A Proof of Theorem 3.1]
In this section, we prove Theorem 3.1} which says that it suffices to the augmented state space (y, s)

rather than the whole history . First, we have the following lemma.

Lemma A.1. Foranyy € Rand s € S, we have

B [m(a 1=y 1 (Eg’” € zt(y,s))} B [m(a 1=y 1 (Eg’” € zt(y,s))} .

Proof. Note that

[ | &7 € 2(IE),50)]
(™) [ﬂ't(at | M) ’ =M € Zt(yvs):|

=Ezm i (ay | égﬂ)) ‘ Eﬁﬂ) € Zt(:%s)} :

Ei(fﬂ-) € Zt(ya S):|

Eiﬂ) € Z(y, 5)}

The claim follows by replacing :,E ™ with HE ™ and multiplying by P_ =(m [=; (m) ¢ Z(y, 8)]- O

Next, let
Di7(y,s) =P [J(ET) SynSET) =

be the probability of a history achieving current cumulative return at most y and ending in state s.

Lemma A.2. We have D\™ = D™

Proof. We prove by induction. The base case ¢ = 1 follows trivially. For the inductive case, note that

D) = [ 1€ € Zenaly5") - dBoiy )

/Z > Lo (a,rs) € Ziya(y,s") - P(s' | S(€),a) - dPR(s,a)(r) - w(a | €) - AP (€)

acAs’'eS

/Z S U +r<y)- s =5")- P(s' | S(€),a) - dPR(sa)(r) - 7(a | &) - APz (€)

acAs’'eS

— [ S 10+ 20)- P [8(0),0) ris () 7(a ] ) dPoio©),

acA

where the first line follows by definition of Dg +)1, the second by the inductive formula for P_(-) , the
—t+1

third since J(§ o (a,r,s")) = J(§) + r, and the fourth by summing over s’. Continuing, we have

t+1 ya Z Z / a | 5 ) +r < y) . R(S(f) = S) . dPEEW)(g) : P(SN | 870’) : dPR(s,a) (’I’)

SES acA

=3 [ @]9 16 € Zly — ) - dPon(€) - P [ 5,0) - dPrs (1)

s€SacA

=3 [#@]9 1 € ly - o) dPn(©) - P | 5,0) - P (1),

sES acA
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where the first line follows by introducing 1(S(£) = s) and rearranging, the second by definition of
Z,, and the third by Lemma[A-T] Continuing, we have

D) =3 X [ 1€ Zuly —rs)) - oo (©) - 7la |y = 119) - PS" | 5,0) - (1)
s€SacA
=5 [ D) waly - rs) P 0) P ()
s€SacA
=2 / Dy —r,5) - 7la|y—r,s)- P(s" | 5,0) - dPr(sa)(r)
sESacA
=N [ 1€ 2ty =) Ao (©) Flaly—r8) P | 5.0) (1),
seESacA

where the first line follows since 7 is independent of £ and by rearranging, the second by definition
of Dg”), the third by induction, and the fourth by definition of Dt(ﬂ). Continuing, we have

DIy, s) =D / (@] &) 1 € Zi(y—r,5)) - dPoin (&) - P(s" | 5,0) - dPR(s.0)(r)

s€ESacA

=>.> / T(a]€) - 1(J(€) +r <y) LS =s) dPgio (&) - P(s" | 5,a) - dPR(sa)(r)

sESacA

=2 / L(J(€) +r <y) - P(s" | S(€),a) - dPR(s,a)(r) - (a | €) - dP5 (€)

acA

=> > / L(J(€) +r <y)-1(s' = ") - P(s' | S(€),a) - dPrs,a)(r) - (@ | €) - dPgm (€)

acAs’'eS

= Z Z / ]1(5 © (a,r, S/) € Zt+1(y7 SH)) ' P(Sl | S(f),a) ' dPR(s,a)(r) : 7‘:‘-(C" | f) . dPEii)(g)

acAs’'eS
— 1€ € Zialw. ) - dPop €)
= DA (y.s"),
where the first line follows by definition of 7, the second by definition of Z;, the third by summing

over s and rearranging, the fourth by introducing 1(s’ = s), the fifth by definition of Z; 1, the sixth

by the inductive formula for P_(~) , and the seventh by the definition of Dt(jr_)l The claim follows. [
—t41

