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Abstract

Efficient exploration remains one of the most important open problems in rein-
forcement learning. Discovering novel states or transitions requires policies that
efficiently direct the agent away from the regions of the state space that are already
well explored. We introduce Novel Exploration via Orthogonality (NEO), an ap-
proach that automatically uncovers not only which regions of the environment are
novel but also how to reach them by leveraging Laplacian representations. NEO
uses the eigenvectors of a modified graph Laplacian to induce gradient flows from
states that are frequently visited (less novel) to states that are seldom visited (more
novel). We show that NEO’s modified Laplacian yields eigenvectors whose extreme
values align with the most novel regions of the state space. We provide bounds
for the eigenvalues of the modified Laplacian; and we show that the smoothest
eigenvectors with real eigenvalues below certain thresholds provide guaranteed
gradients to novel states for both undirected and directed graphs. In an empirical
evaluation in online, incremental settings, NEO outperformed related state-of-the-
art approaches, including eigen-options and cover options, in a large collection of
undirected and directed environments with varying connectivity structures.

1 Introduction

Temporal abstraction has been widely studied as an approach to efficient exploration, which remains
one of the key research challenges in reinforcement learning. State of the art methods include
eigen-options [1, 2] and cover time options [3]. In symmetric settings, both of these methods can
produce policies that push the agent toward the far reaches of the state space. However, such regions
may already be heavily visited, and policies that push the agent naively to far away reaches of the
environment are not always effective explorers.

An alternative approach is count-based exploration [4} |5 16, [7]. This approach addresses novelty
through pseudo-rewards, for example, by giving the agent a novelty bonus proportional to ﬁ for
having visited a state-action pair n times. Some algorithms that take this approach come with
theoretical guarantees [4]. However, these algorithms do not provide explicit gradient guidance to
the agent. Rather than providing explicit policies for exploration, they rely on primitive actions and
standard reinforcement update rules, such as Q-value learning, to propagate their intrinsic rewards,
which can introduce a lag in exploration until the agent’s value estimates have sufficiently propogated.

A natural alternative is to construct policies that explicitly drive the agent toward the most novel
states [8]. With access to an oracle solver for shortest paths in the transition graph, in symmetric
settings, such policies can guarantee reaching a maximally novel state within a given horizon.
However, this approach focuses exploration very narrowly on a single target, rather than diversifying
across multiple novel regions.

We introduce Novel Exploration via Orthogonality (NEO), a method that maintains the strengths of
prior approaches whilst addressing their weaknesses. As with related spectral methods, NEO uses the
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Laplacian eigenvector’s smooth and orthogonal property to encourage exploration towards distinct
regions of the state space. Unlike prior methods, NEO introduces gradient guarantees and focuses the
exploration towards regions that are novel.

Importantly, NEO stands out by providing Laplacian-based policies in directed settings. Previous
Laplacian approaches assume an undirected transition graph, even though many real-world environ-
ments are inherently directed. Recent work has proposed using the polar decomposition of a transition
matrix to recover real eigenvalues to obtain eigen-options in the directed setting [9]; however, this
approach uses a symmetric, Hermitian matrix, which cannot provide directed gradient flows beyond
the symmetric graph obtained in the construction. Moreover, eigen-options in directed settings by
polar decomposition is used only as a baseline; it has not been shown in evaluations to perform
desirably [9]. By careful construction, we obtain eigenvectors with gradient guarantees in strongly
connected directed graphs for any eigenvector with an associated real eigenvalue below a given
value. Conceptually, as we create a modified Laplacian and take its eigenvectors, we effectively
convert novelty to energy where the most novel states dominate the contributions to the inner product
(u,v) = >, u;v; and are the highest energy states of the smoothest Laplacian eigenvectors with real
eigenvalues below a novelty-based threshold.

