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A ADDITIONAL NOTATIONS AND BOUNDS FOR SAMPLING SCHEMES

In this section, we introduce additional notations that are used throughout the proofs. Following com-
mon practice, e.g. Stich (2019); Li et al. (2020b), we define two virtual sequences vt =

∑N
k=1 pkv

k
t

and wt =
∑N
k=1 pkw

k
t , where we recall the FedAvg updates from (2):

vkt+1 = wk
t − αtgt,k, wk

t+1 =

{
vkt+1 if t+ 1 /∈ IE ,∑
k∈St+1

qkv
k
t+1 if t+ 1 ∈ IE .

The following observations apply to FedAvg updates, while Nesterov accelerated FedAvg requires
modifications. For full device participation or partial participation with t /∈ IE , note that vt =

wt =
∑N
k=1 pkv

k
t . For partial participation with t ∈ IE , wt 6= vt since vt =

∑N
k=1 pkv

k
t while

wt =
∑
k∈St qkw

k
t . However, we can use unbiased sampling strategies such that EStwt = vt. Note

that vt+1 is one-step SGD from wt.

vt+1 = wt − αtgt, (3)

where gt =
∑N
k=1 pkgt,k is the one-step stochastic gradient averaged over all devices.

gt,k = ∇Fk
(
wk
t , ξ

k
t

)
,

Similarly, we denote the expected one-step gradient gt = Eξt [gt] =
∑N
k=1 pkEξkt gt,k, where

Eξkt gt,k = ∇Fk
(
wk
t

)
, (4)

and ξt = {ξkt }Nk=1 denotes random samples at all devices at time step t.
Since in this work we also consider the case of partial participation, the sampling strategy to
approximate the system heterogeneity can also affect the convergence. Here we follow the prior
works Li et al. (2020b) and Li et al. (2020a) and consider two types of sampling schemes that
guarantee EStwt = vt. The sampling scheme I establishes St+1 by i.i.d. sampling the devices
according to probabilities pk with replacement, and setting qk = 1

K . In this case the upper bound of
expected square norm of wt+1 − vt+1 is given by (Li et al., 2020b, Lemma 5):

ESt+1
‖wt+1 − vt+1‖2 ≤

4

K
α2
tE

2G2. (5)

The sampling scheme II establishes St+1 by uniformly sampling all devices without replacement and
setting qk = pk

N
K , in which case we have

ESt+1
‖wt+1 − vt+1‖2 ≤

4(N −K)

K(N − 1)
α2
tE

2G2. (6)

We summarize these upper bounds as follows:

ESt+1 ‖wt+1 − vt+1‖2 ≤
4

K
α2
tE

2G2. (7)

and this bound will be used in the convergence proof of the partial participation result.

B COMPARISON OF CONVERGENCE RATES WITH RELATED WORKS

In this section, we compare our convergence rate with the best-known results in the literature (see
Table 2). In Haddadpour & Mahdavi (2019), the authors provide O(1/NT ) convergence rate of non-
convex problems under Polyak-Łojasiewicz (PL) condition, which means their results can directly
apply to the strongly convex problems. However, their assumption is based on bounded gradient
diversity, defined as follows:

Λ(w) =

∑
k pk‖∇Fk(w)‖22

‖
∑
k pk∇Fk(w)‖22

≤ B

This is a more restrictive assumption comparing to assuming bounded gradient under the case of target
accuracy ε→ 0 and PL condition. To see this, consider the gradient diversity at the global optimal
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w∗, i.e., Λ(w∗) =
∑
k pk‖∇Fk(w)‖22

‖
∑
k pk∇Fk(w)‖22

. For Λ(w∗) to be bounded, it requires ‖∇Fk(w∗)‖22 = 0, ∀ k.
This indicates w∗ is also the minimizer of each local objective, which contradicts to the practical
setting of heterogeneous data. Therefore, their bound is not effective for arbitrary small ε-accuracy
under general heterogeneous data while our convergence results still hold in this case.

In Karimireddy et al. (2019), the linear speedup convergence rate of FedAvg are provided for strongly
convex, general convex, and non-convex problems under full participation setting. However, their
rate does not enjoy linear speedup for any number of devices while our results apply to any valid
K ≤ N . For example, they provides an optimality gap of O

(
(1− K

N )E/T
)

for the strongly convex
case (Karimireddy et al., 2019, Theorem V). With partial participation, and when K = O(1), their
convergence rate is O(E/T ) which does not have linear speedup. Under partial participation, the
FedAvg analyses in Karimireddy et al. (2019) requires E = O(1). For example, the strongly
convex result O((1− K

N )E/T ) in Theorem V is O(E/T ) when K = O(1) and is O(E/NT ) when
K = O(N). In either case, to achieve a O(1/T ) convergence rate, it requires E = O(1) as well.
Similar conclusion also holds for the general convex problem.

Reference Convergence rate E NonIID Participation Extra Assumptions Setting

FedAvgLi et al. (2020b) O(E
2

T
) O(1) 3 Partial Bounded gradient Strongly convex

FedAvgHaddadpour & Mahdavi (2019) O( 1
KT

) O(K−1/3T2/3)† 3‡‡ Partial Bounded gradient diversity Strongly convex§

FedAvgKoloskova et al. (2020) O( 1
NT

) O(N−1/2T1/2) 3 Full Bounded gradient Strongly convex

FedAvgKarimireddy et al. (2019) O( 1
NT

)†† O(N−1/2T1/2)†† 3 Partial Bounded gradient dissimilarity Strongly convex

FedAvg/N-FedAvg (our work) O( 1
KT

) O(N−1/2T1/2)‡ 3 Partial Bounded gradient Strongly convex

FedAvgKhaled et al. (2020) O( 1√
NT

) O(N−3/2T1/2) 3 Full Bounded gradient Convex

FedAvgKoloskova et al. (2020) O( 1√
NT

) O(N−3/4T1/4) 3 Full Bounded gradient Convex

FedAvgKarimireddy et al. (2019) O( 1√
NT

)†† O(N−3/4T1/4)†† 3 Partial Bounded gradient dissimilarity Convex

FedAvg/N-FedAvg (our work) O
(

1√
KT

)
O(N−3/4T1/4)‡ 3 Partial Bounded gradient Convex

FedAvg O
(
exp(− NT

Eκ1
)
)

O(Tβ) 3 Partial Bounded gradient Overparameterized LR

FedMass O
(
exp(− NT

E
√
κ1κ̃

)

)
O(Tβ) 3 Partial Bounded gradient Overparameterized LR

Table 2: A high-level summary of the convergence results in this paper compared to prior state-of-
the-art FL algorithms. This table only highlights the dependence on T (number of iterations), E
(the maximal number of local steps), N (the total number of devices), and K ≤ N the number of
participated devices. κ is the condition number of the system and β ∈ (0, 1). We denote Nesterov
accelerated FedAvg as N-FedAvg in this table.
† This E is obtained under i.i.d. setting.
‡ This E is obtained under full participation setting.
§ In Haddadpour & Mahdavi (2019), the convergence rate is for non-convex smooth problems with
PL condition, which also applies to strongly convex problems. Therefore, we compare it with our
strongly convex results here.
‡‡ The bounded gradient diversity assumption is not applicable for general heterogeneous data when
converging to arbitrarily small ε-accuracy (see discussions in Sec B).
†† Although the results in Karimireddy et al. (2019) is applicable for partial participation setting,
their results only achieve linear speedup under full participation setting K = N while we show
linear speedup convergence for K ≤ N (see discussions in Sec B). The E in the table is obtained
under full participation. Under partial participation, the communication complexity is E = O(1).

C A HIGH-LEVEL SUMMARY OF FEDAVG ANALYSIS

To facilitate the understanding of our analysis and highlight the improvement of our work comparing
to prior arts, we summarize the general steps used in the proofs across the various settings. In this
section, we take the strongly convex case as an example to illustrate our analysis. The corresponding
proof for general convex functions follows the same framework.

One step progress bound
This step establishes the progress of distance (‖wt −w∗‖2) to optimal solution after one step SGD
update (see line 9, Alg 1), as the following equation shows:

E‖wt+1 −w∗‖2 ≤ O(ηtE‖wt −w∗‖2 + α2
tσ

2/N + α3
tE

2G2).
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Algorithm 1 FEDAVG: Federated Averaging
1: Server input: initial model w0, initial step size α0, local steps E.
2: Client input:
3: for each round r = 0, 1, ..., R, where r = t ∗ E do
4: Sample clients St ⊆ {1, ..., N}
5: Broadcast w to all clients k ∈ St
6: for each client k ⊆ St do
7: initialize local model wk

t = w
8: for t = r ∗ E + 1, . . . , (r + 1) ∗ E do
9: wk

t+1 = wk
t − αtgt,k

10: end for
11: end for
12: Average the local models at server end: wt =

∑
k∈St w

k
t .

13: end for

The above bound consists of three main ingredients, the distance to optima in previous step (with
ηt ∈ (0, 1) to obtained a contraction bound), the variance of stochastic gradients in local clients
(second term), the variance across different clients (third term). Notice that the third term in this
bound is the primary source of improvement in the rate. Comparing to the bound in Li et al. (2020b),
we improve the third term from O(α2

tE
2G2) to O(α2

tE
2G2), which enables the linear speedup in

the convergence rate.

Iterative deduction
This step uses the one step progress bound iteratively to connect the the current distance to optimal
solution with the initial distance (‖w0 −w∗‖2), as follows:

E‖wt+1 −w∗‖2 ≤ O(E‖w0 −w∗‖2 1

T
).

Then we can use the distance to optima to upper bound the optimality gap (F (wt)− F ∗ ≤ O(1/T )),
as follows:

E(F (wt))− F ∗ ≤ O(E‖wt −w∗‖2).

The convergence rate of the optimality gap is equally obtained as the convergence rate of the distance
to optima.

From full participation to partial participation
There are three sources of variances that affect the convergence rate. The first two sources come from
the variances of within local clients and across clients (second and third term in one step progress
bound). The partial participation, which involves a sampling procedure, is the third source of variance.
Therefore, comparing to the rate in full participation, this will add another term of variance into the
convergence rate, where we follow a similar derivation as in Li et al. (2020b).

D TECHNICAL LEMMAS

To facilitate reading, we first summarize some basic properties of L-smooth and µ-strongly convex
functions, found in e.g. Rockafellar (1970), which are used in various steps of proofs in the appendix.
Lemma 1. Let F be a convex L-smooth function. Then we have the following inequalities:

1. Quadratic upper bound: 0 ≤ F (w)− F (w′)− 〈∇F (w′),w −w′〉 ≤ L
2 ‖w −w′‖2.

2. Coercivity: 1
L‖∇F (w)−∇F (w′)‖2 ≤ 〈∇F (w)−∇F (w′),w −w′〉.

3. Lower bound: F (w) ≥ F (w′) + 〈∇F (w′),w−w′〉+ 1
2L‖∇F (w)−∇F (w′)‖2. In particular,

‖∇F (w)‖2 ≤ 2L(F (w)− F (w∗)).

4. Optimality gap: F (w)− F (w∗) ≤〈∇F (w),w −w∗〉.
Lemma 2. Let F be a µ-strongly convex function. Then

F (w) ≤ F (w′) + 〈∇F (w′),w −w′〉+
1

2µ
‖∇F (w)−∇F (w′)‖2
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F (w)− F (w∗) ≤ 1

2µ
‖∇F (w)‖2

E PROOF OF CONVERGENCE RESULTS FOR FEDAVG

E.1 STRONGLY CONVEX SMOOTH OBJECTIVES

To organize our proofs more effectively and highlight the significance of our results compared to
prior works, we first state the following key lemmas used in proofs of main results and defer their
proofs to later.

Lemma 3 (One step progress, strongly convex). Let wt =
∑N
k=1 pkw

k
t , and suppose our functions

satisfy Assumptions 1,2,3,4, and set step size αt = 4
µ(γ+t) with γ = max{32κ,E} and κ = L

µ , then
the updates of FedAvg with full participation satisfy

E‖wt+1 −w∗‖2 ≤ (1− µαt)E‖wt −w∗‖2 + α2
t

1

N
ν2maxσ

2 + 6E2Lα3
tG

2.

We emphasize that the above lemma is the key step that allows us to obtain a bound that improves
on the convergence result of Li et al. (2020b) with linear speedup. Its proof will make use of the
following two results.
Lemma 4 (Bounding gradient variance (Lemma 2 Li et al. (2020b)) ). Given Assumption 3, the
upper bound of gradient variance is given as follows,

E‖gt − gt‖2 ≤
N∑
k=1

p2kσ
2
k.

Lemma 5 (Bounding the divergence of wk
t (Lemma 3 Li et al. (2020b)) ). Given Assumption 4,

and assume that αt is non-increasing and αt ≤ 2αt+E for all t ≥ 0, we have

E

[
N∑
k=1

pk‖wt −wk
t ‖2
]
≤ 4E2α2

tG
2.

We now restate Theorem 1 from the main text and then prove it using Lemma 3.

Theorem 1. Let wT =
∑N
k=1 pkw

k
T in FedAvg, νmax = maxkNpk, and set decaying learning

rates αt = 4
µ(γ+t) with γ = max{32κ,E} and κ = L

µ . Then under Assumptions 1,2,3,4 with full
device participation,

EF (wT )− F ∗ = O
(
κν2maxσ

2/µ

NT
+
κ2E2G2/µ

T 2

)
and with partial device participation with at most K sampled devices at each communication round,

EF (wT )− F ∗ = O
(
κE2G2/µ

KT
+
κν2maxσ

2/µ

NT
+
κ2E2G2/µ

T 2

)
Proof. The road map of the proof for full device participation contains three steps. First, we establish
a recursive relationship between E‖wt+1−w∗‖2 and E‖wt−w∗‖2, upper bounding the progress of
FedAvg from step t to step t+ 1. Second, we show that E‖wt −w∗‖2 = O(

ν2
maxσ

2/µ
tN + E2LG2/µ2

t2 )
by induction using the recursive relationship from the previous step. Third, we use the property of
L-smoothness to bound the optimality gap by E‖wt −w∗‖2.