Now, we prove Theorem [3.1] By Lemma[A.2] we have
Fyon (@) = [ 10€) < 0) - dBoio )
=¥ 106 ) 1S(©) = 5) - P (€

seS

Z/]l(g € Zr(w,5)) - P (€)

seS

3 / 1(6 € Zr(z.5)) - dPoyo (€)

sES
— /]1(](5) < ) - dPo (§)
= Fzx (z).

Theorem 3.1| follows straightforwardly from this result. ]
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B Proof of Theorem 3.2

We construct a sequence of MDPs M, M1, ..., M, such that My = M and My = M, and
where we can bound the incremental errors

(™) = g (Tha, )

noting a policy for one of the MDPs can be used in all the other MDPs. For each 7 € [T, the
MDP M. discretizes the reward assigned on the tth step of M. _;—more precisely, it discretizes
the transitions since the rewards are only assigned on the last step based on the cumulative reward

recorded in the second component of the state space. Formally, M is identical to M, except it uses
the (time-varying) transition probability measure P(7) defined by

. P | 5,0)- Py 0 6) —y) ift<7
PO (s W = ’ (s:2) N
t ((S 'Y ) | (87 y)7 CL) {P(S/ | s, G,) . ]P)R(s,a) (y/ — y) otherwise.

Then, M is identical to M, _; except Pr(s ) is replaced with Pr(, o) © ¢! on step 7. We prove

three lemmas showing a lower bound on the value of a policy 7 for M, when adapted to M, _;.

Lemma B.1. Given 7 € [T), let M = M,_1 and M = M, (so compared to M, M replaces

Pr(s,a) WithPR(s,q) © ¢~ on step T in its transitions). Given any policy & for M, define the policy
7Tt(a’ | S,y,Oé) = ﬁ—t(a | 5Y + a)

Sfor M, where we initialize the (extra) policy internal state oy = 0, and we update a, 11 = ¢(r;) —r;
on step T and a1 = oy otherwise. Then, for all x,y,a € R, fort > 1, we have

FZE”)(s,y,Oz) (:E) = FZé*)(s,y+a)(x)’

and fort < 1, we have

Fz (60,0 %) S Fpo (@ +1);
where Zt(ﬂ) (resp., ZAt(ﬁ)) is the return of M (resp., M)from step t for policy m (resp., 7).

Proof. We prove by backwards induction on ¢. The base case ¢ = T follows by definition (and since
the reward measure does not change from M to M). For ¢t > 7, we have

FZ,EW)(S,y,Oé) (.’I,‘) = ZA Zg/ﬂ-t(a I S,y,Oé) ’ P(S/ | S,Cl) : FZt(-T-)l(S/’erT’a) (.13 - T) . dPR(s,a)(r)
a€As’'e

= Z Z /ﬁ-t(a I s,y + O{) ' P(Sl | S,Cl) : FZEi)l(s’,y+a+T)(x - 7") ' d]P)R(s,a)(r)
acAs’'eS
= Py )
where the second line follows by induction and by the definition of 7. Next, for ¢ = 7, we have

— /
FZi”)(s,y,O) (l‘) - 2;4 Zg/ﬂ-t(a ‘ $Y, O) ' P(S | S, Cl) ' FZt(i)l(S/,erT@(T),T) (I - T) : d]P)R(s,a)(r)
acAs’'e

= Z Z /ﬁt(a | 5,9) -P(sl | s,a) - FZﬁi)l(s',y+¢(r))(x —7) 'dPR(s,a)(T)

acAs’'eS

= Z Z /ﬁ't(a | 5,9) 'P(Sl | s,a) - FZAf(,i)l(S',er(b(T))(x —o(r) +¢(r) —7) 'dPR(sﬂ) (r)

acAs’'eS

<SS [l l50) PO 15000 Fygpy oy (@~ 600 + 1) - AP (1)

acAs' €S

_ A / . _ . —1
=>.> /”t(“ [ 8,5) P(s" | 8,0)  Fp) () (@ = P+ 1) - dPR(s,) © 07 (p)

acAs'eS
= Fpo @+,
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where the first line uses the update from a; = 0 to a;4+1 = r — ¢(r) on this step, the second
line follows by induction and by the definition of 7, the fourth line follows by monotonicity of