We provide experimental results in a wide variety of environments, both directed and undirected,
that illustrate the approach and its effectiveness. In online, incremental settings, NEO outperformed
related state-of-the-art approaches, including eigen-options and cover options, in a large collection of
undirected and directed domains with varying connectivity structures

2 Preliminaries

A finite Markov decision process (MDP) is a 5-tuple (S, A, T, R, ), where S is a set of states, .A
a set of actions, 7 (s, a, s") € [0, 1] the probability of transitioning to state s’ upon taking action a
in state s, R(s, a, s") the expected reward for that transition, and «y € [0, 1] the discount factor. At
decision stage t, t > 0, the agent is in state s; € .S, selects action a; € A, and transitions to state
St41, receiving reward r1. A policy w(s, a) gives the probability of selecting action a when in

state 5. The value function V™ (s) = > _ 7(s,a)) . csT(s,a,s") [R(s, a,s')+~yVT (s’)} is

the expected discounted sum of future rewards when following policy 7 from state s. An optimal
policy is one that maximizes V™ (s) for every state s € S.

We refer to the actions of an MDP as primitive actions and represent temporally-extended actions
using options [10}[IT]]. An option o is a triple (I,, 7,, 3,), Where I, C S is the set of states in which
the option can be initiated, 7, is the policy followed during option execution, and 3, : S — [0, 1] is
the termination condition, expressing the probability of termination in a given state.

Associated with an MDP (S, A, T, R, ), we define a directed graph G = (V, E), where V = S'is
the set of vertices and F is the set of edges, with (s, s’) € E iff 3a € A such that T (s, a,s’) > 0.

Given this transition graph, we define adjacency matrix A, where A;; = 11if (i,j) € E and 0
otherwise, and random walk transition matrix P, where P;; = with deg™ denoting the

out-degree of a node, deg™ (i) = 3_; Aj;.

ij
deg™ (i)’

The Rayleigh quotient of matrix M € C™*"™ at vector x € C™ \ {0} is the scalar R(M;x) =
x Ai X where x* is the conjugate transpose of x. We use A to denote the eigenvalues and f the
eigenvectors. If M is Hermitian (M = M™), then R(M;x) € R for all x # 0, and Apin(M) =
minle2o R(M;X), Amax(M) = maxxzo R(M;x), with the extrema attained exactly at the
corresponding eigenvectors f of M. For a complex number, we use R to refer to the real part and &
to refer to the imaginary part.

3 Source Laplacian

We start with defining source Laplacian L by adding non-negative diagonal weights to the random-
walk Laplacian L™ = I — P, thereby concentrating energy on selected nodes. Let G = (V| E)
be a directed, strongly connected graph of n nodes, with row-stochastic transition matrix P =
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(Pyj) = Py >0, >35_; Pij = 1(Vi). Let I denote the identity matrix. Introduce nonnegative
weights ¢ = ((;)?_; and define n x n matrix I, with T';; = (; and all other entries zero. Define
L; = I+ T — P. Adding I increases the diagonal entries and, in eigenvectors of L, pulls the
eigenvector value at weighted nodes toward zero, raising the relative prominence of less weighted
nodes where energy gets concentrated. A node ¢ with (; = 0 is a source node. A node ¢ with (; > 0
is a sink node. The Rayleigh quotient of source Laplacian L. for any x € C™ \ {0} is:

R(x) z*Lex 2*(I+T1)x —a*Px 2?21(14‘@)\%\2—szzlfipij%
)= = = )

rrx T S aal?

where Z; is the complex conjugate of x;. If the graph is symmetric, the Rayleigh quotient can be
xTLC x

expressed as:
Y Pylmi—)? + > G
(1) = 3 >

This is the standard Rayleigh quotient for a symmetric matrix L™ = I — P with the additional term
> G 22, which is the added squared smoothness error contributions ¢;(x; — 0)? between the node
values z; and the zeros, weighted by (;.

Below, we present three theorems. In Theorem 3.1, we prove a lower bound for the eigenvalues of
the source Laplacian and an upper bound for its smoothest eigenvalue. In Theorem 3.2, we show that,
for certain eigenvalues, the maximum of the associated eigenvector is attained at a source node. In
Theorem 3.3, for the source Laplacian with I weighted by visitation values, we prove that, certain
eigenvectors (those with associated eigenvalues lower than the maximum visitation value) give us
guaranteed gradients (and thus paths) from nodes with higher visitation values to nodes with lower
visitation values.

