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A  ADDITIONAL NOTATIONS AND BOUNDS FOR SAMPLING SCHEMES

In this section, we introduce additional notations that are used throughout the proofs. Following com-
mon practice, e.g. [Stich| (2019); |Li et al.| (2020b), we define two virtual sequences v; = Zgﬂ pkvf
and w; = Zszl prwr, where we recall the FedAvg updates from (2)):

& .
ko ok [ Vi ift+1 %IE,
Vil = Wi — 08k, Wiy = k ;

t+1 t t8t, t+1 { }:kestﬂ qeviy, ift+1€Zg.

The following observations apply to FedAvg updates, while Nesterov accelerated FedAvg requires
modifications. For full device participation or partial participation with ¢ ¢ Zg, note that v, =
W, = chvzl prVvF. For partial participation with t € Zg, W; # ¥, since V; = Efgvd prvF while
W= kesS, qkwf. However, we can use unbiased sampling strategies such that Es, w: = v;. Note
that V41 is one-step SGD from wy.

Vit1 = Wi — 8, 3)
where g; = Zg:l Dr8e,k 18 the one-step stochastic gradient averaged over all devices.
8tk = ka (vagf) )
Similarly, we denote the expected one-step gradient g, = E¢, [g;] = Zszl PrE¢r 8tk where
Eerger = V. (w)), 4)

and & = {€F}Y_| denotes random samples at all devices at time step .

Since in this work we also consider the case of partial participation, the sampling strategy to
approximate the system heterogeneity can also affect the convergence. Here we follow the prior
works |Li et al.| (2020b) and |Li1 et al.| (2020a) and consider two types of sampling schemes that
guarantee Eg, W, = V. The sampling scheme I establishes S;11 by i.i.d. sampling the devices
according to probabilities p;, with replacement, and setting ¢ = % In this case the upper bound of
expected square norm of W;;; — VvV, is given by (Li et al.;,|2020b, Lemma 5):

_ _ 4
Es,.y [Wes1 — Veq|” < E@fEQGQ- ®)
The sampling scheme II establishes S;11 by uniformly sampling all devices without replacement and
setting q = pk%, in which case we have

A(N — K)

]ESt+1 HWH-I - vt-&-l”2 < mafEQGQ. (6)
We summarize these upper bounds as follows:
_ _ 4
Es, , [[Wir1 — Vt+1||2 < EafEQGQ. (7

and this bound will be used in the convergence proof of the partial participation result.

B COMPARISON OF CONVERGENCE RATES WITH RELATED WORKS

In this section, we compare our convergence rate with the best-known results in the literature (see
Table2). In[Haddadpour & Mahdavil (2019), the authors provide O(1/NT) convergence rate of non-
convex problems under Polyak-Fojasiewicz (PL) condition, which means their results can directly
apply to the strongly convex problems. However, their assumption is based on bounded gradient
diversity, defined as follows:

_ 2Pl VEMWIE _
122k PV ER(W)Z ~

This is a more restrictive assumption comparing to assuming bounded gradient under the case of target
accuracy € — 0 and PL condition. To see this, consider the gradient diversity at the global optimal

A(w)
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w)||2 . . . .
w*, ie., A(w*) = %. For A(w*) to be bounded, it requires ||V Fy(w*)||3 = 0, V k.

This indicates w* is also the minimizer of each local objective, which contradicts to the practical
setting of heterogeneous data. Therefore, their bound is not effective for arbitrary small e-accuracy
under general heterogeneous data while our convergence results still hold in this case.

In|Karimireddy et al.|(2019), the linear speedup convergence rate of FedAvg are provided for strongly
convex, general convex, and non-convex problems under full participation setting. However, their
rate does not enjoy linear speedup for any number of devices while our results apply to any valid
K < N. For example, they provides an optimality gap of O ((1 — %)E / T) for the strongly convex
case (Karimireddy et al., 2019, Theorem V). With partial participation, and when K = O(1), their
convergence rate is O(F/T) which does not have linear speedup. Under partial participation, the
FedAvg analyses in [Karimireddy et al.| (2019) requires £ = (O(1). For example, the strongly
convex result O((1 — &)E/T) in Theorem V is O(E/T) when K = O(1) and is O(E/NT) when
K = O(N). In either case, to achieve a O(1/T') convergence rate, it requires £ = O(1) as well.
Similar conclusion also holds for the general convex problem.

Reference [ Convergence rate [ E [ NonIID ] Participation | Extra Assumptions [ Setting
p)
FedAvglLi et al.|(2020b) O( ET ) O(1) v Partial Bounded gradient Strongly convex
FedAvgHaddadpour & Mahdavi|(2019) O( ﬁ ) oK1t 7372/3 ) i s Partial Bounded gradient diversity Strongly convex
FedAvgKoloskova et al.|(2020) O( ﬁ ) o(N—Y/271/2) v Full Bounded gradient Strongly convex
FedAvgKarimireddy et al.[(2019) O( ﬁ ) i O(N—Y/271/2)tt v Partial Bounded gradient dissimilarity Strongly convex
FedAvg/N-FedAvg (our work) O(£Zr) o(N—1271/2)E v Partial Bounded gradient Strongly convex
FedAvgKhaled et al. '2020) O( JifT ) O(N—3/271/2) v Full Bounded gradient Convex
FedAvgKoloskova et al|(2020) O(— o(N~—3/4r1/4 v Full Bounded gradient Convex
g NT g
FedAvgi(arimireddy etal{2019) O( ZiIT ) i O(N~3/4T1/4) i v Partial Bounded gradient dissimilarity Convex
FedAvg/N-FedAvg (our ;vork) (@) 1 O(N—3/471/4yt v Partial Bounded gradient Convex
KT
FedAvg (@] (exp(f 1];\],;1; ) O(TB) v Partial Bounded gradient Overparameterized LR
FedMass O (exp(— =NL_ o(rh v Partial Bounded gradient Overparameterized LR
E\/k1R
VK1

Table 2: A high-level summary of the convergence results in this paper compared to prior state-of-
the-art FL algorithms. This table only highlights the dependence on 1" (number of iterations), E
(the maximal number of local steps), N (the total number of devices), and K < N the number of
participated devices. k is the condition number of the system and 3 € (0, 1). We denote Nesterov
accelerated FedAvg as N-FedAvg in this table.

t This E is obtained under i.i.d. setting.

¥ This E is obtained under full participation setting.

§ In[Haddadpour & Mahdavil (2019), the convergence rate is for non-convex smooth problems with
PL condition, which also applies to strongly convex problems. Therefore, we compare it with our
strongly convex results here.

# The bounded gradient diversity assumption is not applicable for general heterogeneous data when
converging to arbitrarily small e-accuracy (see discussions in Sec[B).

T Although the results in Karimireddy et al. (2019) is applicable for partial participation setting,
their results only achieve linear speedup under full participation setting X = N while we show
linear speedup convergence for K < N (see discussions in Sec[B]). The F in the table is obtained
under full participation. Under partial participation, the communication complexity is £ = O(1).

C A HIGH-LEVEL SUMMARY OF FEDAVG ANALYSIS

To facilitate the understanding of our analysis and highlight the improvement of our work comparing
to prior arts, we summarize the general steps used in the proofs across the various settings. In this
section, we take the strongly convex case as an example to illustrate our analysis. The corresponding
proof for general convex functions follows the same framework.

One step progress bound
This step establishes the progress of distance (||[W; — w*||?) to optimal solution after one step SGD
update (see line 9, Alg([I)), as the following equation shows:

E[Wir1 —w'|* < OmE[W, — w*|* + afo? /N + o} B*G?).
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Algorithm 1 FEDAVG: Federated Averaging

1: Server input: initial model wy, initial step size oo, local steps F.
2: Client input:

3: for eachroundr = 0,1, ..., R, where r =t x F do

4:  Sample clients S; C {1,..., N}

5:  Broadcast w to all clients k € S;

6:  for eachclient £ C S; do
7‘
8

initialize local model w¥ = w
fort=r«E+1,...,(r+1)xEdo

9: Wf+1 = Wf — 8tk

10: end for

11: end for

12: Average the local models at server end: w; = Z res, wf.
13: end for

The above bound consists of three main ingredients, the distance to optima in previous step (with
7t € (0,1) to obtained a contraction bound), the variance of stochastic gradients in local clients
(second term), the variance across different clients (third term). Notice that the third term in this
bound is the primary source of improvement in the rate. Comparing to the bound in|Li et al.| (2020b),
we improve the third term from O(a? E?G?) to O(a? E2G?), which enables the linear speedup in
the convergence rate.

Iterative deduction
This step uses the one step progress bound iteratively to connect the the current distance to optimal
solution with the initial distance (|[Wo — w*||?), as follows:

* — * 1
E|Wir1 — w*|]? < O(E|Wo — w Hzf)

Then we can use the distance to optima to upper bound the optimality gap (F'(w;) — F* < O(1/T)),
as follows:

E(F(W)) — F* < O(E[[w, — w"||*).

The convergence rate of the optimality gap is equally obtained as the convergence rate of the distance
to optima.

From full participation to partial participation

There are three sources of variances that affect the convergence rate. The first two sources come from
the variances of within local clients and across clients (second and third term in one step progress
bound). The partial participation, which involves a sampling procedure, is the third source of variance.
Therefore, comparing to the rate in full participation, this will add another term of variance into the
convergence rate, where we follow a similar derivation as in L1 et al.| (2020b).

D TECHNICAL LEMMAS

To facilitate reading, we first summarize some basic properties of L-smooth and p-strongly convex
functions, found in e.g. [Rockafellar| (1970), which are used in various steps of proofs in the appendix.

Lemma 1. Let F' be a convex L-smooth function. Then we have the following inequalities:

1. Quadratic upper bound: 0 < F(w) — F(w') — (VF(w'),w —w') < L||lw — w/|%.

2. Coercivity: +||VF(w) — VF(wW')||> < (VF(w) — VF(w'),w — w’).

3. Lower bound: F(w) > F(w') + (VF(W'),w — W') + 5 | VF(w) — VF(wW')||%. In particular,
IVF (w2 < 2L(F(w) — F(w")).

4. Optimality gap: F(w) — F(w*) <(VF(w),w — w*).

Lemma 2. Let F' be a p-strongly convex function. Then

F(w) < F(w') + (VE(W), w — w') + invmw) — VFW)|?
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Fw) — F(w*) < iuvmw)nz

E PROOF OF CONVERGENCE RESULTS FOR FEDAVG

E.1 STRONGLY CONVEX SMOOTH OBJECTIVES

To organize our proofs more effectively and highlight the significance of our results compared to
prior works, we first state the following key lemmas used in proofs of main results and defer their
proofs to later.

Lemma 3 (One step progress, strongly convex). Let Wt ZkN 1 prWF, and suppose our functions
satisfy Assumpttons III! and set step size qy = M(’Y o) with v = max{32k, E} and k = = L then
the updates of FedAvg with full participation satisfy

51
BIWess — w2 < (1= pa BIwW, — w2 + 0 12, ,,0% + 6B°LadGP.

We emphasize that the above lemma is the key step that allows us to obtain a bound that improves
on the convergence result of |[Li et al.|(2020b) with linear speedup. Its proof will make use of the
following two results.