Fym (s ytr)’ and the fifth line follows by a change of variables p = ¢(r). For t < 7, we have
t+1\5

FZé")(s,y,O) (:L’) = Z Z /’”t(a‘ | 5Y, 0) : P(sl | S, a) : FZt(i)l(s/vy"rTao) (iL' - 7‘) : d]P)R(s,a)(T)

acAs’eS

= Z Z /ﬁt(a | Say) ! P(Sl | 8,(1) ' FZii)l(S',y+7”70)(x - T) ' dIPR(s,a)(T)
acAs’eS

< Z Z /ﬁt(a | Svy) ’ P(S, | 570’) ’ FZAéii(slay‘f‘TvO)(I -7+ 77) ’ dIPR(s,a)(T)
acAs’'eS

= FZAE"?)(SI’O)({L‘ + 77)7

where the second line follows by the definition of 7, and the third line follows by induction. The
claim follows. O

Lemma B.2. For any monotonically increasing I, we have F'(F(x)) < z, and F(F(1)) > 7.

Proof. See Proposition 1 in [18]]. O

Lemma B.3. Let F,G : R — R be monotonically increasing. If F(x) < G(z +n) forall z € R,
then we have F (1) > GY(1) —n forall T € R.

Proof. By assumption, G(z) > F(z — 7). Substituting 2 = F(7) + 7 into this formula, we obtain
G(FH (1) +n) = F(F(r)) > 7,

where the second inequality follows by Lemma|[B.2] Also by Lemma[B.2] since G is monotonically
increasing, so is G, so we can apply G to each side of the inequality to obtain

GM(r) < GNG(F(r) + ) < F'(7) +n,
where the second inequality follows by Lemma[B.2] The claim follows. O

Lemma B.4. Consider the same setup as in Lemma Let 7 be a policy for M, and let 7 be the
policy defined in Lemma that adapts © to M. Then, we have

where ® is the objective for M and b is the objective for M.

Proof. Let Z = Z{ﬁ)(sl, 0) and Z = wa)(sl, 0,0). Applying Lemma to the inequality in
Lemma|[B-1] we have

Fj(r) > Fi(r) —n.

Integrating this inequality, we have

on) = [ Fir) a6 > [ (Fir) —n) - aGir) = 8(3) .
as claimed. O
Lemma B.5. Consider the same setup as in Lemma[B.1| Given any policy T for M, define the policy
mi(a] s y,a) =m(a|s,y+a)

for M, where we initialize o = 0, and we update o1 = r on step T, where r is a random variable
with probability measure

IEDI’%(S,(Z)(T | ¢(’I") = p)7
and a1 = oy otherwise. Then, for all x,y, o € R, fort > 7, we have
F3 (6,00 @) = Fp gy 4 (%)
and fort < 1, we have

inﬁ)(syy,O) (z) < FZf")(syy)(I)'
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Proof. We prove by backwards induction on 7T'. The base case ¢ = T follows by definition. For
t > 7, we have

FZAt(ﬁ)(s,y,a) (l‘) = ZA Zs/frt(a’ | Svyaa) : P(Sl | Saa) : FZAEI?(S/vyJFPvO‘) ([L‘ - p) : dPR(s,a)(p)
acAs’'e

:ZZ/wt(a|s7y—|—a)-P(s/|s,a)~FZ

acAs’'e€S

= Py @)

(S’7y+a+p)(x - p) : dPR(s,a) (P)

()
t+1

where the second line follows by induction and by the definition of 7. Next, for ¢ = 7, we have

FZAéﬁ)(sp,O) (l‘)