Theorem 3.1 (Bounds for the eigenvalues X of the source Laplacian Ly = (I +I') — P). Suppose
k nodes are sources (¢; = 0) and n — k are sinks, each with uniform weight p > 0 (thatis, ; = u
for all sinks). Then, 0 < R(1) < p, and the upper bound for the smoothest eigenvalue is . If all
sources are replaced with weight «, where 1 > o > 0, then o < R(1) < p, and the lower bound for
the smoothest eigenvalue is «v . If all ; = p, then R(1) = p, and the smoothest eigenvalue is p.

Proof. R(1) = Z _1 G- Inthe standard case, with k sources and n—k sinks, k entries are zero and
n—k entries equal I, andz ¢i = (n—k)p. Consequently, R(1) = (n—k)u/n = (1—k/n)u, which

implies 0 < R(1) < p. In the a-weighted variant, ), ; = ka4 (n — k)p, so R(1) = %Z_k)”,

a combination of « and y, hence « < R(1) < p. In the uniform case, ), (; = npu, giving
R(1) = p. O

Theorem 3.2 (Maximality (in magnitude) of the eigenvector at sources). Given source Laplacian
L= (I+T)— P,assume L. f = \f with real eigenvalue A < min;.¢,~o (;, that is, the eigenvalue
is less than the minimum non-zero weight in {. Then the element of eigenvector f with the highest
absolute value, | f;|, must be a source node (¢; = 0).

Proof. From L¢f = Afand L =1 +T — P,wehave (I +T' — P)f = f Then for the i row
(corresponding to node ), after rearranging, we get (1 + ¢; — A) f; Z fj, which yields:

1
fi:mzjjpijfj )]

Taking absolute values at both sides of the equation, we obtain | f;| = ﬁ ‘Z i Pijfi ’ If the 4"
node is a sink node, then ¢; > A, and |1 + {; — A| > 1, and so

| fi )\ZPZ]|fJ|<maX|f]‘

|—1+C



implying that, for a sink node 4, |f;| cannot be a maximum entry of f in magnitude. Therefore,
maximality must be obtained at a source node. O

Theorem 3.3 (Novelty path via visit counts). Let G be a strongly connected graph, and N (i) a
visitation value of node i. Define Ly = (I +T') — P with T';; = N(i) € R>¢. For any eigenvalue
X and associated eigenvector f (right eigenvector f if L is asymmetric) where N (i) > R(\) ,
there exists a directed path v9 — v1 — --- — vy such that |f,,| < |fu,| < -+ < |fv,| and
N(vg) < R(A).

Proof. Followmg the same reasoning for the i*" entry of L¢f = Af as in Equation I we have
(1+ N(i) = A) fi = 2, Py f;. Therefore,

= e DR

If N (i) > R(N), then
L4+ N@) = A = |1+ NG —RN) - V-1

V(I +N() = R(N)? + ()2
> 1+ N@) - RO\ > 1.

Therefore,
15 = \1+N AMZPM<Zﬂjwfj|,
J

implying 3 P;;|f;| > [fi|. Thus some neighbor j has [f;| > [f;|. lterating yields a strictly
increasing chain in | f|, terminating at v; with no neighbor with a larger magnitude, forcing }1 +
N(i) = A| < 1and N(vi) < R(N). O

Remark 3.1. Because Theorem 3.3 uses only the magnitudes |f,|, any complex phase of f is
irrelevant to the strict-inequality relations among |fy,], ¢ =0, ..., k

In the undirected setting, L is Hermitian and all its eigenvalues and eigenvectors are real. Conse-
quently, one may simply take the eigenvectors corresponding to the z smallest eigenvalues, knowing
that each of these smoothest eigenvectors will define an orthogonal gradient field that carries mass
from states with lower visitation values to states with higher visitation values, as long as the corre-
sponding eigenvalue A is less than the maximum visitation value. When G is directed, L becomes
non-Hermitian, and complex eigenvalues (and eigenvectors) can appear. Nevertheless, any eigenvalue
with () below the maximum visitation value still induces a guaranteed gradient from nodes with
higher visitation values to nodes with lower visitation values.

