67 1.52
Random Forest [23] 5.69 1.85 1.74
Ridge Regress. [23] 17.3 3.86 4.16

Note that earlier works on the Speech Commands dataset typically use pre-processing such as MFCC
features, or a 10-class subset of the full 35-class dataset [14, 19, 9]. As we are not aware of a collection
of strong baselines for raw waveform classification using the full dataset, we trained several baselines
from scratch for Table 10. The InceptionNet, ResNet-18, and XResNet-50 models are 1D adaptations
from Nonaka and Seita [16] of popular CNN architectures for vision. The ConvNet architecture is a
generic convolutional neural network that we tuned for strong performance, comprising:

• Four stages, each composed of three identical residual blocks.

• The first stage has model dimension (i.e. channels, in CNN nomenclature) H = 64. Each
stage doubles the dimension of the previous stage (with a position-wise linear layer) and
ends in an average pooling layer of width 4. Thus, the first stage operates on inputs of length
16384, dimension 64 (the input is zero-padded from 16000 to 16384) and the last on length
256, dimension 512.

• Each residual block has a (pre-norm) BatchNorm layer followed by a convolution layer and
GeLU activation.

• Convolution layers have a kernel size of 25.

Long Range Arena. Our Long Range Arena experiments follow the same setup as the original S4
paper with some differences in model architecture and hyperparameters. The main global differences
are as follows:

Bidirectional The original S4 layer is unidirectional or causal, which is an unnecessary constraint
for the classification tasks appearing in LRA. Goel et al. [5] propose a bidirectional version
of S4 that simply concatenates two S4 convolution kernels back-to-back. We use this for all
tasks.

GLU feedforward S4 consists of H independent 1-dimensional SSMs, each of which are processed
by an independent S4 SSM mapping (A,B,C,D). These outputs are then mixed with a

17

Table 10: (Speech Commands classification.) Test accuracy on 35-way keyword spotting. Training examples
are 1-second audio waveforms sampled at 16000Hz, or a 1-D sequence of length 16000. Last column indicates
0-shot testing at 8000Hz where examples are constructed by naive decimation.

Model Parameters 16000Hz 8000Hz

S4-LegS 307K 96.08 (0.15) 91.32 (0.17)
S4-FouT 307K 95.27 (0.20) 91.59 (0.23)
S4-(LegS/FouT) 307K 95.32 (0.10) 90.72 (0.68)

S4D-LegS 306K 95.83 (0.14) 91.08 (0.16)
S4D-Inv 306K 96.18 (0.27) 91.80 (0.24)
S4D-Lin 306K 96.25 (0.03) 91.58 (0.33)

InceptionNet 481K 61.24 (0.69) 05.18 (0.07)
ResNet-18 216K 77.86 (0.24) 08.74 (0.57)
XResNet-50 904K 83.01 (0.48) 07.72 (0.39)
ConvNet 26.2M 95.51 (0.18) 07.26 (0.79)

Table 11: The values of the best hyperparameters found for all datasets; full models on ablation datasets (Top)
and LRA (Bottom). LR is learning rate and WD is weight decay. BN and LN refer to Batch Normalization and
Layer Normalization.

Depth Features H State Size N Norm Pre-norm Dropout LR Batch Size Epochs WD (∆min,∆max)

sCIFAR 6 512 64 LN False 0.1 0.01 50 200 0.05 (0.001, 0.1)
SC 6 128 64 BN True 0 0.01 16 40 0.05 (0.001, 0.1)
BIDMC 6 128 256 LN True 0 0.01 32 500 0.05 (0.001, 0.1)

ListOps 8 128 64 BN False 0 0.01 50 40 0.05 (0.001, 0.1)
Text 6 256 64 BN True 0 0.01 16 32 0.05 (0.001, 0.1)
Retrieval 6 256 64 BN True 0 0.01 64 20 0.05 (0.001, 0.1)
Image 6 512 64 LN False 0.1 0.01 50 200 0.05 (0.001, 0.1)
Pathfinder 6 256 64 BN True 0 0.004 64 200 0.03 (0.001, 0.1)
Path-X 6 256 64 BN True 0 0.0005 32 50 0.05 (0.0001, 0.01)

position-wise linear layer, i.e. W y for a learned matrix W ∈ RH×H . Instead of this linear
mapping, we use a GLU activation (W1y) ◦ σ(W2y) for W1,W2 ∈ RH×H [3]. These
have been empirically found to improve linear layers of DNNs in general [22].

Cosine scheduler Instead of the plateau scheduler used in [9], we use a cosine annealing learning
rate scheduler for all tasks.

Regularization Almost all tasks used no dropout and 0.05 weight decay.
Architecture Almost all tasks used an architecture with 6 layers, H = 256 hidden units, BatchNorm,

pre-norm placement of the normalization layer.

Exceptions to the above rules are described below. Full hyperparameters are in Table 11.

sCIFAR / LRA Image. This dataset is grayscale sequential CIFAR-10, and the settings for this task
were taken from S4’s hyperparameters on the normal sequential CIFAR-10 task. In particular, this
used LayerNorm [1] instead of BatchNorm [13], a larger number of hidden features H , post-norm
instead of pre-norm, and minor dropout. We note that the choice of normalization and increased H
do not make a significant difference on final performance, still attaining classification accuracy in the
high 80’s. Dropout does seem to make a difference.

BIDMC. We used a larger state size of N = 256, since we hypothesized that picking up higher
frequency features on this dataset would help. We also used a step scheduler that decayed the LR by
0.5 every 100 epochs, following prior work [21, 8].

ListOps. We hypothesized that this task benefits from deeper models, because of the explicit
hierarchical nature of the task, so the architecture used here had 8 layers and H = 128 hidden
features. However, results are very close with much smaller models. We also found that post-norm
generalized better than pre-norm, but results are again close (less than 1% difference).

PathX. As described in [10], the initialization range for PathX is decreased from (∆min,∆max) =
(0.001, 0.1) to (∆min,∆max) = (0.0001, 0.01).

18