= Z Z /ﬁ-t(a | S,y,O) : P(S/ | S,Cl) . szi)l(sl’y+p’rfp) (l‘ - p) : dPR(s,a) (T | (b(?”) = p) : dHDR(S,a) o ¢_1(p)

acAs’'eS

= Z Z /ﬂ-t(a’ | S?y) ' P(S/ | 8,(1) ' szi)l(sl’err)(x - p) : dPR(s,a)(T ‘ ¢(’I") = p) . dPR(s,a) © ¢_1(p)

acAs’'eS

< Z Z /ﬂ-t(a’ | S?y) ' P(S/ | 8,(1) ' Fzﬁ(i)l(sl’err)(x - ’f‘) : dPR(s,a)(r | (b(?“) = p) ' dPR(s,a) o ¢_1(p)

acAs'€S

= Z Z /ﬂ-t(a’ | Say) : P(S/ | 87a) : FZt(-T-)l(S/’y‘H”)(x - T) : dPR(s,a) (’I")

a€As'eS
=F T
z{ (5. ()

where the second line uses the update from a; = 0 to ;1 = 7 — p on this step, the third line follows

by induction and by the definition of 7, the fourth line follows by monotonicity of F', () (s ytr)’° and
t+115

the fifth line follows by the definition of conditional probability—in particular,

/FZm (s p4) (z =7) - dPR(s,a)(r | §(r) = p) - dPR(s,a) © ¢~ (p)

t+1

fFZ(ﬂ) , (il' - 7") : ]].(’f’ € (b_l(p)) : d]PR(s a)(r)
t 1(5 ’ +T) ’ _
= / + - : dPR(s,a) o ¢ 1(p)

B J107 € 671(0) - Prgoa) ()
1(r
¢—1

) 1(r € ¢o~1(p))
= / Fym) (o1 yry (2= 7) / J1(" € 971 (p)) - dPR(s.a) (1)

= A(reB)
= | F » — -P B;) - dPgr(s.q
/ 2 (st ) (& ) Zi:l P(R(s,a) € B;) (R(s,) € By) - dPr(s0) (1)

' dPR(s,a) © ¢_1(p) ' dPR(s,a) (’I")

N /Fzm (s gy (& = 7) - AR R(s.a) (),

t41

where in the third line, B; = (n- (i — 1), - i]. For t < 7, we have

FZ§*>(S,y70)(x) - Z Z /ﬁt(a | 5,4,0)- P(s" | s,a) - FZ

D00 ) PR (0)
acAs’'eS
— Z Z /Wt(a ‘ S7y) . P(S/ | S,U,) . FZEI)I(S’,y+p7O)(I — p) . dPR(S,a)(p)
acAs’'eS
S 2;4 Zg/ﬂ-t(a/ ‘ Svy) . P(S/ | S,G,) . FZt(I)l(S',y+p,0)(x — p) . dPR(S,a)(p)
a€As’'e

Z{ (s’ y,0) (),

where the second line follows by the definition of 7, and the third line follows by induction. The
claim follows. O
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Next, we prove two lemmas showing a converse—namely, a lower bound on the value of a policy 7
for M _; when adapted to M.

Lemma B.6. Consider the same setup as in Lemma(B.1] Letting m be a policy for M, and 7 be the
policy defined in Lemma@ that adapts © to M. Then, we have

(7)) > ®(m),
where ® is the objective for M and ® is the objective for M.
Proof. Let Z = Zﬁ”)(sl, 0) and Z = Zfﬁ)(sl, 0,0). Applying Lemmato the inequality in
Lemma|[B.3] we have
Fl(7) = Fi(7).

Integrating this inequality, we have

b(3) = [ Fi(r)-dG(r) > [ Fi(r) - doir) = o)
as claimed. O

Finally, we prove Theorem Let 77, be the optimal policy for M, and let 72 be the policy
defined in Lemma adapting 72 from M, to M, _; for each 7 € [T.