Lemma 4 (Bounding gradient variance (Lemma 2 |Li et al.[(2020b)) ). Given Assumption[3| the
upper bound of gradient variance is given as follows,

N

Ellg: — &> <> piot.
k=1

Lemma 5 (Bounding the divergence of w/ (Lemma 3|Li et al. (2020b)) ). Given Assumption
and assume that o is non-increasing and o, < 2044 g for all t > 0, we have

N
B [zpkuwt e

k=1

< 4E%aiG*.

We now restate Theorem [I| from the main text and then prove it using Lemma 3]

Theorem 1. Let W = Zk 1 pkwT in FedAvg, vimax = maxy Npg, and set decaying learning
M(’H-t) with v = max{32k, E} and k = L Then under Assumptlons IEIII wzthfull
device participation,

rates oy =

2, 2 2E2 2

NT T2
and with partial device participation with at most K sampled devices at each communication round,

_ ; REPG? /| Kvgao®/p | KPE*G?/p
IEF(WT) —F*=0 < KT + NT + T2 )

Proof. The road map of the proof for full device participation contains three steps. First, we establish

a recursive relationship between E||w; 1 — w*||? and E||wW; — w*||2, upper bounding the progress of
2 2 2 2 2

w2 = O(U‘lnat:):]g /B + E Lg /1 )

FedAvg from step ¢ to step ¢ + 1. Second, we show that E||w; —
by induction using the recursive relationship from the previous step. Third, we use the property of
L-smoothness to bound the optimality gap by E||w; — w*||2.

By Lemma 3] we have the following upper bound for the one step progress:

_ 1
E[Wis1 — w*|? < (1 — poy)E[[w; — w ||2+atN VianOo + 6E*La}G?.
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2 2 2 2 2
We show next that E[|w; — w*||? = O(“=egZ /n + B LG2 /7Y using induction. To simplify the

presentation, we denote C = 6E?LG? and D = +12,,.0%. Suppose that we have the bound

- N Vinazx
E|lw; — w*[|? < b- (4D + o?C) for some constant b and learning rates ;. Then the one step
progress from Lemma 3] becomes:

E[[Wip1 = w[? < (b(1 = pas) + ar)aeD + (b(1 = pay) + ar)afC

To establish the result at step t+1, it remains to choose Qi and b such that (b(1—pay)+ay )y < bayyq
and (b(1 — poy) + ay)o? < ba?, . If we let oy = (t+ 7 where y = max{E, 32k} (choice of ¢

required to guarantee the one step progress) and set b = ; we have:

4 4 4 4
b(1 — ={b(1—- <b =b
(bl = ) + e )ex (( t+v)+u(t+v)>u(t+v)‘u(t+v+1) o
t4y—2. 16 16

(b(1 — ) + o = b ) <b ; =bot,,

tty TR )2 T Aty + 1)
where we have used the following inequalities:
t4y—1 1 tdy—2 1
(t+7)?2 ~ (t+y+1) (t+7)3 = (t+y+1)2

Thus we have established the result at step ¢ 4+ 1 assuming the result is correct at step t:

Vy>1

E[Wi1 — w*|? <b- (a1 D +aj, C)

Atstep t = 0, we can ensure the following inequality by scaling b with ¢||wo —w*||? for a sufficiently
large constant c:

4 16
* (|2 2
Wy — W <b-(agD+a;C)=b-(—D
| | ( 0C) (;w 220
It follows that
* * 4
E|w: —w"[|* < cwo — ||2 (Day + Caf) (3)
forallt > 0.
Finally, the L-smoothness of F' implies
_— * L = * (12
E(F(Wr)) - F* < SE|[wr —w’|
L 4
< §c||wo - W*HQE(DaT + CaZ)
= 2c|lwg — w*||*k(Dar + Ca?)
4 4
< 2¢|lwog — W ||?k | ———— V2 ..0° + 6E?LG?  (——)?
oWl LT =
k1l 5 o 1 K2 5 5 1
=02 = .+ F L
O(‘LLNV’HLG,ZEJ T + /.L G T2)

where in the first line, we use the property of L-smooth function (see Lemmal[I]), and in the second
line, we use the conclusion in Eq (@)

With partial participation, the update at each communication round is now given by weighted averages
over a subset of sampled devices. Whent + 1 ¢ Zg, V11 = W1, while when ¢ + 1 € Zg, we have
Ew,;,1 = V41 by design of the sampling schemes (Li et al.| (2020b), Lemma 4), so that

w* ||2

E|wWit1 — =E|[Wip1 — Vi1 + Vegr — W

=E[[Wit1 — Vi1 |? + E[vig — w*|?

This in particular implies E[[v, — w*||2 < E|w; — w*||2 for all £. Since v; = Y5, pxvF always
averages over all devices, the full participation one step progress result Lemma[3]applied to v; implies

5 1
E[[vi1 — w*)? < E(1 — poy)||[ve — w*||* + 6E° Lo} G* + of — N Va0
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) 1
< E(1 — pay)||we — w*||2 + 6E2Losz2 + afﬁyfmxo2

The bound for E||W;41 — V1|2 for the two sampling schemes we consider is provided in Eq (7)),
and applying it we can write the one step progress for partial participation as

1 4 .
E|W 11 — w*||? < (1 — poy)E||w, — w*||* + afﬁyfmmUQ + ?O@EQGQ + 6E%LaiG?,
and the same arguments using induction and L-smoothness as the full participation case implies
Winax0 /1 RE?G?/u  R2EG2/p

EF(Wr) = F" = O(— <7 KT 77 )

E.1.1 DEFERRED PROOFS OF KEY LEMMAS

Here we first rewrite the proofs of lemmas []and [5| from [Li et al.| (2020b) with slight modifications
for the consistency and completeness of this work, since later we will use modified versions of these
results in the convergence proof for Nesterov accelerated FedAvg.

Proof of lemma

N N
Ellg: — &> = Ellg: — Egll* = Y pillges —Bgerll® <Y piof
k=1 k=1
0

Proof of lemmal[5] Now we bound E chvzl pr|[W¢ — wF||? following [Li et al. (2020b). Since com-
munication is done every E steps, for any ¢ > 0, we can find aty < ¢t such thatt —t9 < E — 1 and
wfo = Wy, for all k. Moreover, using o is non-increasing and oy, < 2y forany t —t9g < E — 1,
we have

N
E> pelw —wi|’
k=1
N
_ ks _ (v _ w12
=B prlwf — Wi, — (W — W1,
k=1

N
<EY prlwh -,
k=1

N
k k
=E E Dk||wi —Wton
k=1

N t—1
=E Zm” - Z aigikl?
k=1

i=tg

N t—1
<2 pE Y Bof|lgikl®
k=1

i=to
N
<2 ZpkEzafoGQ
k=1

<4E%alG?
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Based on the results of Lemmafd} [5] we now prove the upper bound of one step SGD progress. This
proof improves on the previous work [Li et al.|(2020b)) and is the first to reveal the linear speedup of
convergence of FedAvg.

Proof of lemmal[3] We have
Wi — W 1° = (W — cuge) — W = [|(We — cug, — w") — as(gr — )

= W — w* — gy ||* + 200 (Wi — W' — 48, 8, — &) +aillge — &7

I?

A Ao As
where we denote:
Ar = W —w" — iy
Ay =200 (Wy — W' — 8, 8 — 8t)
A3 = ofllg — &l
By definition of g; and g, (see Eq (@)), we have EA; = 0. For A3, we have the following upper
bound (see Lemmald):

N
o7Ellg — &> < af > pioq
k=1

Next we bound A;:
[We —w* — agyl” = [[We — W[ + 2(%, — w", —a,8,) + [,
and we will show that the third term ||a;g, ||? can be canceled by an upper bound of the second term,

which is one of major improvement comparing to prior art|Li et al.| (2020b). The upper bound of
second term can be derived as follows, using the strong convexity and L-smoothness of Fj:

- 2at<Wt - W*agt>
N

= — 20y ZPMWt —w", VFk(Wf»
k=1

N N
=— 2 Zpk<Wt —wr VEL(wF)) — 2a, Zpk<w,’f —w*, VEu(wh))
k=1

k=1
N N N
< =201y pr(Wi — Wi, VER(WE)) + 200 ) pr(Fr(w*) — F(wp)) — aep Yy pr[[wi — w*||?
k=1 k=1 k=1
N I N
<204 Y pr {Fk(wf) = Fp(We) + S llwe — wi||? + Fr(w*) — Fk(wf)} — gl > pewf — w||?
k=1 k=1
N N
=LY pil[We — WE® + 200 Y pr [Fi(W*) = Fu(W)] — [ Wy — w2
k=1 k=1
We record the bound we have obtained so far, as it will also be used in the proof for convex case:
N
E|[We 1 — w*[|* SE(L = po) [We — w*|* + 0, LD pr|[We — wi|?
k=1
N N
+200 Y pr [Fi(W) = Fu(Wi)] + o7 > _piof + of gl )
k=1 k=1

For the term 2c; Z,iv:l pr [Fr(W*) — F(W)], which is negative, we can ignore it, but this yields a
suboptimal bound that fails to provide the desired linear speedup. Instead, we upper bound it using
the following derivation:

N
204 Zpk [Fl(W*) — Fi.(Wy)]
=1
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<204 [F(Wi41) — F(Wy)]
<2atE<VF(Wt) W1 — W) + o LE|[ W1 — W2
— 20{E(VF(W1), &) + o} LE| /g ?
— 20/E(VF (W), ) + o LE||g|*
==} [IVEW®)I” + &gl* — [VF(We) — 8:%] + of LE||g:||?

=—af [IVE@)I* + lgl® — IVF(W) = > s VE(wWE)[?| + o} LE||g.||?
L k

<=} |IVE®)I + l&l° = Y_pel VEW,) = VEW])|? | + o} LE|g:|*
L k

< —af |IVE®)I + &7 — L* Y prlwe = wi?| + ol LE|ge|?
L k

—ofllgl* + of L? ZPkHWt Wil + of LE||gel|* — of [ VF (W)

where we have used the smoothness of F' twice.

Note that the term —a?||g, ||2 exactly cancels the o?||g, ||? in the bound in Eq (EI), so that plugging in

the bound for —2a;(W; — w*, g,), we have so far proved
N
E[Wer — w*||* SE(1 = pay)[[w; — w*l* + e LY pil[We — wi|* + o Zpkgk
k=1
N
+af L pil|We — wi|? + o LEl|g||* - of |V E(w,)|? (10)
k=1

Under Assumption 4} we have E||g;||*> < G?. Furthermore, we can check that our choice of oy
satisfies a is non-increasing and oy < 244, so we may plug in the bound E )", py||w; —
w¥||2 < 4E?a2G? to the above inequality (see Lemma [5)).

Therefore, we can conclude that, with V4, := N - maxy pg and vy, := N - ming pg,

E|Wi1 — w*|?

<E(1 — pay)|[Wy — w*||> + 4E?LalG? + 4B? L2} G* + o Zpkak + ol LG?
k=1

N
=E(1 — poy)||[W; — w*||? + 4E2LadG? + 4B L20}G? + o2 Z piN)%0? + a} LG?

1
<E(1 — pe)|[Wy — w*|? + 4E2 Lol G? + 4E? L0} G? 4 o2 — N7 Vmas Zok + a}LG?