By Lemma 3, we have the following upper bound for the one step progress:

E‖wt+1 −w∗‖2 ≤ (1− µαt)E‖wt −w∗‖2 + α2
t

1

N
ν2maxσ

2 + 6E2Lα3
tG

2.
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We show next that E‖wt − w∗‖2 = O(
ν2
maxσ

2/µ
tN + E2LG2/µ2

t2 ) using induction. To simplify the
presentation, we denote C ≡ 6E2LG2 and D ≡ 1

N ν
2
maxσ

2. Suppose that we have the bound
E‖wt − w∗‖2 ≤ b · (αtD + α2

tC) for some constant b and learning rates αt. Then the one step
progress from Lemma 3 becomes:

E‖wt+1 −w∗‖2 ≤ (b(1− µαt) + αt)αtD + (b(1− µαt) + αt)α
2
tC

To establish the result at step t+1, it remains to choose αt and b such that (b(1−µαt)+αt)αt ≤ bαt+1

and (b(1 − µαt) + αt)α
2
t ≤ bα2

t+1. If we let αt = 4
µ(t+γ) where γ = max{E, 32κ} (choice of γ

required to guarantee the one step progress) and set b = 4
µ , we have:

(b(1− µαt) + αt)αt =

(
b(1− 4

t+ γ
) +

4

µ(t+ γ)

)
4

µ(t+ γ)
≤ b 4

µ(t+ γ + 1)
= bαt+1

(b(1− µαt) + αt)α
2
t = b(

t+ γ − 2

t+ γ
)

16

µ2(t+ γ)2
≤ b 16

µ2(t+ γ + 1)2
= bα2

t+1

where we have used the following inequalities:
t+ γ − 1

(t+ γ)2
≤ 1

(t+ γ + 1)

t+ γ − 2

(t+ γ)3
≤ 1

(t+ γ + 1)2
∀ γ ≥ 1

Thus we have established the result at step t+ 1 assuming the result is correct at step t:

E‖wt+1 −w∗‖2 ≤ b · (αt+1D + α2
t+1C)

At step t = 0, we can ensure the following inequality by scaling b with c‖w0−w∗‖2 for a sufficiently
large constant c:

‖w0 −w∗‖2 ≤ b · (α0D + α2
0C) = b · ( 4

µγ
D +

16

µ2γ2
C)

It follows that

E‖wt −w∗‖2 ≤ c‖w0 −w∗‖2 4

µ
(Dαt + Cα2

t ) (8)

for all t ≥ 0.

Finally, the L-smoothness of F implies

E(F (wT ))− F ∗ ≤ L

2
E‖wT −w∗‖2

≤ L

2
c‖w0 −w∗‖2 4

µ
(DαT + Cα2

T )

= 2c‖w0 −w∗‖2κ(DαT + Cα2
T )

≤ 2c‖w0 −w∗‖2κ
[

4

µ(T + γ)
· 1

N
ν2maxσ

2 + 6E2LG2 · ( 4

µ(T + γ)
)2
]

= O(
κ

µ

1

N
ν2maxσ

2 · 1

T
+
κ2

µ
E2G2 · 1

T 2
)

where in the first line, we use the property of L-smooth function (see Lemma 1), and in the second
line, we use the conclusion in Eq (8).

With partial participation, the update at each communication round is now given by weighted averages
over a subset of sampled devices. When t+ 1 /∈ IE , vt+1 = wt+1, while when t+ 1 ∈ IE , we have
Ewt+1 = vt+1 by design of the sampling schemes (Li et al. (2020b), Lemma 4), so that

E‖wt+1 −w∗‖2 = E‖wt+1 − vt+1 + vt+1 −w∗‖2

= E‖wt+1 − vt+1‖2 + E‖vt+1 −w∗‖2

This in particular implies E‖vt −w∗‖2 ≤ E‖wt −w∗‖2 for all t. Since vt =
∑N
k=1 pkv

k
t always

averages over all devices, the full participation one step progress result Lemma 3 applied to vt implies

E‖vt+1 −w∗‖2 ≤ E(1− µαt)‖vt −w∗‖2 + 6E2Lα3
tG

2 + α2
t

1

N
ν2maxσ

2
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≤ E(1− µαt)‖wt −w∗‖2 + 6E2Lα3
tG

2 + α2
t

1

N
ν2maxσ

2

The bound for E‖wt+1 − vt+1‖2 for the two sampling schemes we consider is provided in Eq (7),
and applying it we can write the one step progress for partial participation as

E‖wt+1 −w∗‖2 ≤ (1− µαt)E‖wt −w∗‖2 + α2
t

1

N
ν2maxσ

2 +
4

K
α2
tE

2G2 + 6E2Lα3
tG

2,

and the same arguments using induction and L-smoothness as the full participation case implies

EF (wT )− F ∗ = O(
κν2maxσ

2/µ

NT
+
κE2G2/µ

KT
+
κ2E2G2/µ

T 2
)

E.1.1 DEFERRED PROOFS OF KEY LEMMAS

Here we first rewrite the proofs of lemmas 4 and 5 from Li et al. (2020b) with slight modifications
for the consistency and completeness of this work, since later we will use modified versions of these
results in the convergence proof for Nesterov accelerated FedAvg.

Proof of lemma 4.

E‖gt − gt‖2 = E‖gt − Egt‖2 =

N∑
k=1

p2k‖gt,k − Egt,k‖2 ≤
N∑
k=1

p2kσ
2
k

Proof of lemma 5. Now we bound E
∑N
k=1 pk‖wt −wk

t ‖2 following Li et al. (2020b). Since com-
munication is done every E steps, for any t ≥ 0, we can find a t0 ≤ t such that t− t0 ≤ E − 1 and
wk
t0 = wt0for all k. Moreover, using αt is non-increasing and αt0 ≤ 2αt for any t− t0 ≤ E − 1,

we have

E
N∑
k=1

pk‖wt −wk
t ‖2

=E
N∑
k=1

pk‖wk
t −wt0 − (wt −wt0)‖2

≤E
N∑
k=1

pk‖wk
t −wt0‖2

=E
N∑
k=1

pk‖wk
t −wk

t0‖
2

=E
N∑
k=1

pk‖ −
t−1∑
i=t0

αigi,k‖2

≤2

N∑
k=1

pkE
t−1∑
i=t0

Eα2
i ‖gi,k‖2

≤2

N∑
k=1

pkE
2α2

t0G
2

≤4E2α2
tG

2
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Based on the results of Lemma 4, 5, we now prove the upper bound of one step SGD progress. This
proof improves on the previous work Li et al. (2020b) and is the first to reveal the linear speedup of
convergence of FedAvg.

Proof of lemma 3. We have

‖wt+1 −w∗‖2 = ‖(wt − αtgt)−w∗‖2 = ‖(wt − αtgt −w∗)− αt(gt − gt)‖2

= ‖wt −w∗ − αtgt‖2︸ ︷︷ ︸
A1

+ 2αt〈wt −w∗ − αtgt,gt − gt〉︸ ︷︷ ︸
A2

+α2
t ‖gt − gt‖2︸ ︷︷ ︸

A3

where we denote:

A1 = ‖wt −w∗ − αtgt‖2

A2 = 2αt〈wt −w∗ − αtgt,gt − gt〉
A3 = α2

t ‖gt − gt‖2

By definition of gt and gt (see Eq (4)), we have EA2 = 0. For A3, we have the following upper
bound (see Lemma 4):

α2
tE‖gt − gt‖2 ≤ α2

t

N∑
k=1

p2kσ
2
k

Next we bound A1:

‖wt −w∗ − αtgt‖2 = ‖wt −w∗‖2 + 2〈wt −w∗,−αtgt〉+ ‖αtgt‖2

and we will show that the third term ‖αtgt‖2 can be canceled by an upper bound of the second term,
which is one of major improvement comparing to prior art Li et al. (2020b). The upper bound of
second term can be derived as follows, using the strong convexity and L-smoothness of Fk:

− 2αt〈wt −w∗,gt〉

=− 2αt

N∑
k=1

pk〈wt −w∗,∇Fk(wk
t )〉

=− 2αt

N∑
k=1

pk〈wt −wk
t ,∇Fk(wk

t )〉 − 2αt

N∑
k=1

pk〈wk
t −w∗,∇Fk(wk

t )〉

≤ − 2αt

N∑
k=1

pk〈wt −wk
t ,∇Fk(wk

t )〉+ 2αt

N∑
k=1

pk(Fk(w∗)− Fk(wk
t ))− αtµ

N∑
k=1

pk‖wk
t −w∗‖2

≤2αt

N∑
k=1

pk

[
Fk(wk

t )− Fk(wt) +
L

2
‖wt −wk

t ‖2 + Fk(w∗)− Fk(wk
t )

]
− αtµ‖

N∑
k=1

pkw
k
t −w∗‖2

=αtL

N∑
k=1

pk‖wt −wk
t ‖2 + 2αt

N∑
k=1

pk [Fk(w∗)− Fk(wt)]− αtµ‖wt −w∗‖2

We record the bound we have obtained so far, as it will also be used in the proof for convex case:

E‖wt+1 −w∗‖2 ≤E(1− µαt)‖wt −w∗‖2 + αtL

N∑
k=1

pk‖wt −wk
t ‖2

+ 2αt

N∑
k=1

pk [Fk(w∗)− Fk(wt)] + α2
t

N∑
k=1

p2kσ
2
k + α2

t ‖gt‖2 (9)

For the term 2αt
∑N
k=1 pk [Fk(w∗)− Fk(wt)], which is negative, we can ignore it, but this yields a

suboptimal bound that fails to provide the desired linear speedup. Instead, we upper bound it using
the following derivation:

2αt

N∑
k=1

pk [Fk(w∗)− Fk(wt)]
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≤2αt [F (wt+1)− F (wt)]

≤2αtE〈∇F (wt),wt+1 −wt〉+ αtLE‖wt+1 −wt‖2

=− 2α2
tE〈∇F (wt),gt〉+ α3

tLE‖gt‖2

=− 2α2
tE〈∇F (wt),gt〉+ α3

tLE‖gt‖2

=− α2
t

[
‖∇F (wt)‖2 + ‖gt‖2 − ‖∇F (wt)− gt‖2

]
+ α3

tLE‖gt‖2

=− α2
t

[
‖∇F (wt)‖2 + ‖gt‖2 − ‖∇F (wt)−

∑
k

pk∇F (wk
t )‖2

]
+ α3

tLE‖gt‖2

≤− α2
t

[
‖∇F (wt)‖2 + ‖gt‖2 −

∑
k

pk‖∇F (wt)−∇F (wk
t )‖2

]
+ α3

tLE‖gt‖2

≤− α2
t

[
‖∇F (wt)‖2 + ‖gt‖2 − L2

∑
k

pk‖wt −wk
t ‖2
]

+ α3
tLE‖gt‖2

≤− α2
t ‖gt‖2 + α2

tL
2
∑
k

pk‖wt −wk
t ‖2 + α3

tLE‖gt‖2 − α2
t ‖∇F (wt)‖2

where we have used the smoothness of F twice.

Note that the term −α2
t ‖gt‖2 exactly cancels the α2

t ‖gt‖2 in the bound in Eq (9), so that plugging in
the bound for −2αt〈wt −w∗,gt〉, we have so far proved

E‖wt+1 −w∗‖2 ≤ E(1− µαt)‖wt −w∗‖2 + αtL

N∑
k=1

pk‖wt −wk
t ‖2 + α2

t

N∑
k=1

p2kσ
2
k

+ α2
tL

2
N∑
k=1

pk‖wt −wk
t ‖2 + α3

tLE‖gt‖2 − α2
t ‖∇F (wt)‖2 (10)

Under Assumption 4, we have E‖gt‖2 ≤ G2. Furthermore, we can check that our choice of αt
satisfies αt is non-increasing and αt ≤ 2αt+E , so we may plug in the bound E

∑N
k=1 pk‖wt −

wk
t ‖2 ≤ 4E2α2

tG
2 to the above inequality (see Lemma 5).

Therefore, we can conclude that, with νmax := N ·maxk pk and νmin := N ·mink pk,

E‖wt+1 −w∗‖2

≤E(1− µαt)‖wt −w∗‖2 + 4E2Lα3
tG

2 + 4E2L2α4
tG

2 + α2
t

N∑
k=1

p2kσ
2
k + α3

tLG
2

=E(1− µαt)‖wt −w∗‖2 + 4E2Lα3
tG

2 + 4E2L2α4
tG

2 + α2
t

1

N2

N∑
k=1

(pkN)2σ2
k + α3

tLG
2

≤E(1− µαt)‖wt −w∗‖2 + 4E2Lα3
tG

2 + 4E2L2α4
tG

2 + α2
t

1

N2
ν2max

N∑
k=1

σ2
k + α3

tLG
2

≤E(1− µαt)‖wt −w∗‖2 + 6E2Lα3
tG

2 + α2
t

1

N
ν2maxσ

2

where in the last inequality we use σ2 =
∑N
k=1 pkσ

2
k, and that by construction αt satisfies Lαt ≤ 1

8 .

One may ask whether the dependence on E in the term κE2G2/µ
KT can be removed, or equivalently

whether
∑
k pk‖wk

t −wt‖2 = O(1/T 2) can be independent of E. We provide a simple counterex-
ample that shows that this is not possible in general.
Proposition 1. There exists a dataset such that if E = O(T β) for any β > 0 then

∑
k pk‖wk

t −
wt‖2 = Ω( 1

T 2−2β ) .
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Proof. Suppose that we have an even number of devices and each Fk(w) = 1
nk

∑nk
j=1(xjk −w)2

contains data points xjk = w∗,k, with nk ≡ n. Moreover, the w∗,k’s come in pairs around the origin.
As a result, the global objective F is minimized at w∗ = 0. Moreover, if we start from w0 = 0, then
by design of the dataset the updates in local steps exactly cancel each other at each iteration, resulting
in wt = 0 for all t. On the other hand, if E = T β , then starting from any t = O(T ) with constant
step size O( 1

T ), after E iterations of local steps, the local parameters are updated towards w∗,k with
‖wk

t+E‖2 = Ω((T β · 1
T )2) = Ω( 1

T 2−2β ). This implies that∑
k

pk‖wk
t+E −wt+E‖2 =

∑
k

pk‖wk
t+E‖2

= Ω(
1

T 2−2β )

which is at a slower rate than 1
T 2 for any β > 0. Thus the sampling variance E‖wt+1 − vt+1‖2 =

Ω(
∑
k pkE‖wk

t+1 −wt+1‖2) decays at a slower rate than 1
T 2 , resulting in a convergence rate slower

than O( 1
T ) with partial participation.

E.2 CONVEX SMOOTH OBJECTIVES

In this section we provide the proof of the convergence result for FedAvg with convex and smooth
objectives. The key step is a one step progress result analogous to that in the strongly convex case,
and their proofs share identical components as well.