4 Novel Exploration via Orthogonality (NEO)

We now use the smoothest eigenvectors of the source Laplacian L. to define multi-step exploration
policies in the form of options. We call the proposed approach Novel Exploration via Orthogonality,
or NEO, and outline it in pseudocode in Algorithm 1.

At each iteration of the algorithm, we start by following the agent’s policy for H steps, recording every
transition so as to assemble (or update) an empirical graph with transition matrix P and to accumulate
raw visitation counts N (s) for each state s encountered during the roll out. Raw counts can vary
wildly between instantiations; we therefore transform them via a scaling function F': R — R, using
two parameters: 0 > 0,k > 0. Specifically,

. 1/k
F(NG) = 0 (5 ) @)

where the denominator max;cg N (i) ensures that the maximum scaled count prior to being multiplied
by ¢ is less than or equal to 1, the exponent 1/k compresses their dynamic range, and the multiplication
with § further shrinks or increases them. In Appendix B, we present results obtained by varying ¢ and



k. For all results presented in the main paper, we use 6 = 0.5 and k = 64. Using the scaled visitation
counts (; = F(N(z)), 1 € S, we define an n X n matrix I', with I';; = (; and all other entries set to
zero, and another n X n matrix L¢ = I + I' — P, the source Laplacian.

We then compute the Z smoothest eigenvectors of L¢, those associated with its Z smallest real
eigenvalues. For every eigenvalue A < ¢, the associated eigenvector f defines a gradient that naturally
points away from states that are heavily visited toward those that are less explored.

We instantiate one option per eigenvector. We use f° to denote the eigenvector that corresponds
to option o. This option can be initiated in any state. The option policy moves the agent to the
neighboring state with the largest magnitude of the corresponding eigenvector, |f°|. The option
terminates with probability 1 when the agent reaches a local peak of | f°| (that is, a state where the
magnitude of the eigenvector exceeds or equals that of all its immediate neighbors), with probability
zero elsewhere.

Algorithm 1 NEO

1: Input: update horizon H, option count Z, scaling function ¥
2: 0={} /1 set of options

3 S={} /I set of states

4: loop
5:  Execute agent policy for H steps

6:  Update state set S, graph G, transition matrix P, and visitation counts N (.)
7.

8

Le=I+T — P, where T';; = F(N (i)
: Compute eigenpairs {(\,, fo)}Z; of L¢, sorted by ascending A,
9: fori=1toZdo

10: I,=S8 // initiation set

11: Bo(s) =1iffVs' : (s = &), |fo] < |f2] // termination condition
12: To(s) = the action that leads to next state s’ that maximises | f9| /I option policy
13: 0= (I, 7o, Po)

14: O+ OUo

15:  end for

16: end loop

In Figure|l] we illustrate the componentwise magnitude for eigenvectors of the source Laplacian in
some directed and undirected domains. Plots (a) and (b) illustrate how the eigenvectors of the source
Laplacian capture directed connectivity. In plot (a), we show a 20-node directed cycle, with one
source (¢ = 0; the node in the darkest shade of green) and all other nodes as equal sinks (( = 0.1),
yielding a smooth eigenvector that increases monotonically around the circle. In plot (b), we show a
directed four-room grid with one-way doorways. Setting the top left corner as the source (( = 0) and
all other states as sinks (( = 0.1) produces an eigenvector whose gradient reflects directed distance
from sinks to the source.

Plots (c) and (d) show how we derive weights for I' from visitation counts in directed four rooms
and in a maze environment, respectively. In directed four rooms, the agent performed a random walk
of 100 steps, starting at the top left corner; this was repeated for 100 trials. In the maze, the agent
performed a random walk of 10000 steps, starting at the bottom left corner; this was repeated for 500
trials. In both domains, visitation counts were scaled by their maximum, raised to the power of i
to compress their dynamic range, and multiplied by § = 0.5. In directed four-rooms, one state was
never visited, whereas all states in the maze received some visitation (minimum F'(N(.)) ~ 0.475).