Dg(mg) > O1(7] ) —n > Po(my) > ... > Op(np) =T -,

where each inequality follows by Lemma Similarly, let 7{ be the optimal policy for M, and let
70 be the policy defined in Lemma adapting 70_; from M, _; to M. Then, we have

Op(r9) > Pr_1(ng_y) > ... > o(m]),

where each inequality follows by Lemma Furthermore, by optimality of 7% for ®7, we also
have @7 (r1%) > @7 (72); together, these three inequalities imply

<I>0(7Tg) > O (n)) — T -n.
Finally, note that 7§ = wj\;[ is the optimal policy for M = M, and T = JVRL 7 adapted to M;
also, &g = @ v is the objective for M. Thus, we have
(I)/\;l(ﬂ-./\;l) Z (b./\;l(ﬂ-j\;l) —T~7].
By Theorem , the optimal policy for M equals the optimal history-dependent policy for the
original MDP M, so the claim follows. [

C Proof of Lemmas for Section 5

C.1 Proof of Lemmal[5.2]

Proof. First, by the Dvoretzky—Kiefer—Wolfowitz (DKW) inequality and a union bound, for each
k € [K], conditioned on { N®)(s,a)}ses.qc 4, With probability at least 1 — §/(3K), we have

1F 700 (0.0) = Fris.ayloe < €5 (s,0) (Vs € S,a € A).

Similarly, by Hoeffding’s inequality, an ¢; concentration bound for multinomial distribution, and a
union bound, for each k € [K], conditioned on {N¥) (s, a)}scs.ac.a, We have

IPW(-|5,0) = P(-| s,0)|1 < ) (s,a) (Vs € S,a € A)
PO 5.0) = P(-| 5,0)]loe < € (s,0) (Vs € S,a € A).

each holding with probability at least 1 — §/(3K), respectively. Thus, both of these bounds hold for
all k € [K] with probability at least 1 — ¢. The claim follows. O
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C.2 Proof of Lemmal[5.3]

Proof. First, we prove that for all policies 7, we have
||Fz’<7r> — Fym|loo < B(m).

To this end, let G(r) = FZ(")( 't )(z — 1); note that G(—oo) = 1 and G(c0) = 0. Then, by
t41(85,YTT
integration by parts, we have

Fom (@ /Z Y mlals,y)-Pls' | s,a) G(r) - dPpisa)(r)

acAs'eS

/Z Z (a]s,y)- P(s"|s,a) Fresa(r)-dG(r),

ac€As’'eS

and similarly for F /-, (5.3) (z). Next, note that

reR 200 (®) = Fmr ) @)l

/ / /
= sup %% alsy) (P'(s'|sa)—P(s \s,a))/FZm(S,,ym(x—T)dPR/(S,a)(T)
+ 2;4 ZS als,y)P(s'|s a)/ (Fzzgr,?(s,)y_‘_r)(:c —r)— Fzéi)l(s,ﬂ_‘_r)(z — r)) d]I”’R,(&a)(r)
acAs'e
_2;425. a|sy S |S a)/(FR’(s,a)(r)_FR(sa( ))dF t(i)l(s 7/+T)( T)
acAs'e
<sup > > wla|s,y)[P(s'|s,a) = P(s' | s,a)|
xERaGAs 'eS
! /
+ 2;4 z;gﬂ-(a’ | Say) : / Sup |F ’(W)(S y+r)( ) F f(i)l(s ,err)( )l . dPR’(S,a)(r)
acAs'e

+Z a|3 y) Sup |FR’(sa( )_FR(s,a)(r/)l
acA

! A
S |crl60) + enlo.0) + 398 1Py &) = Py )]

Thus, we have
(ﬂ). E{sup|F ", )( x) — szw)(syy)(x)]

=K eg’f[;” + eg’fl’lm + sup |F 2/ (s erT)( 7') — F,m (") (x’)@

L 2/ ER Zy4a t+1

< Elep(s,a) + er(s,a)] + er)

T=t

T T
=E Z EP(S‘rv a’T) + ER(STa aT)‘| )
where the last step follows by induction. Finally, we have

@%ﬂ—ﬂﬂh=£ (G(Fyrim () — G(Fyeo (2))) - da

T
sm/«&ww—&Mde
0
) RG]
<T LG €

where the first line follows by Lemmam The claim follows since e(ﬂ) equals the desired bound. [
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C.3 Proof of Lemmal5.7]