Lemma 6 (One step progress, convex case). Let wt =
∑N
k=1 pkw

k
t in FedAvg. Under assump-

tions 1,3,4, the following bound holds for all t:

‖wt+1 −w∗‖2 + αt(F (wt)− F (w∗)) ≤ ‖wt −w∗‖2 + α2
t

1

N
ν2maxσ

2 + 6α3
tE

2LG2

Proof. The first part of the proof follows directly from Eq (9) in the proof of Lemma 3. Setting µ = 0
in Eq (9) (since we are in the convex setting instead of strongly convex), we obtain

‖wt+1 −w∗‖2 ≤ ‖wt −w∗‖2 + αtL

N∑
k=1

pk‖wt −wk
t ‖2

+ 2αt

N∑
k=1

pk [Fk(w∗)− Fk(wt)] + α2
t ‖gt‖2 + α2

t

N∑
k=1

p2kσ
2
k

The difference of this bound with that in the strongly convex case is that we no longer have a
contraction factor of 1− µαt in front of ‖wt −w∗‖2. In the strongly convex case, we were able to
cancel α2

t ‖gt‖2 with 2αt
∑N
k=1 pk [Fk(w∗)− Fk(wt)] and obtain only lower order terms. In the

convex case, we use a different strategy and preserve
∑N
k=1 pk [Fk(w∗)− Fk(wt)] in order to obtain

the desired optimality gap.

We have

‖gt‖2 = ‖
∑
k

pk∇Fk(wk
t )‖2

= ‖
∑
k

pk∇Fk(wk
t )−

∑
k

pk∇Fk(wt) +
∑
k

pk∇Fk(wt)‖2

≤ 2‖
∑
k

pk∇Fk(wk
t )−

∑
k

pk∇Fk(wt)‖2 + 2‖
∑
k

pk∇Fk(wt)‖2

≤ 2L2
∑
k

pk‖wk
t −wt‖2 + 2‖

∑
k

pk∇Fk(wt)‖2

= 2L2
∑
k

pk‖wk
t −wt‖2 + 2‖∇F (wt)‖2
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using ∇F (w∗) = 0. Now using the L smoothness of F , we have ‖∇F (wt)‖2 ≤ 2L(F (wt) −
F (w∗)), so that

‖wt+1 −w∗‖2

≤‖wt −w∗‖2 + αtL

N∑
k=1

pk‖wt −wk
t ‖2 + 2αt

N∑
k=1

pk [Fk(w∗)− Fk(wt)]

+ 2α2
tL

2
∑
k

pk‖wk
t −wt‖2 + 4α2

tL(F (wt)− F (w∗)) + α2
t

N∑
k=1

p2kσ
2
k

=‖wt −w∗‖2 + (2α2
tL

2 + αtL)

N∑
k=1

pk‖wt −wk
t ‖2 + αt

N∑
k=1

pk [Fk(w∗)− Fk(wt)]

+ α2
t

N∑
k=1

p2kσ
2
k + αt(1− 4αtL)(F (w∗)− F (wt))

Since F (w∗) ≤ F (wt), as long as 4αtL ≤ 1, we can ignore the last term, and rearrange the
inequality to obtain

‖wt+1 −w∗‖2 + αt(F (wt)− F (w∗))

≤‖wt −w∗‖2 + (2α2
tL

2 + αtL)

N∑
k=1

pk‖wt −wk
t ‖2 + α2

t

N∑
k=1

p2kσ
2
k

≤‖wt −w∗‖2 +
3

2
αtL

N∑
k=1

pk‖wt −wk
t ‖2 + α2

t

N∑
k=1

p2kσ
2
k

The same argument as before yields E
∑N
k=1 pk‖wt −wk

t ‖2 ≤ 4E2α2
tG

2 which gives

‖wt+1 −w∗‖2 + αt(F (wt)− F (w∗)) ≤ ‖wt −w∗‖2 + α2
t

N∑
k=1

p2kσ
2
k + 6α3

tE
2LG2

≤ ‖wt −w∗‖2 + α2
t

1

N
ν2maxσ

2 + 6α3
tE

2LG2

With the one step progress result, we can now prove the convergence result in the convex setting,
which we restate below.

Theorem 2. Under assumptions 1,3,4 and constant learning rate αt = O(
√

N
T ), FedAvg satisfies

min
t≤T

F (wt)− F (w∗) = O
(
νmaxσ

2

√
NT

+
NE2LG2

T

)
with full participation, and with partial device participation with K sampled devices at each commu-

nication round and learning rate αt = O(
√

K
T ),

min
t≤T

F (wt)− F (w∗) = O
(
νmaxσ

2

√
KT

+
E2G2

√
KT

+
KE2LG2

T

)
Proof. We first prove the bound for full participation. Applying Lemma 6, we have

‖wt+1 −w∗‖2 + αt(F (wt)− F (w∗)) ≤ ‖wt −w∗‖2 + α2
t

1

N
ν2maxσ

2 + 6α3
tE

2LG2

Summing the inequalities from t = 0 to t = T , we obtain
T∑
t=0

αt(F (wt)− F (w∗)) ≤ ‖w0 −w∗‖2 +

T∑
t=0

α2
t ·

1

N
ν2maxσ

2 +

T∑
t=0

α3
t · 6E2LG2
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so that

min
t≤T

F (wt)− F (w∗) ≤ 1∑T
t=0 αt

(
‖w0 −w∗‖2 +

T∑
t=0

α2
t ·

1

N
ν2maxσ

2 +

T∑
t=0

α3
t · 6E2LG2

)

By setting the constant learning rate αt ≡
√

N
T , we have

min
t≤T

F (wt)− F (w∗) ≤ 1√
NT
· ‖w0 −w∗‖2 +

1√
NT

T · N
T
· 1

N
ν2maxσ

2 +
1√
NT

T (

√
N

T
)36E2LG2

≤ 1√
NT
· ‖w0 −w∗‖2 +

1√
NT

T · N
T
· 1

N
ν2maxσ

2 +
N

T
6E2LG2

= (‖w0 −w∗‖2 + ν2maxσ
2)

1√
NT

+
N

T
6E2LG2

= O(
ν2maxσ

2

√
NT

+
NE2LG2

T
)

Similarly, for partial participation, we have

min
t≤T

F (wt)− F (w∗) ≤ 1∑T
t=0 αt

(
‖w0 −w∗‖2 +

T∑
t=0

α2
t · (

1

N
νmaxσ

2 + C) +

T∑
t=0

α3
t · 6E2LG2

)

where C = 4
KE

2G2 or N−KN−1
4
KE

2G2 depending on the sampling scheme, so that with αt =
√

K
T ,

we have

min
t≤T

F (wt)− F (w∗) = O(
νmaxσ

2

√
KT

+
E2G2

√
KT

+
KE2LG2

T
)

F PROOF OF CONVERGENCE RESULTS FOR NESTEROV ACCELERATED
FEDAVG

F.1 STRONGLY CONVEX SMOOTH OBJECTIVES

Recall that the Nesterov accelerated FedAvg follows the updates

vkt+1 = wk
t − αtgt,k, wk

t+1 =

{
vkt+1 + βt(v

k
t+1 − vkt ) if t+ 1 /∈ IE ,∑

k∈St+1
qk
[
vkt+1 + βt(v

k
t+1 − vkt )

]
if t+ 1 ∈ IE .

The proofs of convergence results for Nesterov Accelerated FedAvg consists of components that are
direct analogues of the FedAvg case. We first state these analogue results before proving the main
theorem. Like before, the proofs of the lemmas are deferred to after the main proof.

Lemma 7 (One step progress, Nesterov). Let vt =
∑N
k=1 pkv

k
t in Nesterov accelerated FedAvg,

and suppose our functions satisfy Assumptions 1,2,3,4, and set step sizes αt = 6
µ

1
t+γ , βt−1 =

3
14(t+γ)(1− 6

t+γ )max{µ,1} with γ = max{32κ,E} and κ = L
µ , the updates of Nesterov accelerated

FedAvg satisfy

E‖vt+1 −w∗‖2 ≤ E(1− µαt)(1 + βt−1)2‖vt −w∗‖2 + 20E2Lα3
tG

2 + (1− αtµ)β2
t−1‖(vt−1 −w∗)‖2

+ α2
t

1

N
νmaxσ

2 + 2βt−1(1 + βt−1)(1− αtµ)‖vt −w∗‖ · ‖vt−1 −w∗‖

The one step progress result makes use of the same bound on the gradient variance in Lemma 4, as
well as a divergence bound analogous to Lemma 5, which we state below.
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Lemma 8 (Bounding the divergence of wk
t , Nesterov). Given Assumption 4, and assume that αt is

non-increasing, αt ≤ 2αt+E , and 2β2
t−1 + 2α2

t ≤ 1/2 for all t ≥ 0, wt =
∑N
k=1 pkw

k
t in Nesterov

accelerated FedAvg satisfies

E

[
N∑
k=1

pk‖wt −wk
t ‖2
]
≤ 16(E − 1)2α2

tG
2.

Theorem 3. Let vT =
∑N
k=1 pkv

k
T in Nesterov accelerated FedAvg and set learning rates

αt = 6
µ

1
t+γ , βt−1 = 3

14(t+γ)(1− 6
t+γ )max{µ,1} . Then under Assumptions 1,2,3,4 with full device

participation,

EF (vT )− F ∗ = O
(
κνmaxσ

2/µ

NT
+
κ2E2G2/µ

T 2

)
,

and with partial device participation with K sampled devices at each communication round,

EF (vT )− F ∗ = O
(
κνmaxσ

2/µ

NT
+
κE2G2/µ

KT
+
κ2E2G2/µ

T 2

)
.

Proof. We first prove the result for full participation. Applying the one step progress bound in
Lemma 7, we have

E‖vt+1 −w∗‖2 ≤ E(1− µαt)(1 + βt−1)2‖vt −w∗‖2 + 20E2Lα3
tG

2 + (1− αtµ)β2
t−1‖(vt−1 −w∗)‖2

+ α2
t

1

N
νmaxσ

2 + 2βt−1(1 + βt−1)(1− αtµ)‖vt −w∗‖ · ‖vt−1 −w∗‖

Recall that we require αt0 ≤ 2αt for any t− t0 ≤ E− 1, Lαt ≤ 1
5 , and 2β2

t−1 + 2α2
t ≤ 1/2 in order

for Lemmas 8 and 7 to hold, which we can check by definition of αt and βt.
We show next that E‖vt −w∗‖2 = O(

ν2
maxσ

2/µ
tN + E2LG2/µ2

t2 ) by induction. Assume that we have
shown

E‖vt −w∗‖2 ≤ b(Cα2
t +Dαt)

for all iterations until t, where C = 20E2LG2, D = 1
N ν

2
maxσ

2, and b is some constant to be chosen
later. For step sizes recall that we choose αt = 6

µ
1
t+γ and βt−1 = 3

14(t+γ)(1− 6
t+γ )max{µ,1} where

γ = max{32κ,E}, so that βt−1 ≤ αt and

(1− µαt)(1 + 14βt−1) ≤ (1− 6

t+ γ
)(1 +

3

(t+ γ)(1− 6
t+γ )

)

= 1− 6

t+ γ
+

3

t+ γ
= 1− 3

t+ γ
= 1− µαt

2

Moreover, E‖vt−1 −w∗‖2 ≤ b(Cα2
t−1 + Dαt−1) ≤ 4b(Cα2

t + Dαt) with the chosen step sizes.
Therefore the bound for E‖vt+1 −w∗‖2 can be further simplified with

2βt−1(1 + βt−1)(1− αtµ)E‖vt −w∗‖ · ‖vt−1 −w∗‖ ≤ 4βt−1(1 + βt−1)(1− αtµ) · b(Cα2
t +Dαt)

and

(1− αtµ)β2
t−1E‖(vt−1 −w∗)‖2 ≤ 4(1− αtµ)β2

t−1 · b(Cα2
t +Dαt)

so that

E‖vt+1 −w∗‖2 ≤ (1− µαt)((1 + βt−1)2 + 4βt−1(1 + βt−1) + 4β2
t−1) · b(Cα2

t +Dαt)

+ 20E2Lα3
tG

2 + α2
t

1

N
νmaxσ

2

≤ E(1− µαt)(1 + 14βt−1) · b(Cα2
t +Dαt) + 20E2Lα3

tG
2 + α2

t

1

N
νmaxσ

2
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≤ b(1− µαt
2

)(Cα2
t +Dαt) + Cα3

t +Dα2
t

= (b(1− µαt
2

) + αt)α
2
tC + (b(1− µαt

2
) + αt)αtD

and so it remains to choose b such that

(b(1− µαt
2

) + αt)αt ≤ bαt+1

(b(1− µαt
2

) + αt)α
2
t ≤ bα2

t+1

from which we can conclude E‖vt+1 −w∗‖2 ≤ α2
t+1C + αt+1D.

With b = 6
µ , we have

(b(1− µαt
2

) + αt)αt = (b(1− (
3

t+ γ
) +

6

µ(t+ γ)
)

6

µ(t+ γ)

= (b
t+ γ − 3

t+ γ
+

6

µ(t+ γ)
)

6

µ(t+ γ)

≤ b( t+ γ − 1

t+ γ
)

6

µ(t+ γ)

≤ b 6

µ(t+ γ + 1)
= bαt+1

where we have used t+γ−1
(t+γ)2 ≤

1
t+γ+1 .

Similarly

(b(1− µαt
2

) + αt)α
2
t = (b(1− (

3

t+ γ
) +

6

µ(t+ γ)
)(

6

µ(t+ γ)
)2

= (b
t+ γ − 3

t+ γ
+

6

µ(t+ γ)
)(

6

µ(t+ γ)
)2

= b(
t+ γ − 2

t+ γ
)(

6

µ(t+ γ)
)2

≤ b 36

µ2(t+ γ + 1)2
= bα2

t+1

where we have used t+γ−2
(t+γ)3 ≤

1
(t+γ+1)2 .