51
2 2 2 2 2
<E(1 — pay)|[wy — w¥||? + 6E?LaG? 4 o — N Vmax?
where in the last inequality we use 02 = Zivzl pro, and that by construction o satisfies Lay < %.
O

22
One may ask whether the dependence on E in the term ”ETGT/“ can be removed, or equivalently

whether Y, pi||wF — W;||2 = O(1/T?) can be independent of E. We provide a simple counterex-
ample that shows that this is not possible in general.

Proposition 1. There exists a dataset such that if E = O(T?) for any 8 > 0 then Y, p||w§ —
W2 = Q(ﬁ) .

18
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Proof. Suppose that we have an even number of devices and each F(w) = - -2

s,k

Nk
Jj= 1(
contains data points Xi = w** with nj, = n. Moreover, the w***’s come in palrs around the origin.
As aresult, the global ob]ectlve F is minimized at w* = 0. Moreover, if we start from wy = 0, then
by design of the dataset the updates in local steps exactly cancel each other at each iteration, resulting
in W, = 0 for all . On the other hand, if E = T, then starting from any t = O(T') with constant
step size O(%), after F iterations of local steps, the local parameters are updated towards w** with

[wr, gll* = Q((T? - +)?) = Q(72427). This implies that

T
k = k
Y oelwhip — Wersll? =Y pelwi gl
k k

x|, —w)’

1

= U7)

which is at a slower rate than -, for any 3 > 0. Thus the sampling variance E||W;1 — Vi1 ||* =
Q> rE| WP, — Wi41]|?) decays at a slower rate than %, resulting in a convergence rate slower
than O(7) with partial participation. O

E.2 CONVEX SMOOTH OBJECTIVES

In this section we provide the proof of the convergence result for FedAvg with convex and smooth
objectives. The key step is a one step progress result analogous to that in the strongly convex case,
and their proofs share identical components as well.

Lemma 6 (One step progress, convex case). Let W; = 25:1 prWF in FedAvg. Under assump-
tions [I|BJH] the following bound holds for all t:
o? + 6a; EB*LG?

W41 = w1+ n(F (W) = F(w")) < [[W0 = w|* + of Hv5a

Proof. The first part of the proof follows directly from Eq (9) in the proof of Lemma[3] Setting yo = 0
in Eq (9) (since we are in the convex setting instead of strongly convex), we obtain

N
Wi — w*[* < W0 — w1 + L > pelw, — wi |
k=1
N N
+200 > p [Fe(W*) = Fu(W)] + o7 [ 1> + of Y piod
k=1 k=1

The difference of this bound with that in the strongly convex case is that we no longer have a
contraction factor of 1 — uat in front of |[W; — w*||2. In the strongly convex case, we were able to

cancel a2||g,||2 with 20 30 w—1 Dk [Fie(W*) — Fj,(W;)] and obtain only lower order terms. In the

convex case, we use a different strategy and preserve Zszl i [Fx(Ww*) — Fi,(W})] in order to obtain
the desired optimality gap.

We have

Igell* = 11> oV Eu(wh)|I?
k

= || ZPkVFk wy) ZkaFk Wy +ZPkVFk w)[®
k
< 2| Zpkm wr) Zpkm w12 + 2| Zpkm (w2
< 2L“’Zpk||wt =Wl 20 ) pVE(W) |
k k

=2L° ZPk”Wf —We||* + 2| VF(w,)|?
K
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using VF(w*) = 0. Now using the L smoothness of F, we have |VF(W;)||? < 2L(F(W;) —
F(w*)), so that
o1 — w|?
N N
<[IWe — W + LY pillwe — wi||* + 200 Y pi [Fr(W") = Fi(W)]
k=1 k=1

+207 LY pillwy — Wil|* + 4af L(F (W) — F(w*)) + of Zpiai

k
N
=W =W |* + (207 L + L) Y pel|we — wi|? +0‘tzpk Fi(w*) = Fi(Wi)]
k=1 k=1
N
+07 > pro 4+ ai(1 — 4oy L)(F(w*) — F(W,))
k=1

Since F(w*) < F (W), as long as 4oL < 1, we can ignore the last term, and rearrange the
inequality to obtain

[Wepr — w1 + o (F (W) — F(w"))
N
<[|w — w*|* + (207 L* + ay L) ZP W — wi |+ o ZpkUk
=1
3 N
<[|w; — w*|* + §OétLZPkHWt = wil?+ o Zpkgk

k=1

The same argument as before yields E Zszl pi||[We — wF||? < 4E%a2G? which gives

N

Wit — w2+ au(F(w) — F(w*)) < [w, - w*|> + a2 3 pio? + 6a? B2LG?
k=1

— 112 2 2

< ||[wy — W™ —i—atN V20> + 603 B2LG

O

With the one step progress result, we can now prove the convergence result in the convex setting,
which we restate below.

Theorem 2. Under assumptions|l|3\4|and constant learning rate aty = O(4/ %) FedAvg satisfies

2 NEQL 2
?g,lr}F(Wt) _ F(W*) -0 <Umax0 i G )

VNT T

with full participation, and with partial device participation with K sampled devices at each commu-

nication round and learning rate oy = O(1/ %),

min F(W,) — F(w*) = O <

VKT VET T

Proof. We first prove the bound for full participation. Applying Lemma|f] we have

Vmaxo?  E%G? KE2LG2>

* — * 1
[Werr = w7 + au(F(W) = F(w")) < [ = w2 + af -02,00° + 60} B2 LGP

Summing the inequalities from ¢ = 0 to ¢ = T', we obtain

T

T
— * * 1
S a(F(®) = Flw) < wo = w'P + " a2 - 12,07+ 3 af - 65 LG?
t=0 t=0
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so that

min F(w;) — F(w") < lwo — w ||2 + ozt . Imxa + at -6E?LG?
oo et b+

By setting the constant learning rate oy = ]%[, we have
1 1 N 1 1 N
. — o 1 Wk 2 Lt o YL L N\3pp27 A2
rtr%ljr“lF(wt) F(w*) < INT lwo —w™|| +\/WT T Nymaxo +\/WT(” T) 6E“LG
1 1 N 1 N
< — —w P =T = =1} —6E?LG?
1 N
w2 2 2 27 2
= (|lwo = W'||* + Vjax0") ——= + =6E°LG
(” 0 ” a )\/ﬁ T

_O(anaxo2 NEQLGQ)

- VNT T
Similarly, for partial participation, we have
min F(W,) — F(w") < <||w0 —w*? +Zat : Vmaxa +C) +Zaf 6E2LG2>
=T Zt 0%t t=0
where C' = + E?G? or =5 L E2(G? depending on the sampling scheme, so that with a, = /&,
we have

. _ . Umax0>  E?G? KEQLG2

%I%F(Wt) - F(w*)=0( JRT + \/7 T )
O

F PROOF OF CONVERGENCE RESULTS FOR NESTEROV ACCELERATED
FEDAVG

F.1 STRONGLY CONVEX SMOOTH OBJECTIVES

Recall that the Nesterov accelerated FedAvg follows the updates

vE =W g, wh = Vi + Be(VE —vE) ift+1¢Zp,

i ¢ T Dkesi O (Vi + Be(vip —vi)] ift+1€Tp.
The proofs of convergence results for Nesterov Accelerated FedAvg consists of components that are
direct analogues of the FedAvg case. We first state these analogue results before proving the main
theorem. Like before, the proofs of the lemmas are deferred to after the main proof.

Lemma 7 (One step progress, Nesterov). Let vy = Ejkvzl prVF in Nesterov accelerated FedAvg,

. . ; . _ 6_1 —
and suppose our functions satisfy Assumptions El and set step sizes oy = LT Bi1 =
3
14(t+7) (1— 595 ) max{p,1}

FedAvg satisfy

E|Visr = w[? S E(1 — pae) (1 + Be-1)?[[Ve — w*|* + 20E2LafG? + (1 — ap) 574 | (V-1 — W)

with v = max{32k, E} and k = % the updates of Nesterov accelerated

1 — * — *
+ afﬁymaXUQ + 281 (L + Bi—1)(1 — app) [[Ve — W™| - [[Vp—1 — W7

The one step progress result makes use of the same bound on the gradient variance in Lemmalfd] as
well as a divergence bound analogous to Lemma 5] which we state below.

21



Under review as a conference paper at ICLR 2021

Lemma 8 (Bounding the divergence of w, Nesterov). Given Assumptionl 4| and assume that v is

non-increasing, oy < 20y, and 2%, + 207 < 1/2forallt > 0, W, = Zk 1 peWF in Nesterov
accelerated FedAvg satisfies

N
E > prlw: - wfﬂ < 16(E —1)%a2G2.
k=1
Theorem 3. Let v = Zk 1 pva in Nesterov accelerated FedAvg and set learning rates
o = EH_’Y Bi_1 = (t+v)(1—m)max{u e Then under Assumptions IIII with full device
participation,

2 2122
IEF(Vﬂ—F*:(’)(IWmaXU /”+'€EG/“>,

NT T2

and with partial device participation with K sampled devices at each communication round,

e E2G2 222
/W<0’/H+H /1w & /u)'

EF(vr) = F :O< NT KT T2

Proof. We first prove the result for full participation. Applying the one step progress bound in
Lemmal[7] we have

E[¥i1 —w'[? < E(1— pae) (1 + Bo1)2[%: — W' + 20E?La?G2 + (1 — awu) B2, ||(F1-1 —
1 — * — *
St + 2811+ B (1= aep) [V = W [F1 = w7
Recall that we require o, < 20y foranyt—t9 < E—1, Loy < ¢, and Zﬂt 1+ 2af < 1/2in order
for Lemmas |8 I andlto hold, which we can check by definition of oy and .
2
We show next that E||v, — w*||? = (9(”’"“{]3 o B LGZ /v ) by induction. Assume that we have
shown
E|v; — w*||* < b(Ca? + Day)
for all iterations until ¢, where C' = 20E*LG?, D = %I/fmwa and b is some constant to be chosen
. _ 3
later. For step sizes recall that we choose oy = u th and B;_1 = T () max (1) where
~v = max{32k, E'}, so that 5;_1 < a; and
6 3
(1—por)(14+148; 1) < (1 - —— )1+ ——5)
t+y t+71-5)
:_6_’_3:_3:1_&
t+vy t+vo t+ 2

Moreover, E||v;_1 — w*||? < b(Ca?_; + Day_1) < 4b(Ca? + Day) with the chosen step sizes.
Therefore the bound for E||V;,; — w*||? can be further simplified with

28i-1(1 4 Bi—1)(1 — wp)E[[vy — w*|| - [[Vee1 — W*|| 481 (1 + By—1)(1 — oups) - b(Cof + Do)

and
(1 = ) B7 B (Vi1 — w")||> < 4(1 — aup) B - b(Caf + Day)
so that
E([vir — w*> < (1= pa) (1 + Bi-1)® + 481 (1 + Beo1) +457-1) - b(Cai + Day)

1
+ 20E2LQ§G2 + afﬁumaXUQ

1
<E(1 — poy)(1+148;_1) - b(Ca? + Day) + 20E*La G? + Oé?NVmaXUZ
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<b(1-— %)(C’af + Day) + Cail + Da?
= (b1 =51 + a)a?C + (61 - B4 + a)auD
and so it remains to choose b such that

(b(l — %) + Ott)Oét S bC\{t+1

Qv
(b(1 = E51) + ar)a? < baty,

from which we can conclude E||viy 1 — w*||2 < a? ,C + ayy1D.