Proof. First, we prove that FZAUC,W)(Q y)(x) < FZ(-;\-)(Q y)(x) The case s = S is straightforward,
t S, t S

since its transitions and rewards are equal in M and M, and it only transitions to itself. For s # s,
we prove by induction on ¢. The base case ¢ = T follows by definition. Then, we have

FZt(k’w)(s,y) (LC) = / Z Z ﬂ—(a’ | S7y) : p(k) (Sl | 870’) . FZt(i»lﬂ)(s/7y+r) (217 - T) ’ dﬁDR(k)(s,a) (’I“)

acAs’eS

< [ aal s PO [5:0) - Fygy o= 1) 8B 0)
acAs’'eS

_ P (k

- / Z Z ﬂ—(a‘ | s,y) ’ P( )(8/ | s,a) : FR(k)(Sya)(x/ - :E) -dFZt(i)l(S’,y-l-f’)(x/)
acAs’'eS

< / Z Z 77(0‘ | s,y) ’ p(k)<8/ | s,a) : FR(s,a)(xl - .’E) ’ dFZ(W) 9/7y+r)(1’/)

11 (¢
acAs'eS

p(k
= / E E 71—(0‘ | Say) ’ P( )(8/ | s,a) : szii(s/vy""r) (l’ - T) ’ dIPR(s,a) (T),
acAs'eS

2

where the second line follows by induction, the third by integration by parts and substituting ' = z—r,
the fourth since Fr(s,q)(r) =1 = Fﬁz(k)(s.a) (r) for r > 1, and for < 1, on event £, we have

k
FR(s,a)(r) = max {Fé(k>(s,a)(7“) — e (s,0), 0} = Fpo (5,0) (1)
and the fifth by integration by parts and substituting r = 2’ — x. Next, since s # S, we have

P(k)(soo|saa):17 Z p(k)(5/|5,a): Z P(Sl‘57a)7p(k)(sl|saa)7
s'€S\{s00 } s'€S\{s00}

Z

so we can decompose the summand P*) (so, | s,a) - Fm (s y+r)(ac —r) (e, s = s5)in
t41\500;
and distribute it across the other summands; in particular, the summands s’ # s, become

P®(s' | s,a)- F, (x—r)+ (P(s’ | s,a) — PP (5" | s,a)) -F,

I E xr—7r
Do) Doomerin (&7

<PW(s' | s,a)-F

Zfﬂ(ﬁ’vy”)(‘m —r)+ <P(s' | s,0) — PX(s' | s, a)) -F

20 (50 ) (& )

(=
t+
. / . _

- P(S | Sva) FZéi)l(S',y+7”)(x T)v (3)

where the second line follows since Ffol(soo,y-s-r) (x—71) < Ffol(s/,y-s-r) (x —r)forall 8’ # s,

and since P(s" | s,a) — P*) (s | s,a) > 0 on event £. Continuing from , we have

FZ,Ek’W)(s,y)(x) < / Z Z ﬂ-(a | Say) ' ﬁ(k)(sl ‘ S7a) ! FZt(:,>1(8,7y+T) (JU - T) : d]P)R(s,a)(r)

acAs’'€S

<Y Y walsy PE s F,
a€A s’€S\ {500}

= Z}W)(s7y)(m)7 (4)

)1(3’7y+r) (I - T) ’ dPR(s,a) (T)

(m
t+

where the second line follows by distributing the summand s’ = s, and applying . Since M and
M have the same initial state distribution, we have F, . ., (x) < Fz (). By Lemma we have

T T
BB (r) = — /0 G(Fyom (@) -du > T — /O G(Fyo(x)) - dz = B(r),

where the inequality follows from (@) and since G is monotone. The claim follows. O

19



C.4 Proof of Theorem

Proof. We prove Theorem@ Note that on event £, we have
regret(2l)

415 - |A|- K g
= 2TLg\/5|S|2log (|||5|> =) lzz m ’ {N®)(s,a )} he(K],seS.acA
ty t

k=1t=1

where the first inequality follows by Lemma the second follows by optimality of 7 (%) for k),
and the third by Lemma@ Furthermore, note that

K T K T 1
L(N® (s,a0) <T) + LN® (s, a0) > T) ——e——.