Finally, to ensure ‖v0 −w∗‖2 ≤ b(Cα2
0 +Dα0), we can rescale b by c‖v0 −w∗‖2 for some c. It

follows that E‖vt −w∗‖2 ≤ b(Cα2
t +Dαt) for all t ≥ 0. Using the L-smooothness of F ,

E(F (vT ))− F ∗ = E(F (vT )− F (w∗))

≤ L

2
E‖vT −w∗‖2 ≤ L

2
c‖v0 −w∗‖2 6

µ
(DαT + Cα2

T )

= 3c‖v0 −w∗‖2κ(DαT + Cα2
T )

≤ 3c‖v0 −w∗‖2κ
[

6

µ(T + γ)
· 1

N
νmaxσ

2 + 20E2LG2 · ( 6

µ(T + γ)
)2
]

= O(
κ

µ

1

N
νmaxσ

2 · 1

T
+
κ2

µ
E2G2 · 1

T 2
)

With partial participation, the same argument with an added term for sampling error yields

EF (wT )− F ∗ = O(
κνmaxσ

2/µ

NT
+
κE2G2/µ

KT
+
κ2E2G2/µ

T 2
)
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F.1.1 DEFERRED PROOFS OF KEY LEMMAS

Proof of lemma 8. The proof of bound for E
∑N
k=1 pk‖wt − wk

t ‖2 in the Nesterov accelerated
FedAvg follows a similar logic as in Lemma 5, but requires extra reasoning. Since communication is
done every E steps, for any t ≥ 0, we can find a t0 ≤ t such that t− t0 ≤ E − 1 and wkt0 = wt0 for
all k. Moreover, using αt is non-increasing, αt0 ≤ 2αt, and βt ≤ αt for any t− t0 ≤ E−1, we have

E
N∑
k=1

pk‖wt −wk
t ‖2 = E

N∑
k=1

pk‖wk
t −wt0 − (wt −wt0)‖2

≤ E
N∑
k=1

pk‖wk
t −wt0‖2

= E
N∑
k=1

pk‖wk
t −wk

t0‖
2

= E
N∑
k=1

pk‖
t−1∑
i=t0

βi(v
k
i+1 − vki )−

t−1∑
i=t0

αigi,k‖2

≤ 2

N∑
k=1

pkE
t−1∑
i=t0

(E − 1)α2
i ‖gi,k‖2 + 2

N∑
k=1

pkE
t−1∑
i=t0

(E − 1)β2
i ‖(vki+1 − vki )‖2

≤ 2

N∑
k=1

pkE
t−1∑
i=t0

(E − 1)α2
i (‖gi,k‖2 + ‖(vki+1 − vki )‖2)

≤ 4

N∑
k=1

pkE
t−1∑
i=t0

(E − 1)α2
iG

2

≤ 4(E − 1)2α2
t0G

2 ≤ 16(E − 1)2α2
tG

2

where we have used E‖vkt − vkt−1‖2 ≤ G2. To see this identity for appropriate αt, βt, note the
recursion

vkt+1 − vkt = wk
t −wk

t−1 − (αtgt,k − αt−1gt−1,k)

wk
t+1 −wk

t = −αtgt,k + βt(v
k
t+1 − vkt )

so that

vkt+1 − vkt = −αt−1gt−1,k + βt−1(vkt − vkt−1)− (αtgt,k − αt−1gt−1,k)

= βt−1(vkt − vkt−1)− αtgt,k
Since the identity vkt+1 − vkt = βt−1(vkt − vkt−1)− αtgt,k implies

E‖vkt+1 − vkt ‖2 ≤ 2β2
t−1E‖vkt − vkt−1‖2 + 2α2

tG
2

as long as αt, βt−1 satisfy 2β2
t−1 + 2α2

t ≤ 1/2, we can guarantee that E‖vkt − vkt−1‖2 ≤ G2 for all
k by induction. This together with Jensen’s inequality also gives E‖vt − vt−1‖2 ≤ G2 for all t.

Now we are ready to prove the one step progress result for Nesterov accelerated FedAvg. The first
part of the proof is identical to that of the FedAvg case, while the main recursion takes a different
form.

Proof of lemma 7. We again have

‖vt+1 −w∗‖2 = ‖(wt − αtgt)−w∗‖2

and using exactly the same derivation as the FedAvg case, we can obtain the following bound (same
as Eq (10) in the proof of Lemma 3):

E‖wt+1 −w∗‖2 ≤ E(1− µαt)‖wt −w∗‖2 + αtL

N∑
k=1

pk‖wt −wk
t ‖2 + α2

t

N∑
k=1

p2kσ
2
k
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+ α2
tL

2
N∑
k=1

pk‖wt −wk
t ‖2 + α3

tLE‖gt‖2 − α2
t ‖∇F (wt)‖2

Different from the FedAvg case, we no longer have wt = vt. Instead,

‖wt −w∗‖2 = ‖vt + βt−1(vt − vt−1)−w∗‖2

= ‖(1 + βt−1)(vt −w∗)− βt−1(vt−1 −w∗)‖2

= (1 + βt−1)2‖vt −w∗‖2 − 2βt−1(1 + βt−1)〈vt −w∗,vt−1 −w∗〉+ β2
t−1‖(vt−1 −w∗)‖2

≤ (1 + βt−1)2‖vt −w∗‖2 + 2βt−1(1 + βt−1)‖vt −w∗‖ · ‖vt−1 −w∗‖+ β2
t−1‖(vt−1 −w∗)‖2

which gives a recursion involving both vt and vt−1:

‖vt+1 −w∗‖2 ≤ (1− αtµ)(1 + βt−1)2‖vt −w∗‖2 + 2(1− αtµ)βt−1(1 + βt−1)‖vt −w∗‖ · ‖vt−1 −w∗‖+ α2
t

N∑
k=1

p2kσ
2
k

+ β2
t−1(1− αtµ)‖(vt−1 −w∗)‖2 + αtL

N∑
k=1

pk‖wt −wk
t ‖2 + α2

tL
2
∑
k

pk‖wt −wk
t ‖2 + α3

tLG
2

and we will using this recursive relation to obtain the desired bound.

We can check that our choice of αt and βt satisfy αt is non-increasing, αt ≤ 2αt+E , and 2β2
t−1 +

2α2
t ≤ 1/2 for all t ≥ 0, so that we can apply the bound from Lemma 8 on E

∑N
k=1 pk‖wt −wk

t ‖2
to conclude that, with νmax := N ·maxk pk,

E‖vt+1 −w∗‖2 ≤ E(1− µαt)(1 + βt−1)2‖vt −w∗‖2 + 16E2Lα3
tG

2 + 16E2L2α4
tG

2 + α3
tLG

2

+ (1− αtµ)β2
t−1‖(vt−1 −w∗)‖2 + α2

t

N∑
k=1

p2kσ
2
k + 2βt−1(1 + βt−1)(1− αtµ)‖vt −w∗‖ · ‖vt−1 −w∗‖

≤ E(1− µαt)(1 + βt−1)2‖vt −w∗‖2 + 20E2Lα3
tG

2 + (1− αtµ)β2
t−1‖(vt−1 −w∗)‖2

+ α2
t

1

N
νmaxσ

2 + 2βt−1(1 + βt−1)(1− αtµ)‖vt −w∗‖ · ‖vt−1 −w∗‖

where we have used σ2 =
∑
k pkσ

2
k, and by construction our αt satisfies Lαt ≤ 1

5 .

F.2 CONVEX SMOOTH OBJECTIVES

In this section we provide proof of the convergence result for Nesterov accelerated FedAvg with
convex and smooth objectives. Unlike with the FedAvg algorithm, where convex and strongly convex
results share identical components, the proof for the convergence result in the convex setting for
Nesterov FedAvg uses a change of variables, although the general ideas are in the same vein: we
have a one step progress bound for E‖wt+1 −w∗‖2 + ηt(F (wt)− F (w∗)), which is then used to
form a telescoping sum that gives an upper bound on mint≤T F (wt)− F (w∗).

Lemma 9 (One step progress, convex case, Nesterov). Let wt =
∑N
k=1 pkw

k
t in Nesterov accel-

erated FedAvg, and define ηt = αt
1−βt . Under assumptions 1,3,4, the following bound holds for all

t:

E‖wt+1 −w∗‖2 + ηt(F (wt)− F (w∗)) ≤ E‖wt −w∗‖2 + 32LE2α2
t ηtG

2 + η2t νmax
1

N
σ2 + 2ηt

β2
t

1− βt
G2

Theorem 4. Set learning rates αt = βt = O(
√

N
T ). Then under Assumptions 1,3,4 Nesterov

accelerated FedAvg with full device participation has rate

min
t≤T

F (wt)− F ∗ = O
(
νmaxσ

2

√
NT

+
NE2LG2

T

)
,

and with partial device participation with K sampled devices at each communication round,

min
t≤T

F (wt)− F ∗ = O
(
νmaxσ

2

√
KT

+
E2G2

√
KT

+
KE2LG2

T

)
.
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Proof. Applying the bound from Lemma 9, with ηt = αt
1−βt we have

E‖wt+1 −w∗‖2 + ηt(F (wt)− F (w∗)) ≤ E‖wt −w∗‖2 + 32LE2α2
t ηtG

2 + η2t νmax
1

N
σ2 + 2ηt

β2
t

1− βt
G2

Summing the inequalities from t = 0 to t = T , we obtain

T∑
t=0

ηt(F (wt)− F (w∗)) ≤ ‖w0 −w∗‖2 +

T∑
t=0

η2t ·
1

N
νmaxσ

2 +

T∑
t=0

ηtα
2
t · 32LE2G2 +

T∑
t=0

2ηt
β2
t

1− βt
G2

so that

min
t≤T

F (wt)− F (w∗) ≤ 1∑T
t=0 ηt

(
‖w0 −w∗‖2 +

T∑
t=0

η2t ·
1

N
νmaxσ

2 +

T∑
t=0

ηtα
2
t · 32LE2G2 +

T∑
t=0

2ηt
β2
t

1− βt
G2

)

By setting the constant learning rates αt ≡
√

N
T and βt ≡ c

√
N
T so that ηt = αt

1−βt =

√
N
T

1−c
√

N
T

≤

2
√

N
T , we have

min
t≤T

F (wt)− F (w∗)

≤ 1

2
√
NT
· ‖w0 −w∗‖2 +

2√
NT

T · N
T
· 1

N
νmaxσ

2 +
1√
NT

T (

√
N

T
)332LE2G2 +

2√
NT

T (

√
N

T
)3G2

= (
1

2
‖w0 −w∗‖2 + 2νmaxσ

2)
1√
NT

+
N

T
(32LE2G2 + 2G2)

= O(
νmaxσ

2

√
NT

+
NE2LG2

T
)

Similarly, for partial participation, we have

min
t≤T

F (wt)− F (w∗) ≤ 1∑T
t=0 αt

(
‖w0 −w∗‖2 +

T∑
t=0

α2
t · (

1

N
νmaxσ

2 + C) +

T∑
t=0

α3
t · 6E2LG2

)

where C = 4
KE

2G2 or N−KN−1
4
KE

2G2, so that with αt ≡
√

K
T and βt ≡ c

√
K
T , we have

min
t≤T

F (wt)− F (w∗) = O(
νmaxσ

2

√
KT

+
E2G2

√
KT

+
KE2LG2

T
)

F.2.1 DEFERRED PROOFS OF KEY LEMMAS

Proof of lemma 9. Define pt := βt
1−βt [wt −wt−1 + αtgt−1] =

β2
t

1−βt (vt − vt−1) for t ≥ 1 and 0
for t = 0. We can check that

wt+1 + pt+1 = wt + pt −
αt

1− βt
gt

Now we define zt := wt + pt and ηt = αt
1−βt for all t, so that we have the recursive relation

zt+1 = zt − ηtgt
Now

‖zt+1 −w∗‖2 = ‖(zt − ηtgt)−w∗‖2

= ‖(zt − ηtgt −w∗)− ηt(gt − gt)‖2

= A1 +A2 +A3
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where

A1 = ‖zt −w∗ − ηtgt‖2

A2 = 2ηt〈zt −w∗ − ηtgt,gt − gt〉
A3 = η2t ‖gt − gt‖2

where again EA2 = 0 and EA3 ≤ η2t
∑
k p

2
kσ

2
k. For A1 we have

‖zt −w∗ − ηtgt‖2 = ‖zt −w∗‖2 + 2〈zt −w∗,−ηtgt〉+ ‖ηtgt‖2

Using the convexity and L-smoothness of Fk,

− 2ηt〈zt −w∗,gt〉

= −2ηt

N∑
k=1

pk〈zt −w∗,∇Fk(wk
t )〉

= −2ηt

N∑
k=1

pk〈zt −wk
t ,∇Fk(wk

t )〉 − 2ηt

N∑
k=1

pk〈wk
t −w∗,∇Fk(wk

t )〉

= −2ηt

N∑
k=1

pk〈zt −wt,∇Fk(wk
t )〉 − 2ηt

N∑
k=1

pk〈wt −wk
t ,∇Fk(wk

t )〉 − 2ηt

N∑
k=1

pk〈wk
t −w∗,∇Fk(wk

t )〉

≤ −2ηt

N∑
k=1

pk〈zt −wt,∇Fk(wk
t )〉 − 2ηt

N∑
k=1

pk〈wt −wk
t ,∇Fk(wk

t )〉+ 2ηt

N∑
k=1

pk(Fk(w∗)− Fk(wk
t ))

≤ 2ηt

N∑
k=1

pk

[
Fk(wk

t )− Fk(wt) +
L

2
‖wt −wk

t ‖2 + Fk(w∗)− Fk(wk
t )

]

− 2ηt

N∑
k=1

pk〈zt −wt,∇Fk(wk
t )〉

= ηtL

N∑
k=1

pk‖wt −wk
t ‖2 + 2ηt

N∑
k=1

pk [Fk(w∗)− Fk(wt)]− 2ηt

N∑
k=1

pk〈zt −wt,∇Fk(wk
t )〉

which results in

E‖wt+1 −w∗‖2 ≤ E‖wt −w∗‖2 + ηtL

N∑
k=1

pk‖wt −wk
t ‖2 + 2ηt

N∑
k=1

pk [Fk(w∗)− Fk(wt)]

+ η2t ‖gt‖2 + η2t

N∑
k=1

p2kσ
2
k − 2ηt

N∑
k=1

pk〈zt −wt,∇Fk(wk
t )〉

As before, ‖gt‖2 ≤ 2L2
∑
k pk‖wk

t −wt‖2 + 4L(F (wt)− F (w∗)), so that

η2t ‖gt‖2 + ηt

N∑
k=1

pk [Fk(w∗)− Fk(wt)] ≤ 2L2η2t
∑
k

pk‖wk
t −wt‖2 + ηt(1− 4ηtL)(F (w∗)− F (wt))

≤ 2L2η2t
∑
k

pk‖wk
t −wt‖2

for ηt ≤ 1/4L. Using
∑N
k=1 pk‖wt−wk

t ‖2 ≤ 16E2α2
tG

2 and
∑N
k=1 p

2
kσ

2
k ≤ νmax

1
N σ

2, it follows
that

E‖wt+1 −w∗‖2 + ηt(F (wt)− F (w∗)) ≤ E‖wt −w∗‖2 + (ηtL+ 2L2η2t )

N∑
k=1

pk‖wt −wk
t ‖2 + η2t

N∑
k=1

p2kσ
2
k

− 2ηt

N∑
k=1

pk〈zt −wt,∇Fk(wk
t )〉
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≤ E‖wt −w∗‖2 + 32LE2α2
t ηtG

2 + η2t νmax
1

N
σ2

− 2ηt

N∑
k=1

pk〈zt −wt,∇Fk(wk
t )〉

if ηt ≤ 1
2L . It remains to bound E

∑N
k=1 pk〈zt − wt,∇Fk(wk

t )〉. Recall that zt − wt =
βt

1−βt [wt −wt−1 + αtgt−1] =
β2
t

1−βt (vt−vt−1) and E‖vt−vt−1‖2 ≤ G2, E‖∇Fk(wk
t )‖2 ≤ G2.