With b = %, we have

Loy 3 6 6
b(1—=1) + = (b(1 — +
_(bt+7—3 6 ) 6
tty  plt ) ult+7)
t+v—1 6
<b
( t+ )u(t+v)
6
b——— =b
Sult oy

t+vy—1 1

where we have used @z S T

Similarly

Ho — 3 0 6
(b(].— T)+at)at2 - (b(l - (t+’}/)+ ”(t+fy))(u(t+7)
try=3, 6 6
t+y  plt+y) " pt+)
t—|—’)/—2)( 6 )2
t4+y Tt +)
L—ba2
EIET e t+1

)2

= (b

= b(

<b

t+v—2 1
where we have used ) < (GEESIER

Finally, to ensure ||[vo — w*||? < b(Ca? + Day), we can rescale b by c||[vg — w*||? for some c. It
follows that E||v; — w*||?> < b(Ca? + Day) for all t > 0. Using the L-smooothness of F,

E(F(vr)) — F* = E(F(vr) — F(w"))
L = * (|2 L * 26 2
< §EHVT_W II© < §c||v0—w I ;(DaT—FC’aT)

= 3¢|vo — w*||?s(Dar + Ca2)

6 1 6
< 3¢|lvo — w*|)?k | ——— + —pax0’ + 20E2LG? - (————)?
| | wT+~) N (u(T+7))
K1 1 K2 1
=0(—— max L 7E2G2'7
(HNV ot 5t . T2)

With partial participation, the same argument with an added term for sampling error yields

KVmax0 2/ 11 n kE2G?/u N K2E2G? /1
NT KT T2

EF(wr) — F* = O( )
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F.1.1 DEFERRED PROOFS OF KEY LEMMAS

Proof of lemmal[8} The proof of bound for E Zg 1 pkHwt — w¥||? in the Nesterov accelerated
FedAvg follows a similar logic as in Lemma 5] but requires extra reasoning. Since commumcatlon is
done every I/ steps, for any t > 0, wecan findaty < tsuchthatt — ¢y < E —1and wt = w,, for
all k. Moreover, using o is non-increasing, oy, < 2y, and 8; < oy forany ¢t —to < £ — 1, we have

N N
EY prlWe = wil> =EY prllwl — Wi, — (Wi — Wy,)||?
k=1 k=1

N
<EY  prllwf — w4,

t—1
—EZpan& Vi = V) = D gkl

= to i_to
<2ZpkEZ —1) 2||gzk||2+2zpmz = DBV = vOIP
i= to i= to
N t—1
<23 B Y (B - Dad(lgil? + I(vE, —vHIP)
k=1 i=tg
N t—1
<4y pEY (E—1)aiG?
k=1 i=tg

<4(E—-1)%a;, G* < 16(E — 1)%a;G?

where we have used E||vF — vF |||2 < G2. To see this identity for appropriate ay, 3;, note the
recursion

k k k k
Vier = Vi =W = Wi — (e — —18i-1,k)
k k k k
Wi — Wy = =8¢k + ﬁt(VHl - vy)
so that
k k k k
Vig1 = Vi = 0181,k T Bi—1(vi = vi_1) — (u8ek — Cr—181—1,k)

= 5t—1(Vf - Vf—1) — 4Btk
Since the identity vF,; — v = B;_1(vF — vi_|) — aug: » implies
k
Elvii — vill® <267 1E|vi —vi|® + 207G

as long as o, 31 satisfy 282 ;| + 2a? < 1/2, we can guarantee that E||vF — vF | ||2 < G? for all
k by induction. This together with Jensen’s inequality also gives E||v;, — v;_1]|> < G? forallt. [

Now we are ready to prove the one step progress result for Nesterov accelerated FedAvg. The first
part of the proof is identical to that of the FedAvg case, while the main recursion takes a different
form.

Proof of lemma(7} We again have
o1 = W[ = (W — auge) — w*|?

and using exactly the same derivation as the FedAvg case, we can obtain the following bound (same
as Eq (I0) in the proof of Lemma 3)):

N
E|[Wer1 = w*[? S E(1 - pa) |We = w* > + LY prelwe — wil|* + o Zpkak
k=1
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+ajL? ZPkHwt wi | + of LE||gel|* — of [ VF (W)

Different from the FedAvg case, we no longer have w; = v;. Instead,
W = w*|1? = [[V: + Be-1(Ve = Ve1) — W[

=1+ Be-1)(Fe = W) = -1 (Femr — W)

= (L4 Be—1)?IVe = W |? = 2Be-1(1 4 Bi1) (Ve — W™, Vi — W*) + 87 [|(Vem1 — w)||?

< (L4 B2V = WP + 281 (1L + B ) [V = W™ - [[95m1 = W + B2, [ (Fem1 — wH)|I?

which gives a recursion involving both v, and v;_;:

[Ferr =W < (1= agu)(1+ Be-1)?[9e = W' |* + 201 = aup) Be—1 (1 + Be-)[Fe = W7 - [[Fer — w7 + o Zpkai

N

+ 671 (1= ap)|(Vemr = W) + LYy prl[We — wil|* + of L? ZPkHWt wi|® + o/ LG?
k=1

and we will using this recursive relation to obtain the desired bound.

We can check that our choice of «; and f3; satisfy o is non-increasing, oy < 244 g, and 26?_1 +

202 < 1/2forall t > 0, so that we can apply the bound from Lemmaon ES N, pilWe — wh|?
to conclude that, with vy, := N - maxy pi,

B[ — w2 < E(1 — poy) (1 + Beo1)?|[¥: — w*|> + 16E2Lafa2 + 16 E?L*a}G? + o} LG?
+ (1= )81 |(Ve1 — Pt ZP o+ 281 (1 + Be-1) (1 — o) [Ve = W[ - [Ve1 — w7

< B(1— )L+ B9 — w2+ 20 LG + (1~ ) (Fis —
1 — * — *
+ 0 5 Vmax0? + 2811 (14 Bim1) (1 = ) [ = |- [Fer = w7

where we have used 02 = 3°, pj,o, and by construction our o satisfies Loy < 1. O

F.2 CONVEX SMOOTH OBJECTIVES

In this section we provide proof of the convergence result for Nesterov accelerated FedAvg with
convex and smooth objectives. Unlike with the FedAvg algorithm, where convex and strongly convex
results share identical components, the proof for the convergence result in the convex setting for
Nesterov FedAvg uses a change of variables, although the general ideas are in the same vein: we
have a one step progress bound for E||w, 1 — w*||? + n,(F(wW,;) — F(w*)), which is then used to
form a telescoping sum that gives an upper bound on min, <y F'(W;) — F(w*).

Lemma 9 (One step progress, convex case, Nesterov). Let w; = Z;v:l pk-wf in Nesterov accel-
erated FedAvg, and define n; = 7 5 S\4| the following bound holds for all

t:
— ) — * — 12 2.2 ~2 92 L B o
E[We1 — w" + e (F(We) = F(w?)) < E[We —w"|[" + 32LE aiin G + 1 Vmax 770~ + 2k 3 G
— Pt
Theorem 4. Set learning rates oy = By = O(4/ %) Then under Assumptions |I|[3|4| Nesterov

accelerated FedAvg with full device participation has rate
Umax0?  NE?LG?
o+ E).
and with partial device participation with K sampled devices at each communication round,
0 <dex02 n E2G? KEQLG2>
VKT VKT = T

min F(w;) — F* —O<

t<T

)
min F(wy)
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Proof. Applying the bound from Lemmal?l, with n, = 1f‘tﬁt we have

Bt

2
1—5¢

. - . - . 1
E[Wir1 —w|* +m(F(W,) — F(w")) < E[W, — w*||* + 32LE?071,G* + 0 Vinax

NU +277t

Summing the inequalities from ¢ = 0 to ¢ = T, we obtain

T T
_ . . 1 82
;an(wt)fF(w ) < lwo—w ||2+§n? N Vmax? +Zmat 32LE’G? + ZM A

= — B
so that
min F(w,) — F(w") < [wo — w*||> + Z 0 - VmaXO' + Z niad - 32LE*G? + Z 277t B G?
=T Zt ot t=0 — P
N
By setting the constant learning rates oy = ,/% and f8; = ¢,/ % so that n; = 13% = ﬁ <
T
2,/ &, we have

1 2 N 1 1 | N 2 N
< : ||WO - VV*”2 + T —- *Vmaxo—2 + 7T( ?)332LE2G2 + 7T( 7)3G2

2V NT \/NT T N VNT VNT T
1 N
= (§Hw0 — W12 4+ 2umax0? )W 7 —(32LE*G* + 2G?)
_ O(VmaX0'2 NEQLGQ)
- VNT T
Similarly, for partial participation, we have
min F(w;) — F(w*) < [wo — w*||? + Zat l/maxa +C)+ Z of - 6E2LG?
=T Zt ot t=0

where C' = 4 EZG2 or N K 4 E2G2 so that with oy = ,/% and 3; = ¢ %, we have

Umax02  E2G? KEQLGQ‘

min F (W) — F(w") = O( VKT + \/7 T )

t<T

F.2.1 DEFERRED PROOFS OF KEY LEMMAS

2
Proof of lemma[9, Define p, := f—tﬁf [Wi — W1 + ugi1] = 1%@ (V¢ —V¢_1) fort > 1 and O
for ¢ = 0. We can check that

o _ o o
Wit1 T Pip1 = Wi + Py — ;gt
1—p
Now we define z; := W; + p; and ), =
Zi11 = Z¢ — N8t
Now
[1Zer1 — w*(1? = [[(Ze — mege) — w7
= 1(Ze — 8 — w*) — ne(gr — 8)II°

=A +Ay+ A
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where
Ay = |z — w* =g,
Ay =201(Ze — W" — 18, 8 — 8t)
Az = n}llge — &
where again EA; = 0 and EA3 < n? Y, po?. For A; we have
Ze —w* — g |I* = |12e — w*|* + 20z — w*, —m&;) + [m&:]*
Using the convexity and L-smoothness of Fj,

—2n(ze — W, 8)

N
= =2 ) pr(# — w*, VEL(W)))
k=1
N N
= =200y pi(@ — wi, VE(WE)) =200 Y pir(wi — w*, VE(wp))
k=1 k=1
N N N
= =2 Y pk(Z — Wi, VER(WE)) = 200 Y pi(Wi — Wi, VER(WE)) — 20 Y pr(wf — w*, VE(w)))
N N N
<=2 Y pr(@ — Wi, VE(WE) — 200 Y pi(Wy — Wi, VER(WE)) + 200 Y pr(Fi(w™) — Fi(w}))
k=1 k=1 k=1

N
L
<2 ) pr {Fk(wf) = Fie(W1) + S [[We = Wil + Fi(w") = Fk(Wf)}

k=1
N
— 200 Y p(@e — Wi, Vi (WF))
k=1
N N N
=LY okl W — Wil + 200 p [Fe(W*) = Fu(W0)] — 200 Y pi (2 — Wi, VER(W)))
k=1 k=1 k=1

which results in

N N
Wi — w*|* <E|W, — W > + L > pilWe — wEI* + 20 pr [Fr(w*) — Fi(W))]
k=1 k=1
N N
2l +nf > piok — 2m Y pr(Z — Wi, VER(W)))
k=1 k=1