L2 e S n L e

The event (s;,a;) = (s,a) and (N*)(s,a) < T) can happen fewer than 27 times per state action

pair. Therefore, S0 ST 1(N® (s;,a,) < T) < 2T'SA. Now suppose N*)(s,a) > T. Then

for any t € Wy, we have N(k)(s a) < N®(s,a) + T < 2N®) (s, a). Thus, we have

| /\

Z Z Sf, le) > T) < 2
oo VNW(sha) DS Nt(k)(stﬂ at)

s€SacA j=1
N+ (g a)

ey Y [ et
s€SacA
2|S| - | Z Z N(E+1) (g, q)
s€SacA
=+/2|S|-|A|- KT.
The claim follows. O

D The Optimal Policy for CVaR Objectives

In this section, we describe how to compute the optimal policy for the CVaR objective when the MDP
is known; this approach is described in detail in [13]]. Following this work, we consider the setting
where we are trying to minimize cost rather than maximize reward. In particular, consider an MDP
M= (S,A,D,P,P,T), and our goal is to compute a policy 7 that maximizes its CVaR objective.
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Step 1: CVaR objective. We begin by rewriting the CVaR objective in a form that is more amenable
to optimization. First, we have the following key result (see [[13]] for a proof):

Lemma D.1. For any random variable Z, we have
1
CVaR,(Z) = inf —— Ez[(Z—-p)"] ¢,
ko) = inf {p+ 1o 522 - 9]}
where the minimum is achieved by p* = VaR(Z).

As a consequence of this lemma, we have

1
in CVaR(Z(™) = min inf —-EW{ZW— ﬂ
min CVaR(Z7) %Q;ER{PH_Q 2z |( 2

1
—_
lni {p+

) ‘EW[ZWL +} .
pER — ErnellI'I1 Z()( P)

Thus, we have

" =argminE [(Z(”) — p*)"’} ,
mell
where

* = arginf J(p) where J(p)=p+
pER 11—«

. () _ +]
max Bz [(Z P

The main challenge is evaluating the minimum over 7 € I in J(p). To do so, we construct another
MDP whose objective is E ;) [(Z (m) — p)*] for the appropriate choice of initial state distribution.

Step 2: Construct alternative MDP. The MDP we construct is M = (5‘ ,A,D,P,R, T), where
the states are S = S x R, the (time-varying, deterministic) rewards R : S x [T] — R are

. max{r,0} ift=T
t p—
R((s,7),1) {0 otherwise,

and the transitions are

P((S/7T/) ‘ (S7T)a a) = P(Sl | S, a’) X IPR(S,@) (T/ - T)?
noting that P is a (conditional) probability measure since the state space S includes a continuous
component; in practice, we discretize the continuous component of the state space.

Step 3: Value iteration. Letting S; be the random initial state of the original MDP M (with
distribution D), we have

Eze (2 = p)t] = Es, [ ((51.-)]
where 171(”) is the value function of policy 7 for MDP M on step t = 1. Thus, we have
minEye (27 - p)*| = Bs, [V (81, -))]

where 171* is the value function of the optimal policy for M. Intuitively, this strategy works because
the augmented component of the state space r captures the cumulative reward so far plus its initial
value —p; then, by the definition of R, the reward is 7+, which implies that f/l(ﬂ)( (s,—p)) is the
expectation of the random variable (Z(™) — p)*. Thus, we can compute min,cr E ;) [(Z(™) — p)F]

by performing value iteration on M to compute f/l(ﬂ. In particular, we have
V#((s,7)) = max{r, 0},
and

(o) = min [ V20((s'r) - dP((r") | (7))

forallt € {1,...,T — 1}. Then, given an initial state s;, we construct state 5; = (s, —p*), where

1 (7
p* = arginf { p+ —— -V ((s,—p)) ¢,
pER 11—«

and then acting optimally in M according to f/t*
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