Cauchy-Schwarz gives

E
N∑
k=1

pk〈zt −wt,∇Fk(wk
t )〉 ≤

N∑
k=1

pk
√
E‖zt −wt‖2 ·

√
E‖∇Fk(wk

t )‖2

≤ β2
t

1− βt
G2

Thus

E‖wt+1 −w∗‖2 + ηt(F (wt)− F (w∗)) ≤ E‖wt −w∗‖2 + 32LE2α2
t ηtG

2 + η2t νmax
1

N
σ2 + 2ηt

β2
t

1− βt
G2

G GEOMETRIC CONVERGENCE OF FEDAVG IN THE OVERPARAMETERIZED
SETTING

Overparameterization is a prevalent machine learning setting where the statistical model has much
more parameters than the number of training samples and the existence of parameter choices with zero
training loss is ensured Allen-Zhu et al. (2018); Zhang et al. (2016). Due to the property of automatic
variance reduction in overparameterization, a line of recent works proved that SGD and accelerated
methods achieve geometric convergence Ma et al. (2018); Moulines & Bach (2011); Needell et al.
(2014); Schmidt & Roux (2013); Strohmer & Vershynin (2009). A natural question is whether such
a result still holds in the federated learning setting. In this section, we provide the first geometric
convergence rate of FedAvg for the overparameterized strongly convex and smooth problems, and
show that it preserves linear speedup at the same time. We then sharpen this result in the special case
of linear regression. Inspired by recent advances in accelerating SGD Liu et al. (2020); Jain et al.
(2017), we further propose a novel momentum-based FedAvg algorithm, which enjoys an improved
convergence rate over FedAvg. Detailed proofs are deferred to Appendix Section H. In particular, we
do not need Assumptions 3 and 4 and use modified versions of Assumptions 1 and 2 detailed in this
section.

G.1 GEOMETRIC CONVERGENCE OF FEDAVG IN THE OVERPARAMETERIZED SETTING

Recall the FL problem minw
∑N
k=1 pkFk(w) with Fk(w) = 1

nk

∑nk
j=1 `(w;xjk). In this section, we

consider the standard Empirical Risk Minimization (ERM) setting where ` is non-negative, l-smooth,
and convex, and as before, each Fk(w) is L-smooth and µ-strongly convex. Note that l ≥ L. This
setup includes many important problems in practice. In the overparameterized setting, there exists
w∗ ∈ arg minw

∑N
k=1 pkFk(w) such that `(w∗;xjk) = 0 for all xjk. We first show that FedAvg

achieves geometric convergence with linear speedup in the number of workers.

Theorem 5. In the overparameterized setting, FedAvg with communication every E iterations and
constant step size α = O( 1

E
N

lνmax+L(N−νmin)
) has geometric convergence:

EF (wT ) ≤ L

2
(1− α)T ‖w0 −w∗‖2 = O

(
L exp

(
− µ
E

NT

lνmax + L(N − νmin)

)
· ‖w0 −w∗‖2

)
.

Linear speedup and Communication Complexity The linear speedup factor is on the order of
O(N/E) for N ≤ O( lL ), i.e. FedAvg with N workers and communication every E iterations
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provides a geometric convergence speedup factor of O(N/E), for N ≤ O( lL ). When N is above
this threshold, however, the speedup is almost constant in the number of workers. This matches the
findings in Ma et al. (2018). Our result also illustrates that E can be taken O(T β) for any β < 1
to achieve geometric convergence, achieving better communication efficiency than the standard FL
setting. We emphasize again that compared to the single-server results in Ma et al. (2018), the
difference of our result lies in the factor of N in the speedup, which cannot be obtained if one simply
applied the single-server result to each device in our problem.

G.2 OVERPARAMETERIZED LINEAR REGRESSION PROBLEMS

We now turn to quadratic problems and show that the bound in Theorem 5 can be improved to
O(exp(− N

Eκ1
t)) for a larger range of N . We then propose a variant of FedAvg that has provable

acceleration over FedAvg with SGD updates. The local device objectives are now given by the
sum of squares Fk(w) = 1

2nk

∑nk
j=1(w

Txjk − z
j
k)

2, and there exists w∗ such that F (w∗) ≡ 0. Two
notions of condition number are important in our results: κ1 which is based on local Hessians, and
κ̃, which is termed the statistical condition number Liu & Belkin (2020); Jain et al. (2017). For
their detailed definitions, please refer to Appendix Section H. Here we use the fact κ̃ ≤ κ1. Recall
νmax = maxk pkN and νmin = mink pkN .

Theorem 6. For the overparamterized linear regression problem, FedAvg with communication every
E iterations with constant step size α = O( 1

E
N

lνmax+µ(N−νmin)
) has geometric convergence:

EF (wT ) ≤ O
(
L exp(− NT

E(νmaxκ1 + (N − νmin))
)‖w0 −w∗‖2

)
.

When N = O(κ1), the convergence rate is O((1 − N
Eκ1

)T ) = O(exp(− NT
Eκ1

)), which exhibits
linear speedup in the number of workers, as well as a 1/κ1 dependence on the condition number κ1.
Inspired by Liu & Belkin (2020), we propose the MaSS accelerated FedAvg algorithm (FedMaSS):

wk
t+1 =

{
ukt − ηk1gt,k if t+ 1 /∈ IE ,∑
k∈St+1

[
ukt − ηk1gt,k

]
if t+ 1 ∈ IE ,

ukt+1 = wk
t+1 + γk(wk

t+1 −wk
t ) + ηk2gt,k.

When ηk2 ≡ 0, this algorithm reduces to the Nesterov accelerated FedAvg algorithm. In the next
theorem, we demonstrate that FedMaSS improves the convergence to O(exp(− NT

E
√
κ1κ̃

)). To our
knowledge, this is the first acceleration result of FedAvg with momentum updates over SGD updates.

Theorem 7. For the overparamterized linear regression problem, FedMaSS with communication

everyE iterations and constant step sizes η1 = O( 1
E

N
lνmax+µ(N−νmin)

), η2 =
η1(1− 1

κ̃ )

1+ 1√
κ1κ̃

, γ =
1− 1√

κ1κ̃

1+ 1√
κ1κ̃

has geometric convergence:

EF (wT ) ≤ O
(
L exp(− NT

E(νmax

√
κ1κ̃+ (N − νmin))

)‖w0 −w∗‖2
)
.

Speedup of FedMaSS over FedAvg To better understand the significance of the above result, we
briefly discuss related works on accelerating SGD. Nesterov and Heavy Ball updates are known
to fail to accelerate over SGD in both the overparameterized and convex settings Liu & Belkin
(2020); Kidambi et al. (2018); Liu et al. (2018); Yuan et al. (2016). Thus in general one cannot
hope to obtain acceleration results for the FedAvg algorithm with Nesterov and Heavy Ball updates.
Luckily, recent works in SGD Jain et al. (2017); Liu & Belkin (2020) introduced an additional
compensation term to the Nesterov updates to address the non-acceleration issue. Surprisingly, we
show the same approach can effectively improve the rate of FedAvg. Comparing the convergence rate
of FedMass (Theorem 7) and FedAvg (Theorem 6), when N = O(

√
κ1κ̃), the convergence rate is

O((1− N
E
√
κ1κ̃

)T ) = O(exp(− NT
E
√
κ1κ̃

)) as opposed to O(exp(− NT
Eκ1

)). Since κ1 ≥ κ̃, this implies

a speedup factor of
√

κ1

κ̃ for FedMaSS. On the other hand, the same linear speedup in the number of
workers holds for N in a smaller range of values.
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H PROOF OF GEOMETRIC CONVERGENCE RESULTS FOR
OVERPARAMETERIZED PROBLEMS

H.1 GEOMETRIC CONVERGENCE OF FEDAVG FOR GENERAL STRONGLY CONVEX AND
SMOOTH OBJECTIVES

Theorem 5. For the overparameterized setting with general strongly convex and smooth objectives,
FedAvg with local SGD updates and communication every E iterations with constant step size
α = 1

2E
N

lνmax+L(N−νmin)
gives the exponential convergence guarantee

EF (wt) ≤
L

2
(1− µα)t‖w0 −w∗‖2 = O(exp(− µ

2E

N

lνmax + L(N − νmin)
t) · ‖w0 −w∗‖2)

Proof. To illustrate the main ideas of the proof, we first present the proof for E = 2. Let t− 1 be a
communication round, so that wk

t−1 = wt−1. We show that

‖wt+1 −w∗‖2 ≤ (1− αtµ)(1− αt−1µ)‖wt−1 −w∗‖2

for appropriately chosen constant step sizes αt, αt−1. We have

‖wt+1 −w∗‖2 = ‖(wt − αtgt)−w∗‖2

= ‖wt −w∗‖2 − 2αt〈wt −w∗,gt〉+ α2
t ‖gt‖2

and the cross term can be bounded as usual using µ-convexity and L-smoothness of Fk:

− 2αtEt〈wt −w∗,gt〉

= −2αt

N∑
k=1

pk〈wt −w∗,∇Fk(wk
t )〉

= −2αt

N∑
k=1

pk〈wt −wk
t ,∇Fk(wk

t )〉 − 2αt

N∑
k=1

pk〈wk
t −w∗,∇Fk(wk

t )〉

≤ −2αt

N∑
k=1

pk〈wt −wk
t ,∇Fk(wk

t )〉+ 2αt

N∑
k=1

pk(Fk(w∗)− Fk(wk
t ))− αtµ

N∑
k=1

pk‖wk
t −w∗‖2

≤ 2αt

N∑
k=1

pk

[
Fk(wk

t )− Fk(wt) +
L

2
‖wt −wk

t ‖2 + Fk(w∗)− Fk(wk
t )

]
− αtµ‖

N∑
k=1

pk(wk
t −w∗)‖2

= αtL

N∑
k=1

pk‖wt −wk
t ‖2 + 2αt

N∑
k=1

pk [Fk(w∗)− Fk(wt)]− αtµ‖wt −w∗‖2

= αtL

N∑
k=1

pk‖wt −wk
t ‖2 − 2αt

N∑
k=1

pkFk(wt)− αtµ‖wt −w∗‖2

and so

E‖wt+1 −w∗‖2 ≤ E(1− αtµ)‖wt −w∗‖2 − 2αtF (wt) + α2
t ‖gt‖2 + αtL

N∑
k=1

pk‖wt −wk
t ‖2

Applying this recursive relation to ‖wt −w∗‖2 and using ‖wt−1 −wk
t−1‖2 ≡ 0, we further obtain

E‖wt+1 −w∗‖2 ≤ E(1− αtµ)
(
(1− αt−1µ)‖wt−1 −w∗‖2 − 2αt−1F (wt−1) + α2

t−1‖gt−1‖2
)

− 2αtF (wt) + α2
t ‖gt‖2 + αtL

N∑
k=1

pk‖wt −wk
t ‖2
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Now instead of bounding
∑N
k=1 pk‖wt −wk

t ‖2 using the arguments in the general convex case, we
follow Ma et al. (2018) and use the fact that in the overparameterized setting, w∗ is a minimizer of
each `(w, xjk) and that each ` is l-smooth to obtain ‖∇Fk(wt−1, ξ

k
t−1)‖2 ≤ 2l(Fk(wt−1, ξ

k
t−1) −

Fk(w∗, ξkt−1)), where recall Fk(w, ξkt−1) = `(w, ξkt−1), so that
N∑
k=1

pk‖wt −wk
t ‖2 =

N∑
k=1

pk‖wt−1 − αt−1gt−1 −wk
t−1 + αt−1gt−1,k‖2

=

N∑
k=1

pkα
2
t−1‖gt−1 − gt−1,k‖2

= α2
t−1

N∑
k=1

pk(‖gt−1,k‖2 − ‖gt−1‖2)

= α2
t−1

N∑
k=1

pk‖∇Fk(wt−1, ξ
k
t−1)‖2 − α2

t−1‖gt−1‖2

≤ α2
t−1

N∑
k=1

pk2l(Fk(wt−1, ξ
k
t−1)− Fk(w∗, ξkt−1))− α2

t−1‖gt−1‖2

again using wt−1 = wk
t−1. Taking expectation with respect to ξkt−1’s and using the fact that

F (w∗) = 0, we have

Et−1
N∑
k=1

pk‖wt −wk
t ‖2 ≤ 2lα2

t−1

N∑
k=1

pkFk(wt−1)− α2
t−1‖gt−1‖2

= 2lα2
t−1F (wt−1)− α2

t−1‖gt−1‖2

Note also that

‖gt−1‖2 = ‖
N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)‖2

while

‖gt‖2 = ‖
N∑
k=1

pk∇Fk(wk
t , ξ

k
t )‖2 ≤ 2‖

N∑
k=1

pk∇Fk(wt, ξ
k
t )‖2 + 2‖

N∑
k=1

pk(∇Fk(wt, ξ
k
t )−∇Fk(wk

t , ξ
k
t ))‖2

≤ 2‖
N∑
k=1

pk∇Fk(wt, ξ
k
t )‖2 + 2

N∑
k=1

pkl
2‖wt −wk

t ‖2

Substituting these into the bound for ‖wt+1 −w∗‖2, we have

E‖wt+1 −w∗‖2 ≤ E(1− αtµ)((1− αt−1µ)‖wt−1 −w∗‖2 − 2αt−1F (wt−1) + α2
t−1‖gt−1‖2)

− 2αtF (wt) + 2α2
t ‖

N∑
k=1

pk∇Fk(wt, ξ
k
t )‖2 +

(
2l2α2

t−1α
2
t + αtα

2
t−1L

) (
2lF (wt−1)− ‖gt−1‖2

)
= E(1− αtµ)(1− αt−1µ)‖wt−1 −w∗‖2

− 2αt(F (wt)− αt‖
N∑
k=1

pk∇Fk(wt, ξ
k
t )‖2)

− 2αt−1(1− αtµ)

(
(1− lαt−1(2l2α2

t + αtL)

1− αtµ
)F (wt−1)− αt−1

2
‖
N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)‖2

)
from which we can conclude that

E‖wt+1 −w∗‖2 ≤ (1− αtµ)(1− αt−1µ)E‖wt−1 −w∗‖2
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if we can choose αt, αt−1 to guarantee