As before, ||g,[|> < 2L, pil|wF — W||? + 4L(F(W;) — F(w*)), so that

N
PN+ me Y ok [Fr(W*) — Fr(We)] < 20707 > pil|wf = W |” + me (1 — 4, L) (F(w*) — F(W))
k=1 k
<2707 pillwf — W
k

forn, < 1/4L. Using Zgﬂ pe|[Wi — w2 < 16 E2a2G? and Z,ivzl Pi0? < Umax 02, it follows
that

N N
E[Wi1 — w2 + ne(F(W,) — F(w")) < E[w —w* |2 + (L +20%2) 3 pillwe —whIP +02 3 pio?
k=1 k=1
N

—2m > pi(Z — Wi, VEL(W)))
k=1
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1
< E|w, — w*||* + 32LE?a?n,G? + nfumaxﬁﬁ

N

—2m > pi(Z — Wi, VE(w)))
k=1

if g, < i It remains to bound Ezgzlpk@t — Wi, VFy(wF)). Recall that z; — wW; =

2

25 W = Wi+ augr1] = 125 (Vi = Vi1) and B[, — ¥ |2 < G2 || VE(wh)||? < G2,
Cauchy-Schwarz gives

N

IEZpk 7 — Wi, VEL(WF)) Zpk\/E”Zt W2 - \/E||VE(wF)|?
k=1
S ﬁt G2
1—=75
Thus
1
E|Wir1 — w2+ n(F(We) — F(w")) < E|[w, — w*||* + 32LE?a}n,G* + nfumea + 2, Btﬁ G?
O

G GEOMETRIC CONVERGENCE OF FEDAVG IN THE OVERPARAMETERIZED
SETTING

Overparameterization is a prevalent machine learning setting where the statistical model has much
more parameters than the number of training samples and the existence of parameter choices with zero
training loss is ensured |Allen-Zhu et al.|(2018); Zhang et al.|(2016). Due to the property of automatic
variance reduction in overparameterization, a line of recent works proved that SGD and accelerated
methods achieve geometric convergence Ma et al.| (2018)); Moulines & Bach|(2011); Needell et al.
(2014); |Schmidt & Roux|(2013)); |Strohmer & Vershynin| (2009). A natural question is whether such
a result still holds in the federated learning setting. In this section, we provide the first geometric
convergence rate of FedAvg for the overparameterized strongly convex and smooth problems, and
show that it preserves linear speedup at the same time. We then sharpen this result in the special case
of linear regression. Inspired by recent advances in accelerating SGD [Liu et al.| (2020)); Jain et al.
(2017), we further propose a novel momentum-based FedAvg algorithm, which enjoys an improved
convergence rate over FedAvg. Detailed proofs are deferred to Appendix Section[H] In particular, we
do not need Assumptions [3]and [ and use modified versions of Assumptions[T]and 2]detailed in this
section.

G.1 GEOMETRIC CONVERGENCE OF FEDAVG IN THE OVERPARAMETERIZED SETTING

Recall the FL problem min,, Z,iv:l prFr(w) with F(w) = n% Do l(ws x1). In this section, we
consider the standard Empirical Risk Minimization (ERM) setting where ¢ is non-negative, [-smooth,
and convex, and as before, each F,(w) is L-smooth and p-strongly convex. Note that [ > L. This
setup includes many important problems in practice. In the overparameterized setting, there exists
w* € argmin, Y r_, prFi (W) such that £(w*;x]) = 0 for all xJ. We first show that FedAvg
achieves geometric convergence with linear speedup in the number of workers.

Theorem 5. In the overparameterized setting, FedAvg with communication every E iterations and
constant step size @ = O(% W) has geometric convergence:

L

_ _ \ NT .
]EF(WT) S 5(1 — Q)T||W0 — W ||2 =0 <L€‘Xp (_glymax T L(N — Vmin)) . ||W0 — W |2) .

Linear speedup and Communication Complexity The linear speedup factor is on the order of
O(N/E) for N < O(L), i.e. FedAvg with N workers and communication every E iterations
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provides a geometric convergence speedup factor of O(N/E), for N < O(+). When N is above
this threshold, however, the speedup is almost constant in the number of workers. This matches the
findings in Ma et al.| (2018). Our result also illustrates that E can be taken O(T?) for any 8 < 1
to achieve geometric convergence, achieving better communication efficiency than the standard FL
setting. We emphasize again that compared to the single-server results in Ma et al.| (2018)), the
difference of our result lies in the factor of N in the speedup, which cannot be obtained if one simply
applied the single-server result to each device in our problem.

G.2 OVERPARAMETERIZED LINEAR REGRESSION PROBLEMS

We now turn to quadratic problems and show that the bound in Theorem [5| can be improved to
(’)(exp(—Elmt)) for a larger range of N. We then propose a variant of FedAvg that has provable
acceleration over FedAvg with SGD updates. The local device objectives are now given by the
sum of squares Fy(w) = 271% Z;EI(WTX?; — 2])?, and there exists w* such that F'(w*) = 0. Two
notions of condition number are important in our results: «; which is based on local Hessians, and
K, which is termed the statistical condition number [Liu & Belkin| (2020); Jain et al.| (2017). For
their detailed definitions, please refer to Appendix Section[Hl Here we use the fact £ < x;. Recall
Vmax = Maxy pr N and vy, = ming ppN.

Theorem 6. For the overparamterized linear regression problem, FedAvg with communication every

FE iterations with constant step size & = O(% Winax+ (N —Vmin) ) has geometric convergence:

NT
E(Vmaxnl + (N - Vmin))

B (wr) < O (Lex(- wo -~ w[?).

When N = O(#1), the convergence rate is O((1 — z-)") = O(exp(—#-)), which exhibits
linear speedup in the number of workers, as well as a 1/x; dependence on the condition number ;.

Inspired by |Liu & Belkin|(2020), we propose the MaSS accelerated FedAvg algorithm (FedMaSS):

W Ut gk ift+1¢7Zp,
T Thesi,, [0 —nbgix] ift+ 1€,

k k E (oK k k
uiy g = Wiy (Wi — Wi) + 10380k
When 1% = 0, this algorithm reduces to the Nesterov accelerated FedAvg algorithm. In the next
theorem, we demonstrate that FedMaSS improves the convergence to O(exp(——=22—)). To our

E\/ K1 K
knowledge, this is the first acceleration result of FedAvg with momentum updates over SGD updates.

Theorem 7. For the overparamterized linear regression problem, FedMaSS with communication

1
. . - _ 7(1=1) _ TRk

every E iterations and constant step sizes7; = O(%W), My = 7171( 1“) Y =17 =
- min T -

has geometric convergence.

NT
(Vmax\/ K1K + (N - Vmin))

BF(wr) <O (Lol liwo = w[* ).

Speedup of FedMaSS over FedAvg To better understand the significance of the above result, we
briefly discuss related works on accelerating SGD. Nesterov and Heavy Ball updates are known
to fail to accelerate over SGD in both the overparameterized and convex settings [Liu & Belkin
(2020); [Kidambi et al.| (2018); [Liu et al.| (2018); |Yuan et al|(2016). Thus in general one cannot
hope to obtain acceleration results for the FedAvg algorithm with Nesterov and Heavy Ball updates.
Luckily, recent works in SGD Jain et al.| (2017); [Liu & Belkin| (2020) introduced an additional
compensation term to the Nesterov updates to address the non-acceleration issue. Surprisingly, we
show the same approach can effectively improve the rate of FedAvg. Comparing the convergence rate
of FedMass (Theorem and FedAvg (Theorem @), when N = O(1/k1k), the convergence rate is

o1 - E\;VR)T) = O(GXP(_E%)) as opposed to O(exp(—g—’z)). Since k1 > K, this implies

a speedup factor of /%t for FedMaSS. On the other hand, the same linear speedup in the number of
workers holds for N in a smaller range of values.
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H PROOF OF GEOMETRIC CONVERGENCE RESULTS FOR
OVERPARAMETERIZED PROBLEMS

H.1 GEOMETRIC CONVERGENCE OF FEDAVG FOR GENERAL STRONGLY CONVEX AND
SMOOTH OBJECTIVES

Theorem 5. For the overparameterized setting with general strongly convex and smooth objectives,
FedAvg with local SGD updates and communication every E iterations with constant step size
N

a= gives the exponential convergence guarantee

2F Wmax+L(N—Vmin)

L N
EF(W,) < = (1 — pa@)|[wo — w*|[* = O(exp(— -

- el ) - . * |12
)= SE o T LN — oy ) o = w7l

Proof. To illustrate the main ideas of the proof, we first present the proof for £ = 2. Lett — 1 be a
communication round, so that w¥_; = W;_;. We show that

[Wep1 — w2 < (1= app) (1 — 1) [Wy—1 — w2

for appropriately chosen constant step sizes oy, oiy—1. We have

[Wesr =W = [[(We — cuge) — w2
= [We — w* = 20,(We — w*, ) + o[l
and the cross term can be bounded as usual using p-convexity and L-smoothness of Fj:

— 204 Ei (W — W™, g)

N
= 204 Zpk<Wt —w*, VF,(wF))
k=1
N N
= 204 Zpk<Wt —wF VEL(wF)) — 204 Zpk<wf —w*, VEu(wh))
k=1 k=1
N N N
< 200 el — W, VE(wh) + 200 3 pr(F(w?) — Fulwh)) — a3 pellwh — w2
k=1 k=1 k=1

N N
L * *
<204 Y pr {Fk(wf) — F(Wy) + §||Wt —wl|]? + F(w*) — Fk(wf)} — oppl| Y pr(wh —w*)||?
k=1 k=1

N N
=Ly pulWe — will? + 200 Y pp [Fe(w™) = Fio(W2)] = aup|[ W — w™”

k=1 k=1
N N

= LY pellWi — wil® = 200 Y pFi(Wy) — aqpt|[ W, — w2
k=1 k=1

and so

N
E[Wii1 — w*[? SE(L - aup) Wi — w*|)* = 20, F(Wy) + of g + LD pil[ Wy — wi|)?
k=1

Applying this recursive relation to |[W; — w*||? and using ||[W;_; — wF_,||? = 0, we further obtain

E[Wei1 — w*|? <E(1L = ag) (1= ar1p) [Weo1 = W2 = 2041 F(Wio1) + af_y[lge[|)
N
— 20, F(W1) + o llge|® + LY pil| Wi — wi||?
k=1
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Now instead of bounding 25:1 pr||[W¢ — wF||? using the arguments in the general convex case, we
follow Ma et al.|(2018) and use the fact that in the overparameterized setting, w* is a minimizer of

each /(w, x,) and that each £ is [-smooth to obtain ||V Fy(W;_1,&F |)||? < 20(F(We_1,&F ) —
Fr(w*,€F ), where recall Fy(w,&F ) = £(w,&F ), so that
N

N
S ol W = wEIP =D pellWiot — qvm1gior — WE + aumigi— il
k=1 k=1

N
= Zpka%—ngt—l — g1k
k=1

N
= a1 Y pelllg—1l® — llge-1l?)
k=1
N
= ai 1 ) ol VE(We1, ) 1P — oy llge—a
k=1
N
<aj, Zpkm(Fk(Wt—l,ff—ﬂ — F(w*, 6)) — iy llge—1])?
k=1

again using W, ; = w/ ;. Taking expectation with respect to £F ;’s and using the fact that
F(w*) = 0, we have
N N