E(F (wt)− αt‖
N∑
k=1

pk∇Fk(wt, ξ
k
t )‖2) ≥ 0

E

(
(1− lαt−1(2l2α2

t + αtL)

1− αtµ
)F (wt−1)− αt−1

2
‖
N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)‖2

)
≥ 0

Note that

Et‖
N∑
k=1

pk∇Fk(wt, ξ
k
t )‖2 = Et〈

N∑
k=1

pk∇Fk(wt, ξ
k
t ),

N∑
k=1

pk∇Fk(wt, ξ
k
t )〉

=

N∑
k=1

p2kEt‖∇Fk(wt, ξ
k
t )‖2 +

N∑
k=1

∑
j 6=k

pjpkEt〈∇Fk(wt, ξ
k
t ),∇Fj(wt, ξ

j
t )〉

=

N∑
k=1

p2kEt‖∇Fk(wt, ξ
k
t )‖2 +

N∑
k=1

∑
j 6=k

pjpk〈∇Fk(wt),∇Fj(wt)〉

=

N∑
k=1

p2kEt‖∇Fk(wt, ξ
k
t )‖2 +

N∑
k=1

N∑
j=1

pjpk〈∇Fk(wt),∇Fj(wt)〉 −
N∑
k=1

p2k‖∇Fk(wt)‖2

≤
N∑
k=1

p2kEt‖∇Fk(wt, ξ
k
t )‖2 + ‖

∑
k

pk∇Fk(wt)‖2 −
1

N
νmin‖

∑
k

pk∇Fk(wt)‖2

=

N∑
k=1

p2kEt‖∇Fk(wt, ξ
k
t )‖2 + (1− 1

N
νmin)‖∇F (wt)‖2

and so following Ma et al. (2018) if we let αt = min{ qN
2lνmax

, 1−q
2L(1− 1

N νmin)
} for a q ∈ [0, 1] to be

optimized later, we have

Et(F (wt)− αt‖
N∑
k=1

pk∇Fk(wt, ξ
k
t )‖2)

≥ Et
N∑
k=1

pkFk(wt)− αt

[
N∑
k=1

p2kEt‖∇Fk(wt, ξ
k
t )‖2 + (1− 1

N
νmin)‖∇F (wt)‖2

]

≥ Et
N∑
k=1

pk(qFk(wt, ξ
k
t )− αt

1

N
νmax‖∇Fk(wt, ξ

k
t )‖2) + ((1− q)F (wt)− αt(1−

1

N
νmin)‖∇F (wt)‖2)

≥ qEt
N∑
k=1

pk(Fk(wt, ξ
k
t )− 1

2l
‖∇Fk(wt, ξ

k
t )‖2) + (1− q)(F (wt)−

1

2L
‖∇F (wt)‖2)

≥ 0

again using w∗ optimizes Fk(w, ξkt ) with Fk(w∗, ξkt ) = 0.

Maximizing αt = min{ qN
2lνmax

, 1−q
2L(1− 1

N νmin)
} over q ∈ [0, 1], we see that q = lνmax

lνmax+L(N−νmin)

results in the fastest convergence, and this translates to αt = 1
2

N
lνmax+L(N−νmin)

. Next we claim that
αt−1 = c 12

N
lνmax+L(N−νmin)

also guarantees

E(1− lαt−1(2l2α2
t + αtL)

1− αtµ
)F (wt−1)− αt−1

2
‖
N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)‖2 ≥ 0
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Note that by scaling αt−1 by a constant c ≤ 1 if necessary, we can guarantee lαt−1(2l
2α2
t+αtL)

1−αtµ ≤ 1
2 ,

and so the condition is equivalent to

F (wt−1)− αt−1‖
N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)‖2 ≥ 0

which was shown to hold with αt−1 ≤ 1
2

N
lνmax+L(N−νmin)

.

For the proof of general E ≥ 2, we use the following two identities:

‖gt‖2 ≤ 2‖
N∑
k=1

pk∇Fk(wt, ξ
k
t )‖2 + 2

N∑
k=1

pkl
2‖wt −wk

t ‖2

E
N∑
k=1

pk‖wt −wk
t ‖2 ≤ E2(1 + 2l2α2

t−1)

N∑
k=1

pk‖wt−1 −wk
t−1‖2 + 8α2

t−1lF (wt−1)− 2α2
t−1‖gt−1‖2

where the first inequality has been established before. To establish the second inequality, note that

N∑
k=1

pk‖wt −wk
t ‖2 =

N∑
k=1

pk‖wt−1 − αt−1gt−1 −wk
t−1 + αt−1gt−1,k‖2

≤ 2

N∑
k=1

pk
(
‖wt−1 −wk

t−1‖2 + ‖αt−1gt−1 − αt−1gt−1,k‖2
)

and ∑
k

pk‖gt−1,k − gt−1‖2 =
∑
k

pk(‖gt−1,k‖2 − ‖gt−1‖2)

=
∑
k

pk‖∇Fk(wt−1, ξ
k
t−1) +∇Fk(wk

t−1, ξ
k
t−1)−∇Fk(wt−1, ξ

k
t−1)‖2 − ‖gt−1‖2

≤ 2
∑
k

pk
(
‖∇Fk(wt−1, ξ

k
t−1)‖2 + l2‖wk

t−1 −wt−1‖2
)
− ‖gt−1‖2

so that using the l-smoothness of `,

E
N∑
k=1

pk‖wt −wk
t ‖2

≤ E2(1 + 2l2α2
t−1)

N∑
k=1

pk‖wt−1 −wk
t−1‖2 + 4α2

t−1

∑
k

pk‖∇Fk(wt−1, ξ
k
t−1)‖2 − 2α2

t−1‖gt−1‖2

≤ E2(1 + 2l2α2
t−1)

N∑
k=1

pk‖wt−1 −wk
t−1‖2 + 4α2

t−12l
∑
k

pk(Fk(wt−1, ξ
k
t−1)− Fk(w∗, ξkt−1))− 2α2

t−1‖gt−1‖2

= E2(1 + 2l2α2
t−1)

N∑
k=1

pk‖wt−1 −wk
t−1‖2 + 8α2

t−1lF (wt−1)− 2α2
t−1‖gt−1‖2

Using the first inequality, we have

E‖wt+1 −w∗‖2 ≤ E(1− αtµ)‖wt −w∗‖2

− 2αtF (wt) + 2α2
t ‖

N∑
k=1

pk∇Fk(wt, ξ
k
t )‖2

+ (2α2
t l

2 + αtL)

N∑
k=1

pk‖wt −wk
t ‖2
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and we choose αt and αt−1 such that E(F (wt)− αt‖
∑N
k=1 pk∇Fk(wt, ξ

k
t )‖2) ≥ 0 and (2α2

t l
2 +

αtL) ≤ (1− αtµ)(2α2
t−1l

2 + αt−1L)/3. This gives

E‖wt+1 −w∗‖2 ≤ E(1− αtµ)[(1− αt−1µ)‖wt−1 −w∗‖2 − 2αt−1F (wt−1) + 2α2
t−1‖

N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)‖2

+ (2α2
t−1l

2 + αt−1L)(

N∑
k=1

pk‖wt−1 −wk
t−1‖2 +

N∑
k=1

pk‖wt −wk
t ‖2)/3]

Using the second inequality
N∑
k=1

pk‖wt −wk
t ‖2 ≤ E2(1 + 2l2α2

t−1)

N∑
k=1

pk‖wt−1 −wk
t−1‖2 + 8α2

t−1lF (wt−1)− 2α2
t−1‖gt−1‖2

and that 2(1 + 2l2α2
t−1) ≤ 3, 2α2

t−1l
2 + αt−1L ≤ 1, we have

E‖wt+1 −w∗‖2 ≤ E(1− αtµ)[(1− αt−1µ)‖wt−1 −w∗‖2

− 2αt−1F (wt−1) + 2α2
t−1‖

N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)‖2 + 8α2

t−1lF (wt−1)

+ (2α2
t−1l

2 + αt−1L)(2

N∑
k=1

pk‖wt−1 −wk
t−1‖2)]

and if αt−1 is chosen such that

(F (wt−1)− 4αt−1lF (wt−1))− αt−1‖
N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)‖2 ≥ 0

and

(2α2
t−1l

2 + αt−1L)(1− αt−1µ) ≤ (2α2
t−2l

2 + αt−2L)/3

we again have

E‖wt+1 −w∗‖2 ≤ E(1− αtµ)(1− αt−1µ)[‖wt−1 −w∗‖2 + (2α2
t−2l

2 + αt−2L) · (2
N∑
k=1

pk‖wt−1 −wk
t−1‖2)/3]

Applying the above derivation iteratively τ < E times, we have

E‖wt+1 −w∗‖2 ≤ E(1− αtµ) · · · (1− αt−τ+1µ)[(1− αt−τµ)‖wt−τ −w∗‖2

− 2αt−τF (wt−τ ) + 2α2
t−τ‖

N∑
k=1

pk∇Fk(wt−τ , ξ
k
t−τ )‖2 + 8τα2

t−τ lF (wt−τ )

+ (2α2
t−τ l

2 + αt−τL)((τ + 1)

N∑
k=1

pk‖wt−τ −wk
t−τ‖2)]

as long as the step sizes αt−τ are chosen such that the following inequalities hold

(2α2
t−τ l

2 + αt−τL)(1− αt−τµ) ≤ (2α2
t−τ−1l

2 + αt−τ−1L)/3

2(1 + 2l2α2
t−τ ) ≤ 3

2α2
t−τ l

2 + αt−τL ≤ 1

(F (wt−τ )− 4ταt−τ lF (wt−τ ))− αt−τ‖
N∑
k=1

pk∇Fk(wt−τ , ξ
k
t−τ )‖2 ≥ 0

We can check that setting αt−τ = c 1
τ+1

N
lνmax+L(N−νmin)

for some small constant c satisfies the
requirements.
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Since communication is done every E iterations, wt0 = wk
t0 for some t0 > t−E , from which we

can conclude that

E‖wt −w∗‖2 ≤ (

t−t0−1∏
τ=1

(1− µαt−τ ))‖wt0 −w∗‖2

≤ (1− c µ
E

N

lνmax + L(N − νmin)
)t−t0‖wt0 −w∗‖2

and applying this inequality to iterations between each communication round,

E‖wt −w∗‖2 ≤ (1− c µ
E

N

lνmax + L(N − νmin)
)t‖w0 −w∗‖2

= O(exp(
µ

E

N

lνmax + L(N − νmin)
t))‖w0 −w∗‖2

With partial participation, we note that

E‖wt+1 −w∗‖2 = E‖wt+1 − vt+1 + vt+1 −w∗‖2

= E‖wt+1 − vt+1‖2 + E‖vt+1 −w∗‖2

=
1

K

∑
k

pkE‖wk
t+1 −wt+1‖2 + E‖vt+1 −w∗‖2

and so the recursive identity becomes

E‖wt+1 −w∗‖2 ≤ E(1− αtµ) · · · (1− αt−τ+1µ)[(1− αt−τµ)‖wt−τ −w∗‖2

− 2αt−τF (wt−τ ) + 2α2
t−τ‖

N∑
k=1

pk∇Fk(wt−τ , ξ
k
t−τ )‖2 + 8τα2

t−τ lF (wt−τ )

+ (2α2
t−τ l

2 + αt−τL+
1

K
)((τ + 1)

N∑
k=1

pk‖wt−τ −wk
t−τ‖2)]

which requires

(2α2
t−τ l

2 + αt−τL+
1

K
)(1− αt−τµ) ≤ (2α2

t−τ−1l
2 + αt−τ−1L+

1

K
)/3

2(1 + 2l2α2
t−τ ) ≤ 3

2α2
t−τ l

2 + αt−τL+
1

K
≤ 1

(F (wt−τ )− 4ταt−τ lF (wt−τ ))− αt−τ‖
N∑
k=1

pk∇Fk(wt−τ , ξ
k
t−τ )‖2 ≥ 0

to hold. Again setting αt−τ = c 1
τ+1

N
lνmax+L(N−νmin)

for a possibly different constant from before
satisfies the requirements.

Finally, using the L-smoothness of F ,

F (wT )− F (w∗) ≤ L

2
E‖wT −w∗‖2 = O(L exp(− µ

E

N

lνmax + L(N − νmin)
T ))‖w0 −w∗‖2

H.2 GEOMETRIC CONVERGENCE OF FEDAVG FOR OVERPARAMETERIZED LINEAR
REGRESSION

We first provide details on quantities used in the proof of results on linear regression in Section G. The
local device objectives are now given by the sum of squares Fk(w) = 1

2nk

∑nk
j=1(w

Txjk − zjk)
2, and
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there exists w∗ such that F (w∗) ≡ 0. Define the local Hessian matrix as Hk := 1
nk

∑nk
j=1 x

j
k(xjk)T ,

and the stochastic Hessian matrix as H̃k
t := ξkt (ξkt )T , where ξkt is the stochastic sample on the kth

device at time t. Define l to be the smallest positive number such that E‖ξkt ‖2ξkt (ξkt )T � lHk for all
k. Note that l ≤ maxk,j ‖xjk‖2. Let L and µ be lower and upper bounds of non-zero eigenvalues of
Hk. Define κ1 := l/µ and κ := L/µ.

Following Liu & Belkin (2020); Jain et al. (2017), we define the statistical condition number κ̃ as the
smallest positive real number such that E

∑
k pkH̃

k
tH
−1H̃k

t ≤ κ̃H. The condition numbers κ1 and
κ̃ are important in the characterization of convergence rates for FedAvg algorithms. Note that κ1 > κ
and κ1 > κ̃.

Let H =
∑
k pkH

k. In general H has zero eigenvalues. However, because the null space of H and
range of H are orthogonal, in our subsequence analysis it suffices to project wt −w∗ onto the range
of H, thus we may restrict to the non-zero eigenvalue of H.

A useful observation is that we can use w∗Txjk − zjk ≡ 0 to rewrite the local objectives as Fk(w) =
1
2 〈w −w∗,Hk(w −w∗)〉 ≡ 1

2‖w −w∗‖2Hk :

Fk(w) =
1

2nk

nk∑
j=1

(wTxk,j − zk,j − (w∗Txk,j − zk,j))
2 =

1

2nk

nk∑
j=1

((w −w∗)Txk,j)
2

=
1

2
〈w −w∗,Hk(w −w∗)〉 =

1

2
‖w −w∗‖2Hk

so that F (w) = 1
2‖w −w∗‖2H .