Er1 Y pil[ W — wil® <207 Y puFi(Wi1) — af ||l
k=1 k=1

= 21&?—1F(Wt—1) - O4t2—1||gt—1||2

Note also that
N

lge—1l? = 1> eV E(o1, 65|12
k=1

while

N N N
lgell® = 11> eV ER(wr, N7 < 201 Y peVE(We, €)1 + 211 D e (VE (Wi, &) — VER(wi, &)1

k=1 k=1 k=1
N N
<2 Y VAL DI + 23 pil?lw - wh?
k=1 k=1

Substituting these into the bound for ||[W; 1 — w*||?, we have

E[[Wei1 —w|[? E(L = agp) (1 = am1p) [Wem1 = W*[|* = 201 F(We—1) + af_y [|ge—1]%)
N
— 20, F(Wy) + 207 | Y pe VE (Wi, &) 1> + (21207107 + awai (L) (2LF (Wi—1) — ||ge-1]|®)
k=1
=E(1 — ayp)(1 = a1 ) [Wi—1 — w|?
N

= 200(F(We) — cul| > pe VER(W, 6)|)
k=1

loy—1 (21202 + o L Qp_ N
— 201 (1 — aypu) ((1 _laml . : ))F(Wt—l) - == ZPkVFk(Wt—l»ff—l)HQ

1—ap 2 Pt
from which we can conclude that

E[Wi1 —w'[? < (1 — amp)(1 — ar 1 p)E[Wr_y — w'[?
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if we can choose «, ciy—1 to guarantee

N
E(F (W) — ot > pe VE(W1, €F)[I7) > 0
k=1
lay 1 (21202 + o L) oy al — k 2
E((1- —on VE (W) — I ZkaFk(Wt—l,ft_l)“ 20
k=1
Note that
N
Eell Y piVFe(Wi, &) = By ZPkVFk Wi, &) ZkaFk Wi, &)
k=1 = k=1
= ZpiEt||VFk(wt7ff>|l2 + Z > ik BV (Wi, &), VF; (W, &)
k=1 k=1 j£k

N N
ZP%EtHVFk(Wt»gf”P + Z ZPJPHVFI@(Wt)» VEF;(Wy))

k=1 k=1 j#k
N N N N
=Y PREAVE(WL I+ pipn(VE(W0), VE; (W) — > pi| V(W) |
k=1 k=1j=1 k=1
N 1
<) PRV (W, €81 + VE, (W) ||? = = min VE,(W,)|?
_kZZI IV F (Wi, &)l IIZk:pk H(Wl” = & IIXk:pk (W)
N 1
= PRV (W, &)I1° + (1 - Nvmm)IIVF(Wt)II2

£
Il
-

1—
’ 2L(177vmm)

and so following |[Ma et al {(2018) if we let oy = min{ ngN }foragq € [0,1] to be

optimized later, we have

N
Ei(F(We) — il Y piVEFR(W0, 65)1%)
k=1
N N 1
> Eq ;Pka(Wt) —at ;piEtHVFk(Wtaff)HQ + (1 - N”min)HVF(WtHF
N 1 1
> E, ZPk(qu(Wnﬁf) - atﬁl/maxHVFk(WuEf)Hz) +((1 =g F (W) — ay(1— N”min)HVF(Wt)HQ)
k=1

N
. 1 _ _ 1 _
> g > pi(Fu(Wy, &) — IV E( DI + (1= ) (F(%2) = 57 [VFw)I?)
k=1
>0
again using w* optimizes Fy(w, &) with Fj,(w*, &F) =

= IWiax
’ 2L(17%qymin)} over ¢ € [0, 1], we see that ¢ = v

wmax+L(N—vmin)
results in the fastest convergence, and this translates to oy = L N__ _ Nextwe claim that
2 Wmax+L(N —vmin)
N

el N
2 lUII)aX+L(N_VII)iII)

Maximizing a; = min{ 2I§N
max

i1 = also guarantees

lag_1(2%a? + oy L)
1—aip

Q1

E(1 -

JE(Wi1) =

N
| ZkaFk(Wtflvff—l)HQ >0
=1
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Note that by scaling a;_1 by a constant ¢ < 1 if necessary, we can guarantee
and so the condition is equivalent to

N
F(Wt,1> — Oét,1|| Zpkak(Wtfhfffl)HQ Z 0
k=1

N

which was shown to hold with o, < 1 PR g e—_

For the proof of general £ > 2, we use the following two identities:

N N
lgel® < 21> pVE(We E) 7 +2> pil®([we — wi|?
k=1 k=1

lag 1 (2l2af +aL)
l—aip

<

1
27

N
EY ol —will* <E2(1+20%7 1) Y prl[Wer — wiy | + 807y IF(Weo1) — 2074 |lgea |

k=1

where the first inequality has been established before. To establish the second inequality, note that

N
ZPkHWt —wi|? = ZpkHWtfl — o181 — Wiy o181
k=1
N
<2 pr (Wi — Wiy |)?
k=1

and

S pellgr — gt = 3 pellgesal? = llgiiI?)
k k

=D Dkl VE(Weo1, & 1) + VE(WE 1, 6 1) = VE(Weo1, €)1 — llge—al?

k

<2 p (IVF(Wi1, )17 + Pllwi_y — Wi |?) — gl
k

so that using the /-smoothness of ¢,

N
EY pilw: - wi?
k=1

N

<E2(1 + 20207, Zpk”Wt 1_Wt P+ 4af_ 1ZPkHVFk(Wt 1,ft DII? = 2074 [lge—1 12

k=1

<E2(1+ 207, Zpk”Wt—l —wi |+ 40‘?—1212pk(Fk(Wt—1a§f—1) -
= k

N
= E2(1+ 2P0t 1) Y pulecs — Wl + 8o sF(Fcr) = 20 sl

Using the first inequality, we have

E[Wi1 —w'[? < E(1 - awp)[w; — w*?
N

k=1

N
+ (2071 + oy L) Y piel| Wi — wE||?
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and we choose «; and a;_1 such that E(F (W) — ay|| S py prVFL(W1, £F)[|2) > 0 and (20212 +
arL) < (1 — aup)(202_11% + ay—1L) /3. This gives

N
E[We — w1 SE(L = ag)[(1 = ar1p)[Weer = w*||* = 2001 F(We1) + 2071 | Y peVER(Wio1, €801
k=1
N N
+ (2071 + e L) pelWem1 = Wi 12+ pelwe — wil[*)/3]
k=1 k=1
Using the second inequality
N N

Yol we — Wil <E2(1+20%07 1) Y pelWeor — wiy||? + 807y IF(Weo1) — 2074 [l
k=1 k=1

and that 2(1 + 2%a?_;) < 3,2a? 11> + ay_1L < 1, we have
E[Wep1 —w* [ <E(1 — oep)[(1 — 1) [Weoy — W
N

— 204 1 F(We1) + 20741 D peVER(Wio1, €)1 + 87 1F (W, 1)
k=1

N
+ (2074 + 01 D)2 ) pullWeer — wiy 7))
k=1

and if ;1 is chosen such that

N

(F(Wi1) =40y lF(Wi1)) = ag ]| D ok VE(We1, €5 > 0
k=1

and
(202 1> + oy 1 L)(1 — oy_1p) < (202 ,51% + oy_oL)/3

we again have
N

E[Wer1 - w*[? SE( = amp)(1 = apap) [[Wer = w7 |* + (207501 + as-2L) - (2 pil[Wie1 — wi1[%)/3]
k=1

Applying the above derivation iteratively 7 < E times, we have

E[[Wip1 — w2 SE(L — ) - (1 = apr1p)[(1 = rrpt) [[We—r — w*|?

N
=20 F(Wi—r) + 2at2—7—|| ZkaFk(Wt—'rv gf—r)HQ + 8Tat2—rlF(Wt—T)
k=1
N
+ (207 Pt D) (T + 1)) pillWir — Wi |?)]
k=1

as long as the step sizes a;—, are chosen such that the following inequalities hold
(202 1>+ oy L)1 —oprp) < (202 1P +a;,1L)/3
2(1+20%a% ) <3
202 > +a, ,L<1

N
(F(Wi—r) =470y AIF (Wi 7)) — oo || Y ok VFe(Wrr, F )| > 0
k=1

We can check that setting o, = for some small constant c¢ satisfies the

requirements.

e— N
T+1 Wmax+L(N —Vmin)
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Since communication is done every FE iterations, W, = wfo for some tg >t — E', from which we
can conclude that

t—to—1
Elw, — w*|? < ( [ (- paer)lwe, —w*|?
T=1
N _
<(1-ck ) [ wiy — w2

= T B limax + LN — vanin)

and applying this inequality to iterations between each communication round,

% — W Iz N »
BIwe = < (1= ey ) Iwo = w'l?
N *
— O(exp( L I2

L t —
E W + LN — tnn) Nliwo = w

With partial participation, we note that

E|Wis1 — w*|? = E[Wig1 — Veg1 + Ve — w'?

=E|[Wir1 — Vi1 |? + E[Vegr — w*|?
1 _ _
K > pEIwE = Wi P+ E[ Vi — wf?
k

and so the recursive identity becomes

E[Wip1 — w2 SE(L =) (1 = agr1p)[(1 = @pr ) [[We—r — w2

N
=204 F(Wi_r) + 207 | > pkVF(Wir, &)1 + 8707 IF (W)
k=1
N
+ (207 1P + ap- TL+ ((r+1) Zpkllwt-f—wf_THQ)}

which requires
1 1
(20[?77_12 —+ at,TL + K)(]. — th,TM) S (20457771[2 + th,T,lL + ?)/3
2(1+2%a% ) <3

1
202 PP+oay L+—<1

= <
N

(F(Wi—r) — 4104 IF(Wy_r)) — v || Y ok VEF(Wir & )|7 2 0
k=1
N

to hold. Again setting a;—, = c—~
satisfies the requirements.

- +1 T LN =) for a possibly different constant from before

Finally, using the L-smoothness of F’,

N *
)l[wo — w|?

L p
F(wr) — F(w*) < ZE||wy — w*|? = O(L exp(— £ T
(WT) (W ) =9 ||WT w || ( eXp( E leax + L(N - Vmin) ) ‘

O

H.2 GEOMETRIC CONVERGENCE OF FEDAVG FOR OVERPARAMETERIZED LINEAR
REGRESSION

We first provide details on quantities used in the proof of results on linear regression in Sectlon[g The
1 ng T3

local device objectives are now given by the sum of squares Fi.(w) = 5, > 7% (W' x}, — z],)?, and
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there exists w* such that F'(w*) = 0. Define the local Hessian matrix as H¥ := -1 3" x7 (x])7,
k J=

and the stochastic Hessian matrix as I:IiC = EF(ER)T, where £F is the stochastic sample on the kth
device at time ¢. Define [ to be the smallest positive number such that E||¢F ||2¢5(¢F)T < [H* for all

k. Note that I < maxy, ; ||x§C |2. Let L and p be lower and upper bounds of non-zero eigenvalues of
HF. Define 1 := /g and k := L/pu.

Following |Liu & Belkin|(2020); Jain et al. (2017),~we deﬁge the statistical condition number & as the
smallest positive real number such that EY", p, HYH'H} < #H. The condition numbers 1 and
F are important in the characterization of convergence rates for FedAvg algorithms. Note that k1 > &
and k1 > K.

LetH =", px H”. In general H has zero eigenvalues. However, because the null space of H and
range of H are orthogonal, in our subsequence analysis it suffices to project Wy — w* onto the range
of H, thus we may restrict to the non-zero eigenvalue of H.

A useful observation is that we can use W*Txi - zi = 0 to rewrite the local objectives as Fj,(w) =
1 1 2 .
Hw—w* H(w — w")) = L|w — w*|| &,

]_ "k 1 ngk
Fi(w) = 2y (WTXk',j —Zkj — (W*Txk,j - Zk7j))2 = I
i=1 =

(W= w")Tx,)?

* * 1 *
=§<W—W JHY (w —w )>:§||W—W [

so that F(w) = 1|lw — w*||%.

Finally, note that EHF = L 5" x7 (x/)T = H* and gk = VE(w, &) = Hf(wf — w*)

nk j=1

. N N - — N .
while g; = 37, prVEFr (Wi, &) = 302, peHF (W — w*) and g, = >0, prHN (Wi — w™)
Theorem 6. For the overparamterized linear regression problem, FedAvg with communication every

L iterations with constant step size & = O(% W) has geometric convergence:
max min

N wo - w°[)
E(Vmax”il + (N - Vmin)) 0 .

EF(wr) <O (L exp(—

Proof. We again show the result first when £ = 2 and ¢ — 1 is a communication round. We have

[Wes1 — W = [|(W — cuge) — w2

= [We — w*|]* = 204 (W — W*, 1) + of [|ge?

and
— 204 B (W — W™, g1)
N
= 204 ZPk<Wt —w*, VFL(w}))
k=1
N N
= 2 ZPk(Wt —wF VEL(WF)) — 2a; ZpMWf —w*, VE(wh))
k=1 k=1
N N
= 2 Zpk<Wt — WP VEL(WF)) — 204 Zpk<w,’f —w* HF (Wl —w"))
k=1 k=1
N N
= 2 Zpk<Wt —wF VEL(WF)) — 4ay Zkak(Wf)
k=1 k=1
N I N
<200 pr(Fr(wE) — Fi(Wi) + o W0 = will?) = doy > peFi(wy)
k=1 k=1
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N N N
= OétLZpkHWt - Wf”2 — 20y Zkak(Wt) — 204 ZPka(Wf)

k=1 k=1 k=1
N N N
=L ZpkHWt —wF|? - ay Zpk((Wt —w"), B (W, — w*)) — 204 Zkak(wf)
k=1

and

N ~

lgel® = 1Y peHF (wy —w)||?
N
= > peHF(W —w*) + ZpkH — )2
k=1
N ~
<2 peHf(W —w ||2+2||ZpkH e Ol

k=1

which gives
N
E[Wer1 — W[ <E[w: —w*|* —a Y (W — w" H'W, —w +2at”2pkH W —w)|
k=1
N N
+ oLy pellwe — wi | + 207 ZpkH ~w)|? =200 Y prFr(wy)
k=1 k=1
following Ma et al.| (2018)) we first prove that
N N
E[wW, — w*[|* —a; Y pe((We = w), H* (W, —w")) + 207 || Y ppHf (W, — w7)|?
k=1 k=1
N *
<(1- JE[[w, —w*|?

S(Vmaxﬁl + (N - Vmin))

with appropriately chosen a;. Compared to the rate O(; +£(]>fv—u _ )) =0(5 H1+(]>’V_V , )K)

for general strongly convex and smooth objectives, this is an improvement as linear speedup is now
available for a larger range of V.

‘We have
N

Eel| Y peHE (W — wh)|?

k=1
N B N B
= (Y peE (W, - w), Y pr (W, - w))
k=1 k=1

N N
= PREHF (W — w2+ D0 pipkE (HE (W — w*), BY(W, — w*))
k=

1 k=1 j#k

N
PREEE (W — w2+ D0 pipkEe(HF (W, — w*), Y (W, — w™))

I
TTMZ
R‘M

1 k=1 j#k
N ~ N N N

= ST REEEW - w2+ S0 kB (HE (W — W), B (W, - w) — 3 g HE (W, — w)?
k=1 k=1 j=1 k=1

I
M=

N
PREHE (W, — w)|P + (1D peHF (W — w) P = Y pi [ HE (W, — w1
k
al 2 *\ (12 k(= *\ (12 1 k(= *\ (12
<D PREHE (W — w) [P+ 1D peHE (Wi — w)|? - lemmHZpkH (We —w7)|
k=1 k k
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1 w* 1 _ «
< NumzpkmnH (=Wl + (L )| B (57— )
1 . 1 _ «
< Numaxzzpk e = ") B0 = )+ (1= )| 3 B = w)|
1 — * — * 1 — * 2 (— *
- Vmaxl<(wt - W )7H(Wt - W )> + (1 - 7Vmin)<wt - W 7H (Wt - W )>
N N
using ||[HF|| < 1.
Now we have
N
E[we — Wl —ar > pr((We — w*), BN (W, — w*)) + 207 ZpkH (Wi —w)|? =
k=1
m xl N_ min S
(We —w*, (I — o H + 203 (220 H 4+ =M H2)) (W, — w”))

N N
and it remains to bound the maximum eigenvalue of

Vmaxl N — vy
T — H 9 2 max H min H2
and we bound this following |Ma et al.{(2018)). If we choose a; < Sl +(1]\\7,7me) ) then

1% axl N — Vmin ¢42
—aH + 207 (—H + H?) <0
t t ( N N )
and the convergence rate is given by the maximum of 1 — o A+ QaE(W‘T“l)\ + %)\2) maximized
over the non-zero eigenvalues A\ of H. To select the step size «; that gives the smallest upper bound,
we then minimize over oy, resulting in

Vmax! N — v
min max {1 — oA+ 207 (RN + s )\2)}
at<m A>0:3v,Huo=X\v N N
Since the objective is quadratic in A, the maximum is achieved at either the largest eigenvalue Ay ax
of H or the smallest non-zero eigenvalue A;, of H.

When N < 4”‘;:;1] + 4Upin, i.e. when N = O(I/Amin) = O(k1), the optimal objective value is
N
4(Vmaxl+(N_Vmin))\min) .

convergence rate (i.e. the optimal objective value) is equal to 1 — 8 O (JX[Ame oy = 1-—

l X C— +( N o)) This implies that when N = O(k1), the optimal convergence rate has a

linear speedup in N. When N is larger, this step size is no longer optimal, but we still have

1
1—3 O +( N—vm)) &S an upper bound on the convergence rate.

achieved at A.,;, and the optimal step size is given by o = The optimal

Now we have proved

— 1 N
E[We 1 —wi?<(1- ¢

E . _ * (12
8 (Vmax'%l + (N - Vmin))) ||Wt W H

N

N
+ ol prllwr —w ||2+2OffHZPkH F =W =200y prFi(wi)
k=1 k=1 k=1

Next we bound terms in the second line using a similar argument as the general case. We have

2a?||ZpkH P =Wl <2a2l22pk\lwt wy|?
and
N
BN pillws — wh[? < E2(1+ 21207 ,) S prl[Wioy — wh_y | + 8a}_, IF (W, 1)
k=1
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=402 1w — W H(W, 1 —wh))
and if oy, a1 satisfy
1 N
oL +202 < (1— =

1L+ 207
S(Vmaxﬁl""(N_Vmin)))(at 1 + at—l)/g

2(1+2%a? ) <3
L +2a? <1
we have
E([wi 1 — w*[|?

N
1 N ~
<(1-2= Ellw,_ . — *12 _ w1 —w* Hw,_1 — w* 22 Hk—_ *\ |12
< (U § e T (7 o I = WP = (s = STy — ') 203 3 e (7 = )
N
(a1 L +207 1) 2 pelWeos — wh [P + dad 1wy — w H(W,o 1 — w)]
k=1

and again by choosing a;_; = ¢ 8 for a small constant ¢, we can guarantee that

N
Vmaxl+(N_Vmin)Amin)
E[[Wi—1 — w2 — a1 (Wi — W', Hwy g — W)
N
+207 11> peHE (W — wO)|? + dof  U(Wey — W H(W g — W)
k=1
N

<(1-
- ( 616(1/maxl + (N - Vmin))\min)

JE|[Wi—1 — w*||?

For general E, we have the recursive relation

1 N 1 N
E|Wiq — w2 <E(1 —c= (1 —c—
||Wt+1 W H - ( 68 (Vmaxﬁl + (N - Vmin))) ( C8T (Vmaxﬁl + (N - Vmin))

)W — w1

N
(Wi — W HW,, — w4207 | S (Wi, — W)

k=1
+dral (Wwi g —w  H(W, 1 —w"))
N
+ (207 1+ o D)((1+ 1) Y pillWe—r = wi|*)]
k=1
as long as the step sizes are chosen oy = ¢ T o Jf,V_me) o) such that the following inequal-
ities hold
(202 1P +a; L)< (1 —orpu)(202 1P+ 0;_r1L)/3
2(1+20%a7_,) <3
207 P+a L<1
and

||Wt7'r - W*||2 - O‘t77‘<Wth - W*a HWtfr - W*>
N
+202 1S peEE (Wisr —w)|? + drad [y — W H(W ) — "))
k=1
N
<(l-c¢
- ( S(T + 1)(Vmax/€1 + (N - Vmin))
which gives

JE|[Wi—r —w|?

1 N
E < _ * (|2 < (1 =c— t o * (12
Hwt w || = ( CSE (Vmax'%l ¥ (N — Vmin))) ”WO w H
1 N
= O(exp(——= 1) ||wo — w*||?
( p( E(Vmax"fl +(N_Vmin)) ))” 0 H
and with partial participation, the same bound holds with a possibly different choice of c. O
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H.3 GEOMETRIC CONVERGENCE OF FEDMASS FOR OVERPARAMETERIZED LINEAR
REGRESSION

Theorem 7. For the overparamterized linear regression problem, FedMaSS with communication

1 N = -z

Elumx+u(1v—umm))’772 e b g Gl v
=

K1k K1k

every E iterations and constant step sizes T, = O(

1
NG
1
. v

has geometric convergence:

NT
(Vmax\/ "{1’% + (N - Vmin))

EF(wr) <O (L exp(fE )lwo — w*||2> .