Finally, note that EH̃k
t = 1

nk

∑nk
j=1 x

j
k(xjk)T = Hk and gt,k = ∇Fk(wk

t , ξ
k
t ) = H̃k

t (wk
t − w∗)

while gt =
∑N
k=1 pk∇Fk(wk

t , ξ
k
t ) =

∑N
k=1 pkH̃

k
t (wk

t −w∗) and gt =
∑N
k=1 pkH

k(wk
t −w∗)

Theorem 6. For the overparamterized linear regression problem, FedAvg with communication every
E iterations with constant step size α = O( 1

E
N

lνmax+µ(N−νmin)
) has geometric convergence:

EF (wT ) ≤ O
(
L exp(− NT

E(νmaxκ1 + (N − νmin))
)‖w0 −w∗‖2

)
.

Proof. We again show the result first when E = 2 and t− 1 is a communication round. We have

‖wt+1 −w∗‖2 = ‖(wt − αtgt)−w∗‖2

= ‖wt −w∗‖2 − 2αt〈wt −w∗,gt〉+ α2
t ‖gt‖2

and

− 2αtEt〈wt −w∗,gt〉

= −2αt

N∑
k=1

pk〈wt −w∗,∇Fk(wk
t )〉

= −2αt

N∑
k=1

pk〈wt −wk
t ,∇Fk(wk

t )〉 − 2αt

N∑
k=1

pk〈wk
t −w∗,∇Fk(wk

t )〉

= −2αt

N∑
k=1

pk〈wt −wk
t ,∇Fk(wk

t )〉 − 2αt

N∑
k=1

pk〈wk
t −w∗,Hk(wk

t −w∗)〉

= −2αt

N∑
k=1

pk〈wt −wk
t ,∇Fk(wk

t )〉 − 4αt

N∑
k=1

pkFk(wk
t )

≤ 2αt

N∑
k=1

pk(Fk(wk
t )− Fk(wt) +

L

2
‖wt −wk

t ‖2)− 4αt

N∑
k=1

pkFk(wk
t )
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= αtL

N∑
k=1

pk‖wt −wk
t ‖2 − 2αt

N∑
k=1

pkFk(wt)− 2αt

N∑
k=1

pkFk(wk
t )

= αtL

N∑
k=1

pk‖wt −wk
t ‖2 − αt

N∑
k=1

pk〈(wt −w∗),Hk(wt −w∗)〉 − 2αt

N∑
k=1

pkFk(wk
t )

and

‖gt‖2 = ‖
N∑
k=1

pkH̃
k
t (wk

t −w∗)‖2

= ‖
N∑
k=1

pkH̃
k
t (wt −w∗) +

N∑
k=1

pkH̃
k
t (wk

t −wt)‖2

≤ 2‖
N∑
k=1

pkH̃
k
t (wt −w∗)‖2 + 2‖

N∑
k=1

pkH̃
k
t (wk

t −wt)‖2

which gives

E‖wt+1 −w∗‖2 ≤ E‖wt −w∗‖2 − αt
N∑
k=1

pk〈wt −w∗,Hkwt −w∗〉+ 2α2
t ‖

N∑
k=1

pkH̃
k
t (wt −w∗)‖2

+ αtL

N∑
k=1

pk‖wt −wk
t ‖2 + 2α2

t ‖
N∑
k=1

pkH̃
k
t (wk

t −wt)‖2 − 2αt

N∑
k=1

pkFk(wk
t )

following Ma et al. (2018) we first prove that

E‖wt −w∗‖2 − αt
N∑
k=1

pk〈(wt −w∗),Hk(wt −w∗)〉+ 2α2
t ‖

N∑
k=1

pkH̃
k
t (wt −w∗)‖2

≤ (1− N

8(νmaxκ1 + (N − νmin))
)E‖wt −w∗‖2

with appropriately chosen αt. Compared to the rate O( µN
lνmax+L(N−νmin)

) = O( N
νmaxκ1+(N−νmin)κ

)

for general strongly convex and smooth objectives, this is an improvement as linear speedup is now
available for a larger range of N .

We have

Et‖
N∑
k=1

pkH̃
k
t (wt −w∗)‖2

= Et〈
N∑
k=1

pkH̃
k
t (wt −w∗),

N∑
k=1

pkH̃
k
t (wt −w∗)〉

=

N∑
k=1

p2kEt‖H̃k
t (wt −w∗)‖2 +

N∑
k=1

∑
j 6=k

pjpkEt〈H̃k
t (wt −w∗), H̃j

t (wt −w∗)〉

=

N∑
k=1

p2kEt‖H̃k
t (wt −w∗)‖2 +

N∑
k=1

∑
j 6=k

pjpkEt〈Hk(wt −w∗),Hj(wt −w∗)〉

=

N∑
k=1

p2kEt‖H̃k
t (wt −w∗)‖2 +

N∑
k=1

N∑
j=1

pjpkEt〈Hk(wt −w∗),Hj(wt −w∗)〉 −
N∑
k=1

p2k‖Hk(wt −w∗)‖2

=

N∑
k=1

p2kEt‖H̃k
t (wt −w∗)‖2 + ‖

∑
k

pkH
k(wt −w∗)‖2 −

N∑
k=1

p2k‖Hk(wt −w∗)‖2

≤
N∑
k=1

p2kEt‖H̃k
t (wt −w∗)‖2 + ‖

∑
k

pkH
k(wt −w∗)‖2 − 1

N
νmin‖

∑
k

pkH
k(wt −w∗)‖2
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≤ 1

N
νmax

N∑
k=1

pkEt‖H̃k
t (wt −w∗)‖2 + (1− 1

N
νmin)‖

∑
k

pkH
k(wt −w∗)‖2

≤ 1

N
νmaxl

N∑
k=1

pk〈(wt −w∗),Hk(wt −w∗)〉+ (1− 1

N
νmin)‖

∑
k

pkH
k(wt −w∗)‖2

=
1

N
νmaxl〈(wt −w∗),H(wt −w∗)〉+ (1− 1

N
νmin)〈wt −w∗,H2(wt −w∗)〉

using ‖H̃k
t ‖ ≤ l.

Now we have

E‖wt −w∗‖2 − αt
N∑
k=1

pk〈(wt −w∗),Hk(wt −w∗)〉+ 2α2
t ‖

N∑
k=1

pkH̃
k
t (wt −w∗)‖2 =

〈wt −w∗, (I − αtH + 2α2
t (
νmaxl

N
H +

N − νmin

N
H2))(wt −w∗)〉

and it remains to bound the maximum eigenvalue of

(I − αtH + 2α2
t (
νmaxl

N
H +

N − νmin

N
H2))

and we bound this following Ma et al. (2018). If we choose αt < N
2(νmaxl+(N−νmin)L)

, then

−αtH + 2α2
t (
νmaxl

N
H +

N − νmin

N
H2) ≺ 0

and the convergence rate is given by the maximum of 1−αtλ+2α2
t (
νmaxl
N λ+ N−νmin

N λ2) maximized
over the non-zero eigenvalues λ of H. To select the step size αt that gives the smallest upper bound,
we then minimize over αt, resulting in

min
αt<

N
2(νmaxl+(N−νmin)L)

max
λ>0:∃v,Hv=λv

{
1− αtλ+ 2α2

t (
νmaxl

N
λ+

N − νmin

N
λ2)

}
Since the objective is quadratic in λ, the maximum is achieved at either the largest eigenvalue λmax

of H or the smallest non-zero eigenvalue λmin of H.

When N ≤ 4νmaxl
L−λmin

+ 4νmin, i.e. when N = O(l/λmin) = O(κ1), the optimal objective value is
achieved at λmin and the optimal step size is given by αt = N

4(νmaxl+(N−νmin)λmin)
. The optimal

convergence rate (i.e. the optimal objective value) is equal to 1 − 1
8

Nλmin

(νmaxl+(N−νmin)λmin)
= 1 −

1
8

N
(νmaxκ1+(N−νmin))

. This implies that when N = O(κ1), the optimal convergence rate has a
linear speedup in N . When N is larger, this step size is no longer optimal, but we still have
1− 1

8
N

(νmaxκ1+(N−νmin))
as an upper bound on the convergence rate.

Now we have proved

E‖wt+1 −w∗‖2 ≤ (1− 1

8

N

(νmaxκ1 + (N − νmin))
)E‖wt −w∗‖2

+ αtL

N∑
k=1

pk‖wt −wk
t ‖2 + 2α2

t ‖
N∑
k=1

pkH̃
k
t (wk

t −wt)‖2 − 2αt

N∑
k=1

pkFk(wk
t )

Next we bound terms in the second line using a similar argument as the general case. We have

2α2
t ‖

N∑
k=1

pkH̃
k
t (wk

t −wt)‖2 ≤ 2α2
t l

2
N∑
k=1

pk‖wt −wk
t ‖2

and

E
N∑
k=1

pk‖wt −wk
t ‖2 ≤ E2(1 + 2l2α2

t−1)

N∑
k=1

pk‖wt−1 −wk
t−1‖2 + 8α2

t−1lF (wt−1)
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= 4α2
t−1l〈wt−1 −w∗,H(wt−1 −w∗)〉

and if αt, αt−1 satisfy

αtL+ 2α2
t ≤ (1− 1

8

N

(νmaxκ1 + (N − νmin))
)(αt−1L+ 2α2

t−1)/3

2(1 + 2l2α2
t−1) ≤ 3

αtL+ 2α2
t ≤ 1

we have
E‖wt+1 −w∗‖2

≤ (1− 1

8

N

(νmaxκ1 + (N − νmin))
)[E‖wt−1 −w∗‖2 − αt〈wt−1 −w∗,Hwt−1 −w∗〉+ 2α2

t ‖
N∑
k=1

pkH̃
k
t (wt −w∗)‖2

+ (αt−1L+ 2α2
t−1) · 2

N∑
k=1

pk‖wt−1 −wk
t−1‖2 + 4α2

t−1l〈wt−1 −w∗,H(wt−1 −w∗)〉]

and again by choosing αt−1 = c N
8(νmaxl+(N−νmin)λmin)

for a small constant c, we can guarantee that

E‖wt−1 −w∗‖2 − αt−1〈wt−1 −w∗,Hwt−1 −w∗〉

+2α2
t−1‖

N∑
k=1

pkH̃
k
t−1(wt−1 −w∗)‖2 + 4α2

t−1l〈wt−1 −w∗,H(wt−1 −w∗)〉

≤ (1− c N

16(νmaxl + (N − νmin)λmin)
)E‖wt−1 −w∗‖2

For general E, we have the recursive relation

E‖wt+1 −w∗‖2 ≤ E(1− c1

8

N

(νmaxκ1 + (N − νmin))
) · · · (1− c 1

8τ

N

(νmaxκ1 + (N − νmin))
)[‖wt−τ −w∗‖2

− αt−τ 〈wt−τ −w∗,Hwt−τ −w∗〉+ 2α2
t−τ‖

N∑
k=1

pkH̃
k
t−τ (wt−τ −w∗)‖2

+ 4τα2
t−1l〈wt−1 −w∗,H(wt−1 −w∗)〉

+ (2α2
t−τ l

2 + αt−τL)((τ + 1)

N∑
k=1

pk‖wt−τ −wk
t−τ‖2)]

as long as the step sizes are chosen αt−τ = c N
4τ(νmaxl+(N−νmin)λmin)

such that the following inequal-
ities hold

(2α2
t−τ l

2 + αt−τL) ≤ (1− αt−τµ)(2α2
t−τ−1l

2 + αt−τ−1L)/3

2(1 + 2l2α2
t−τ ) ≤ 3

2α2
t−τ l

2 + αt−τL ≤ 1

and
‖wt−τ −w∗‖2 − αt−τ 〈wt−τ −w∗,Hwt−τ −w∗〉

+ 2α2
t−τ‖

N∑
k=1

pkH̃
k
t−τ (wt−τ −w∗)‖2 + 4τα2

t−1l〈wt−1 −w∗,H(wt−1 −w∗)〉

≤ (1− c N

8(τ + 1)(νmaxκ1 + (N − νmin))
)E‖wt−τ −w∗‖2

which gives

E‖wt −w∗‖2 ≤ (1− c 1

8E

N

(νmaxκ1 + (N − νmin))
)t‖w0 −w∗‖2

= O(exp(− 1

E

N

(νmaxκ1 + (N − νmin))
t))‖w0 −w∗‖2

and with partial participation, the same bound holds with a possibly different choice of c.
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H.3 GEOMETRIC CONVERGENCE OF FEDMASS FOR OVERPARAMETERIZED LINEAR
REGRESSION

Theorem 7. For the overparamterized linear regression problem, FedMaSS with communication

everyE iterations and constant step sizes η1 = O( 1
E

N
lνmax+µ(N−νmin)

), η2 =
η1(1− 1

κ̃ )

1+ 1√
κ1κ̃

, γ =
1− 1√

κ1κ̃

1+ 1√
κ1κ̃

has geometric convergence:

EF (wT ) ≤ O
(
L exp(− NT

E(νmax

√
κ1κ̃+ (N − νmin))

)‖w0 −w∗‖2
)
.

Proof. The proof is based on results in Liu & Belkin (2020) which originally proposed the MaSS
algorithm. Note that the update can equivalently be written as

vkt+1 = (1− αk)vkt + αkukt − δkgt,k

wk
t+1 =

{
ukt − ηkgt,k if t+ 1 /∈ IE∑N
k=1 pk

[
ukt − ηkgt,k

]
if t+ 1 ∈ IE

ukt+1 =
αk

1 + αk
vkt+1 +

1

1 + αk
wk
t+1

where there is a bijection between the parameters 1−αk
1+αk

= γk, ηk = ηk1 ,
ηk−αkδk
1+αk

= ηk2 , and we
further introduce an auxiliary parameter vkt , which is initialized at vk0 . We also note that when
δk = ηk

αk
, the update reduces to the Nesterov accelerated SGD. This version of the FedAvg algorithm

with local MaSS updates is used for analyzing the geometric convergence.

As before, define the virtual sequences wt =
∑N
k=1 pkw

k
t , vt =

∑N
k=1 pkv

k
t , ut =

∑N
k=1 pku

k
t , and

gt =
∑N
k=1 pkEgt,k. We have Egt = gt and wt+1 = ut−ηtgt, vt+1 = (1−αk)vt+α

kwt−δkgt,
and ut+1 = αk

1+αk
vt+1 + 1

1+αk
wt+1.