Proof. The proof is based on results in |Liu & Belkin| (2020) which originally proposed the MaSS
algorithm. Note that the update can equivalently be written as

Vé€+1 =(1- ak)vf + akuf - 5kgt,k
W= =g ift+1¢7Ig
T\l ok [uf — bk it 1€ Tp

k
uk = « vE 4 wk
t+1 — ].+Oék t+1 1+ak t+1

l—o* _ ko k _  k n*—a®s* _ &
1+zk =750 =0 1+ak =12, and we
further introduce an auxiliary parameter v¥, which is initialized at v;. We also note that when

where there is a bijection between the parameters

k
§F = ‘I, the update reduces to the Nesterov accelerated SGD. This version of the FedAvg algorithm
with local MaSS updates is used for analyzing the geometric convergence.
As before, define the virtual sequences w; = 2116\[:1 PEwWE, v, = 22;1 prvE a = ijyzl pruk, and
— N — — — — — —
g = > 1, PkEg: k. Wehave Egy = g, and Wy 1 = W — &1, Ver1 = (1—aF)vi+arw, —dhg,,
and W1 = ;555 Vi1 + 1+1ak Wiyl

We first prove the theorem with £/ = 2 and ¢ — 1 being a communication round. We have
- 2
[Vesr — Wl

= (1 - a)ve + au; — 6Zpkl:lf(uf —w*) — w5
k

= [|(1 = @)V + oy — w7llF- + 6% Y peHE (uy — w)llF-

k
— 25<Zka:If(uff —w*), (1 —a)ve+ oty — wH g
k
< (1 — )V + aty — wllF-s +26%( Y peHE(® - W) [Fo + 267 Y peHE (W - uf) |3
A k k
B
—260>  peHF(W — w*), (1 - @)¥; + ol — W)
k

C
— 25<Zpkﬁf(uf — ﬁt), (1 — oz)Vt + Oéﬁt — W*>H—1
k

Following the proof in|Liu & Belkin| (2020),
EA <E(1 - a)||ve — w3 + aflt; — w*[l5

— * o, *
<E(1 - o)l[ve = w3 + ;IIUt - w?

using the convexity of the norm || - ||gg—1 and that p is the smallest non-zero eigenvalue of H.
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Now

1 N — Vmin

EB S 262(VIIIH.XN’% + T)”(ﬁt - W*)H%{

using the folowing bound:

(ot )i (St ) o st i it
k k k k#j
1 ThEr— YTk Epr—19714
j VmaxN]E;pkHtH Ht + kz?ﬁjpkp]H H Hj
1 - - )
= Vanax 77 E > peHIHT'H] + ) popHFH'H - > " p{H"H'H"
k k,j k

1 ~ - 1
j VmaxNE ZpkaHile + H - Nymin ZpkaHilHk
k k

1 IR 1 _
j VmaxN]E zk;pkaH le +H - NVmin(zk:pka)H 1(%:pka)

N — Vmin

H
N

1 .
:ymaxNE;pkaH L =

1 N — Vmin
< l’I]aXfNH 7H
= NH + N

where we have used E ), py, I:IfH_lfIff < kH by definition of < and the operator convexity of the
mapping W — WH~1W.

Finally,

EC = —E2§<Zpk1:1f(ﬁt —w"), (1 — )V + oty — W )g—1
k

=-260)  peH (W — W), (1 = )V, + ol — W)t
k

==20{(u; —w"), (1 — @)¥; + oty — w")

11—«
= —26<(ﬁt — W*),ﬁt — VV>k + T(ﬁt —Wt)>

l—«

S([we —w*[* — |[@

— *

- ——d|u—w
a

I

=
g
|
g

1-a s l—-«a 9
e =W I

where we have used

(]. — a)Vt + ou;
=1-a)((1+a)u —w;)/a+ ou;
1 1—a__

= —u; — Wi
o

and the identity that —2(a, b) = ||a]|? + ||b||? — [la + b||2.
It follows that

El[Vii1 — w*|[F
l-—«

< (1= a)[¥0 = W [fros + 0w - W
1-— 1 N — min
0 = o Ol = WP 4 26 (e e+

(@ —w)lI%

41



Under review as a conference paper at ICLR 2021

+26%) Y peHE (W — uf) |3
k
=200} prBf(uf W), (1 — @)% + ol — W)
k

On the other hand,

E[Fe — w[? = El[@ —w* — 1Y peHF (@ — w)|?
k

=E|[u, — w|* — 29w — w3 +0* Y peHE (@ — w)|?
k

_ % _ % 1 N_Vmin _ «
< BJ[|, — w2 = 29[ — Wl + 0% (tmany + L) [ — W

where we use the following bound:
e (Cnt) (St
k k
—EY RS + 3 ppy AT
k k#j
= Vmax%E Zk:pkﬁfﬁf + épkijkHj

1 - )
- VmaxNIE ZpkHﬁHf + ZpkijkHj - ZpinHk
k k.,j k

1 TkETk 2 1 kyxyk
= Vimax 17 E %pkHt Hi +H? — i zkjpkH H
1 - 1
j VmaxNE ZPkaHf + H2 - NMHin(ZPka)(Zpka)
k k k
1 iy Mid N* Vmin
= Vinax 1B zk: pHAEF + THz
1 N — Vmin
< VUnax—IH+ L—————H
e A

again using that W — W?2 is operator convex and that EHFH* < IH* by definition of [.
Combining the bounds for E[|[W;;1 — w*||? and E[|[ V41 — w*[|3 1,

]

Ea”WHl — W+ [V — W[ f

* l—a * « — *
<1 -a)|ve —wf + Sllw, —w*|? + (ﬁ — o) — w*||?
1 ~ N — Vmin 1 N — Vmin — *
+ (252(Vmaxﬁff t—y )~ 2d/a+ 7725(Vmaxﬁl tLl—Fy— )/l —w 12
+20% > peHE (W — uf)[|f
k
+ 0L prll(W — uf)|[f-
k
Following [Liu & Belkin| (2020) if we choose step sizes so that
Y 5<o0
W
1 N — v 1 N — vy
2 2 o min _9 2 - L min <
5 (umaXNf@—i—iN ) —2nd/a+n 5(umale+ — ) a<0
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or equivalently
a/d<p
1 N — vy N — vy
2 5 max nr A e max l L -
ad(v, it )+ n(n(v + N )
the second and third terms are negative. To optimize the step sizes, note that the two inequalities

imply

~9)<0

1 N — U 1 N — Ui
Z<p(2- - =t~ Vmin =~ & = Vmin
o < (2 = NVmax 7l + L))/ 2(Vmax 1 + )

and maximizing the right hand side with respect to 7, which is quadratic, we see thatn = 1/ (ymax%l +
LN%) maximizes the right hand side, with

1
a=
\/2(Vmax%/fl + K%)(”max%k + N_]\mein)
(0%
o=—= - f] —
1% a(ymaxﬁh‘/ —+ Nnnn)
Note that o = : = O(-2) when N = O(min{&, k1 /k}).
\/2(Vmame+~ K00 ) (10 A R S min ) (m) ( {&, k1/K})

Finally, to deal with the terms 262|| SR HE(@ —ul) |30 + 0L Y, prll(@ — uf)||_1, we can
use Jensen

28%|1 > puHE (W — uf)|[F-1 + 6L pull(@ — uf) [l
k k

< (26212 + 61L) Zpk”ﬁt —ug

1 o 1
92 272 L <5 k k(12 .
— (8% 40 Zpan e (o
1 w*
< (26°12 +6L)(2 (o= T+a o L (1+ )*n?) ZPkHHf (W — w1
« — *
< (20%1° + 5L)(2(m)252 + 2(@)2772”2\““%1 —w)|?

which can be combined with the terms with || (u;_; — w*)||? in the recursive expansion of Eg W —
w2+ 9 = Wl

E_|[we — w2+ 11— Wl

l-—a «a
<A =-a)lvi1 - W*||2+(; = 8)|[ @ — w*?
N — Vmin 1 N — Vmin — *
(252(VmaxN"i + T) —2md/a+ 7725(VmaXNl + LT)/OOH“FI —w|?

and the step sizes can be chosen so that the resulting coefficients are negative. Therefore, we have
shown that

E[Wesn — w2 < (1 - a)2[[Wim —w*?

1 N
where a = = O . ) when N =
\/Q(dex + n1+n mm )(dex A n+ Nmin ) VmaxV K1K+N —Vmin

O(min{%, k1/Kk}).

For general £ > 1, choosmg 1 = ¢/E(Vmax Nl + LY ~—=i=) for some small constant c results in
a=0( ) and this guarantees that

B (mas & b Nmm)(umme)
EHWt *”2 (1 o a) ||WO - W*H2
for all ¢.
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I DETAILS ON EXPERIMENTS AND ADDITIONAL RESULTS

We describe the precise procedure to reproduce the results in this paper. As we mentioned in
Section[5] we empirically verified the linear speed up on various convex settings for both FedAvg
and its accelerated variants. For all the results, we set random seeds as 0, 1, 2 and report the best
convergence rate across the three folds. For each run, we initialize wy = 0 and measure the number
of iteration to reach the target accuracy e. We use the small-scale dataset w8a |Platt| (1998)), which
consists of n = 49749 samples with feature dimension d = 300. The label is either positive one or
negative one. The dataset has sparse binary features in {0, 1}. Each sample has 11.15 non-zero feature
values out of 300 features on average. We set the batch size equal to four across all experiments. In
the next following subsections, we introduce parameter searching in each objective separately.

I.1 STRONGLY CONVEX OBJECTIVES

We first consider the strongly convex objective function, where we use a regularized binary logistic
regression with regularization A = 1/n ~ 2e — 5. We evenly distributed on 1,2, 4, 8,16, 32 devices
and report the number of iterations/rounds needed to converge to e—accuracy, where € = 0.005.
The optimal objective function value f* is set as f* = 0.126433176216545. This is determined
numerically and we follow the setting in |Stich| (2019). The learning rate is decayed as the 7, =
min(no, {45 ), where we extensively search the best learning rate ¢ € {27 Yeg,272¢y, co, 2¢0, 2%¢o }-

In this case, we search the initial learning rate o € {1,32} and ¢y = 1/8.

1.2 CONVEX SMOOTH OBJECTIVES

We also use binary logistic regression without regularization. The setting is almost same as its
regularized counter part. We also evenly distributed all the samples on 1,2, 4, 8,16, 32 devices. The
figure shows the number of iterations needed to converge to e—accuracy, where e = 0.02. The
optiaml objective function value is set as f* = 0.11379089057514849, determined numerically. The
learning rate is decayed as the 1; = min(7q, 1"—;), where we extensively search the best learning rate
c € {27 eg,27%¢y, co, 2¢o, 2%¢co }. In this case, we search the initial learning rate 179 € {1, 32} and
Co — 1/8.

1.3 LINEAR REGRESSION

For linear regression, we use the same feature vectors from w8a dataset and generate ground truth
[w*, b*] from a multivariate normal distribution with zero mean and standard deviation one. Then we
generate label based on y; = x!w*+b*. This procedure will ensure we satisfy the over-parameterized
setting as required in our theorems. We also evenly distributed all the samples on 1, 2,4, 8,16, 32
devices. The figure shows the number of iterations needed to converge to e—accuracy, where € = 0.02.
The optiaml objective function value is f* = 0. The learning rate is decayed as the 7, = min(no, %)’

where we extensively search the best learning rate ¢ € {2_1c0, 272¢q, co, 2¢9, 22c0}. In this case,
we search the initial learning rate 79 € {0.1,0.12} and ¢ = 1/256.

1.4 PARTIAL PARTICIPATION

To examine the linear speedup of FedAvg in partial participation setting, we evenly distributed data
on 4, 8,16, 32,64, 128 devices and uniformly sample 50% devices without replacement. All other
hyperparameters are the same as previous sections.

1.5 NESTEROV ACCELERATED FEDAVG

The experiments of Nesterov accelerated FedAvg (the update formula is given as follows) uses the
same setting as previous three sections for vanilia FedAvg.

k k
Vi1 = W — 8k

Wb AV T By — yE) ift+1¢7Zp
t+1 Skesi, Wh Byt —yt)) ift+1elp
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Figure 2: The convergence of FedAvg w.r.t the number of local steps E.

We set 3, = 0.1 and search o in the same way as 7, in FedAvg.

1.6 THE IMPACT OF E.

In this subsection, we further examine how does the number of local steps (£) affect convergence. As
shown in Figure2] the number of iterations increases as E increase, which slow down the convergence
in terms of gradient computation. However, it can save communication costs as the number of rounds
decreased when the E increases. This showcase that we need a proper choice of E to trade-off the
communication cost and convergence speed.
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