We first prove the theorem with E = 2 and t− 1 being a communication round. We have

‖vt+1 −w∗‖2H−1

= ‖(1− α)vt + αut − δ
∑
k

pkH̃
k
t (ukt −w∗)−w∗‖2H−1

= ‖(1− α)vt + αut −w∗‖2H−1 + δ2‖
∑
k

pkH̃
k
t (ukt −w∗)‖2H−1

− 2δ〈
∑
k

pkH̃
k
t (ukt −w∗), (1− α)vt + αut −w∗〉H−1

≤ ‖(1− α)vt + αut −w∗‖2H−1︸ ︷︷ ︸
A

+ 2δ2‖
∑
k

pkH̃
k
t (ut −w∗)‖2H−1︸ ︷︷ ︸
B

+ 2δ2‖
∑
k

pkH̃
k
t (ut − ukt )‖2H−1

−2δ〈
∑
k

pkH̃
k
t (ut −w∗), (1− α)vt + αut −w∗〉H−1︸ ︷︷ ︸

C

− 2δ〈
∑
k

pkH̃
k
t (ukt − ut), (1− α)vt + αut −w∗〉H−1

Following the proof in Liu & Belkin (2020),

EA ≤ E(1− α)‖vt −w∗‖2H−1 + α‖ut −w∗‖2H−1

≤ E(1− α)‖vt −w∗‖2H−1 +
α

µ
‖ut −w∗‖2

using the convexity of the norm ‖ · ‖H−1 and that µ is the smallest non-zero eigenvalue of H .
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Now

EB ≤ 2δ2(νmax
1

N
κ̃+

N − νmin

N
)‖(ut −w∗)‖2H

using the folowing bound:

E

(∑
k

pkH̃
k
t

)
H−1

(∑
k

pkH̃
k
t

)
= E

∑
k

p2kH̃
k
tH
−1H̃k

t +
∑
k 6=j

pkpjH̃
k
tH
−1H̃j

t

� νmax
1

N
E
∑
k

pkH̃
k
tH
−1H̃k

t +
∑
k 6=j

pkpjH
kH−1Hj

= νmax
1

N
E
∑
k

pkH̃
k
tH
−1H̃k

t +
∑
k,j

pkpjH
kH−1Hj −

∑
k

p2kH
kH−1Hk

� νmax
1

N
E
∑
k

pkH̃
k
tH
−1H̃k

t + H− 1

N
νmin

∑
k

pkH
kH−1Hk

� νmax
1

N
E
∑
k

pkH̃
k
tH
−1H̃k

t + H− 1

N
νmin(

∑
k

pkH
k)H−1(

∑
k

pkH
k)

= νmax
1

N
E
∑
k

pkH̃
k
tH
−1H̃k

t +
N − νmin

N
H

� νmax
1

N
κ̃H +

N − νmin

N
H

where we have used E
∑
k pkH̃

k
tH
−1H̃k

t ≤ κ̃H by definition of κ̃ and the operator convexity of the
mapping W →WH−1W .

Finally,

EC = −E2δ〈
∑
k

pkH̃
k
t (ut −w∗), (1− α)vt + αut −w∗〉H−1

= −2δ〈
∑
k

pkH
k(ut −w∗), (1− α)vt + αut −w∗〉H−1

= −2δ〈(ut −w∗), (1− α)vt + αut −w∗〉

= −2δ〈(ut −w∗),ut −w∗ +
1− α
α

(ut −wt)〉

= −2δ‖ut −w∗‖2 +
1− α
α

δ(‖wt −w∗‖2 − ‖ut −w∗‖2 − ‖wt − ut‖2)

≤ 1− α
α

δ‖wt −w∗‖2 − 1− α
α

δ‖ut −w∗‖2

where we have used

(1− α)vt + αut

= (1− α)((1 + α)ut −wt)/α+ αut

=
1

α
ut −

1− α
α

wt

and the identity that −2〈a,b〉 = ‖a‖2 + ‖b‖2 − ‖a + b‖2.

It follows that

E‖vt+1 −w∗‖2H−1

≤ (1− α)‖vt −w∗‖2H−1 +
1− α
α

δ‖wt −w∗‖2

+ (
α

µ
− 1− α

α
δ)‖ut −w∗‖2 + 2δ2(νmax

1

N
κ̃+

N − νmin

N
)‖(ut −w∗)‖2H
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+ 2δ2‖
∑
k

pkH̃
k
t (ut − ukt )‖2H−1

− 2δ〈
∑
k

pkH̃
k
t (ukt − ut), (1− α)vt + αut −w∗〉H−1

On the other hand,

E‖wt+1 −w∗‖2 = E‖ut −w∗ − η
∑
k

pkH̃
k
t (ut −w∗)‖2

= E‖ut −w∗‖2 − 2η‖ut −w∗‖2H + η2‖
∑
k

pkH̃
k
t (ut −w∗)‖2

≤ E‖ut −w∗‖2 − 2η‖ut −w∗‖2H + η2(νmax
1

N
`+ L

N − νmin

N
)‖ut −w∗‖2

where we use the following bound:

E

(∑
k

pkH̃
k
t

)(∑
k

pkH̃
k
t

)
= E

∑
k

p2kH̃
k
t H̃

k
t +

∑
k 6=j

pkpjH̃
k
t H̃

j
t

� νmax
1

N
E
∑
k

pkH̃
k
t H̃

k
t +

∑
k 6=j

pkpjH
kHj

= νmax
1

N
E
∑
k

pkH̃
k
t H̃

k
t +

∑
k,j

pkpjH
kHj −

∑
k

p2kH
kHk

� νmax
1

N
E
∑
k

pkH̃
k
t H̃

k
t + H2 − 1

N
νmin

∑
k

pkH
kHk

� νmax
1

N
E
∑
k

pkH̃
k
t H̃

k
t + H2 − 1

N
νmin(

∑
k

pkH
k)(
∑
k

pkH
k)

= νmax
1

N
E
∑
k

pkH̃
k
t H̃

k
t +

N − νmin

N
H2

� νmax
1

N
lH + L

N − νmin

N
H

again using that W →W 2 is operator convex and that EH̃k
t H̃

k
t � lHk by definition of l.

Combining the bounds for E‖wt+1 −w∗‖2 and E‖vt+1 −w∗‖2H−1 ,

E
δ

α
‖wt+1 −w∗‖2 + ‖vt+1 −w∗‖2H−1

≤ (1− α)‖vt −w∗‖2H−1 +
1− α
α

δ‖wt −w∗‖2 + (
α

µ
− δ)‖ut −w∗‖2

+ (2δ2(νmax
1

N
κ̃+

N − νmin

N
)− 2ηδ/α+ η2δ(νmax

1

N
l + L

N − νmin

N
)/α)‖ut −w∗‖2

+ 2δ2‖
∑
k

pkH̃
k
t (ut − ukt )‖2H−1

+ δL
∑
k

pk‖(ut − ukt )‖2H−1

Following Liu & Belkin (2020) if we choose step sizes so that
α

µ
− δ ≤ 0

2δ2(νmax
1

N
κ̃+

N − νmin

N
)− 2ηδ/α+ η2δ(νmax

1

N
l + L

N − νmin

N
)/α ≤ 0
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or equivalently
α/δ ≤ µ

2αδ(νmax
1

N
κ̃+

N − νmin

N
) + η(η(νmax

1

N
l + L

N − νmin

N
)− 2) ≤ 0

the second and third terms are negative. To optimize the step sizes, note that the two inequalities
imply

α2 ≤ η(2− η(νmax
1

N
l + L

N − νmin

N
))µ/2(νmax

1

N
κ̃+

N − νmin

N
)

and maximizing the right hand side with respect to η, which is quadratic, we see that η ≡ 1/(νmax
1
N l+

LN−νmin

N ) maximizes the right hand side, with

α ≡ 1√
2(νmax

1
N κ1 + κN−νmin

N )(νmax
1
N κ̃+ N−νmin

N )

δ ≡ α

µ
=

η

α(νmax
1
N κ̃+ N−νmin

N )

Note that α = 1√
2(νmax

1
N κ1+κ

N−νmin
N )(νmax

1
N κ̃+

N−νmin
N )

= O( N√
κ1κ̃

) when N = O(min{κ̃, κ1/κ}).

Finally, to deal with the terms 2δ2‖
∑
k pkH̃

k
t (ut − ukt )‖2H−1 + δL

∑
k pk‖(ut − ukt )‖2H−1 , we can

use Jensen
2δ2‖

∑
k

pkH̃
k
t (ut − ukt )‖2H−1 + δL

∑
k

pk‖(ut − ukt )‖2H−1

≤ (2δ2l2 + δL)
∑
k

pk‖ut − ukt ‖2H−1

= (2δ2l2 + δL)
∑
k

pk‖
α

1 + α
vt +

1

1 + α
wt − (

α

1 + α
vkt +

1

1 + α
wkt )‖2H−1

≤ (2δ2l2 + δL)(2(
α

1 + α
)2δ2 + 2(

1

1 + α
)2η2)

∑
k

pk‖H̃k
t−1(ut−1 −w∗)‖2

≤ (2δ2l2 + δL)(2(
α

1 + α
)2δ2 + 2(

1

1 + α
)2η2)l2‖(ut−1 −w∗)‖2

which can be combined with the terms with ‖(ut−1−w∗)‖2 in the recursive expansion of E δ
α‖wt−

w∗‖2 + ‖vt −w∗‖2H−1 :

E
δ

α
‖wt −w∗‖2 + ‖vt −w∗‖2H−1

≤ (1− α)‖vt−1 −w∗‖2H−1 +
1− α
α

δ‖wt−1 −w∗‖2 + (
α

µ
− δ)‖ut−1 −w∗‖2

+ (2δ2(νmax
1

N
κ̃+

N − νmin

N
)− 2ηδ/α+ η2δ(νmax

1

N
l + L

N − νmin

N
)/α)‖ut−1 −w∗‖2

and the step sizes can be chosen so that the resulting coefficients are negative. Therefore, we have
shown that

E‖wt+1 −w∗‖2 ≤ (1− α)2‖wt−1 −w∗‖2

where α = 1√
2(νmax

1
N κ1+κ

N−νmin
N )(νmax

1
N κ̃+

N−νmin
N )

= O( N
νmax

√
κ1κ̃+N−νmin

) when N =

O(min{κ̃, κ1/κ}).

For general E > 1, choosing η = c/E(νmax
1
N l + LN−νmin

N ) for some small constant c results in
α = O( 1

E

√
(νmax

1
N κ1+κ

N−νmin
N )(νmax

1
N κ̃+

N−νmin
N )

) and this guarantees that

E‖wt −w∗‖2 ≤ (1− α)t‖w0 −w∗‖2

for all t.
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I DETAILS ON EXPERIMENTS AND ADDITIONAL RESULTS

We describe the precise procedure to reproduce the results in this paper. As we mentioned in
Section 5, we empirically verified the linear speed up on various convex settings for both FedAvg
and its accelerated variants. For all the results, we set random seeds as 0, 1, 2 and report the best
convergence rate across the three folds. For each run, we initialize w0 = 0 and measure the number
of iteration to reach the target accuracy ε. We use the small-scale dataset w8a Platt (1998), which
consists of n = 49749 samples with feature dimension d = 300. The label is either positive one or
negative one. The dataset has sparse binary features in {0, 1}. Each sample has 11.15 non-zero feature
values out of 300 features on average. We set the batch size equal to four across all experiments. In
the next following subsections, we introduce parameter searching in each objective separately.

I.1 STRONGLY CONVEX OBJECTIVES

We first consider the strongly convex objective function, where we use a regularized binary logistic
regression with regularization λ = 1/n ≈ 2e− 5. We evenly distributed on 1, 2, 4, 8, 16, 32 devices
and report the number of iterations/rounds needed to converge to ε−accuracy, where ε = 0.005.
The optimal objective function value f∗ is set as f∗ = 0.126433176216545. This is determined
numerically and we follow the setting in Stich (2019). The learning rate is decayed as the ηt =
min(η0,

nc
1+t ), where we extensively search the best learning rate c ∈ {2−1c0, 2−2c0, c0, 2c0, 22c0}.

In this case, we search the initial learning rate η0 ∈ {1, 32} and c0 = 1/8.

I.2 CONVEX SMOOTH OBJECTIVES

We also use binary logistic regression without regularization. The setting is almost same as its
regularized counter part. We also evenly distributed all the samples on 1, 2, 4, 8, 16, 32 devices. The
figure shows the number of iterations needed to converge to ε−accuracy, where ε = 0.02. The
optiaml objective function value is set as f∗ = 0.11379089057514849, determined numerically. The
learning rate is decayed as the ηt = min(η0,

nc
1+t ), where we extensively search the best learning rate

c ∈ {2−1c0, 2−2c0, c0, 2c0, 22c0}. In this case, we search the initial learning rate η0 ∈ {1, 32} and
c0 = 1/8.

I.3 LINEAR REGRESSION

For linear regression, we use the same feature vectors from w8a dataset and generate ground truth
[w∗, b∗] from a multivariate normal distribution with zero mean and standard deviation one. Then we
generate label based on yi = xtiw

∗+b∗. This procedure will ensure we satisfy the over-parameterized
setting as required in our theorems. We also evenly distributed all the samples on 1, 2, 4, 8, 16, 32
devices. The figure shows the number of iterations needed to converge to ε−accuracy, where ε = 0.02.
The optiaml objective function value is f∗ = 0. The learning rate is decayed as the ηt = min(η0,

nc
1+t ),

where we extensively search the best learning rate c ∈ {2−1c0, 2−2c0, c0, 2c0, 22c0}. In this case,
we search the initial learning rate η0 ∈ {0.1, 0.12} and c0 = 1/256.

I.4 PARTIAL PARTICIPATION

To examine the linear speedup of FedAvg in partial participation setting, we evenly distributed data
on 4, 8, 16, 32, 64, 128 devices and uniformly sample 50% devices without replacement. All other
hyperparameters are the same as previous sections.

I.5 NESTEROV ACCELERATED FEDAVG

The experiments of Nesterov accelerated FedAvg (the update formula is given as follows) uses the
same setting as previous three sections for vanilia FedAvg.

ykt+1 = wk
t − αtgt,k

wk
t+1 =

{
ykt+1 + βt(y

k
t+1 − ykt ) if t+ 1 /∈ IE∑

k∈St+1

(
ykt+1 + βt(y

k
t+1 − ykt )

)
if t+ 1 ∈ IE
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Figure 2: The convergence of FedAvg w.r.t the number of local steps E.

We set βt = 0.1 and search αt in the same way as ηt in FedAvg.

I.6 THE IMPACT OF E .

In this subsection, we further examine how does the number of local steps (E) affect convergence. As
shown in Figure 2, the number of iterations increases asE increase, which slow down the convergence
in terms of gradient computation. However, it can save communication costs as the number of rounds
decreased when the E increases. This showcase that we need a proper choice of E to trade-off the
communication cost and convergence speed.
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