Using the scaled visitation counts F'(N(.)) to add to the diagonals of T, plots (e)-(h) display
componentwise magnitude of the first four eigenvectors (scaled by ¢/~ for visualization) of the
source Laplacian with novelty weighting for I' in directed four rooms; plots (i)—(1) show the same
construction in the maze domain. We measured the cosine similarity between eigenvectors in directed
four rooms (the eigenvectors displayed in plots (e)-(h)); the maximum value observed was 0.001.
Orthogonality leads to distinct novel regions being high in magnitude across the eigenvector values.
Notice that the smallest eigenvalue in plots (e) and (i) align with the theoretical lower and upper
bounds set by the minimum diagonal value of I". We have a minimum F'(N(.)) of 0 in plot (c) and
0.475 in plot (d) with a maximum F'(N(.)) of 0.5 in both, resulting in eigenvalues of ~ 0.136 in plot
(e) and ~ 0.48 in plot (i).
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Figure 1: Smoothest eigenvector of L¢ in (a) directed-cycle, (b) directed four rooms. Visitation-based
sink weights in (c) directed four-rooms, (d) large maze. The first four eigenvectors of the source
Laplacian L (scaled by /- for visualization) in (e-h) directed four rooms, and (i-1) large maze.
Please refer to Figure[2)for a visual depiction of these domains.

5 Related Work

Steinberger [[12] demonstrated that the first eigenvector of an undirected graph Laplacian provides an
approximate shortest-path solution via a single sink node, inspiring the spectral method proposed
here. Earlier related works include eigen-options [ [13} 2]], which use eigenvectors of a normalized
Laplacian for options policies, as well as proto value functions [13]], which use the same eigenvec-
tor construction for representation learning and efficient value estimation. Cover options [3]] build on
eigen-options, applying solely the fielder vector recursively. Diffusion options [9]] use eigenvectors
of the Laplacian to find diffusely separated option termination states; however, this method is not
currently applicable in the online setting. The successor representation [[16] has been shown to be
closely related to the graph Laplacian [17]. Another set of closely related graph-based methods
include sub-goal discovery via betweenness [18]], graph cuts [19] 20]], graph components [21]], bridge
centrality [22], stability centrality [23]], graph clustering [24] 23], relative novelty [7]], and modularity
maximization [26]]. Also related are methods for extending novelty counts to the deep reinforcement
learning setting [6} 3, 27}, 28] [29] and learning novelty based distances [30].

6 Empirical Evaluation

In Figure [2] we present a visual depiction of the domains used in our analysis. Those under 1000
states include directed four rooms, a gridworld with four rooms connected via one-way hallway
states, Rubik’s cube end game, the undirected subgraph of the 2 x 2 Rubik’s cube containing



the states that are within 3 moves of the solved state, and the classic tower of Hanoi puzzle. At
roughly 2500 states is the office, an undirected environment challenging to previous spectral-based
exploration methods [26]. Larger still are large maze and hex, each with approximately 5500
states. In addition to these undirected versions, we created and experimented on directed versions
of large maze and hex by adding a single directed edge between the two most distant states. Our
largest domains are a directed New York City (NYC) street graph consisting of 10000 nodes and
the directed torus domain. In directed torus, the red walls on the right side wrap in a one-way
direction (from right to left) to the walls on the left side, and the blue walls at the top wrap in a
one-way direction (top to bottom) to the walls at the bottom. This domain was constructed as a more
challenging alternative to a standard torus, allowing us to assess how agents navigate when traversing
any of a large number of directed edges that can preclude finding returning paths.

We use Q-learning with step size o = 0.4, discount rate v = 0.99, an e-greedy policy with € = 0.1,
augmented with a growing library of temporally extended actions in the form of options. The initial
Q values are set to 0 for primitive actions and —0.00001 for options, ensuring that the agent policy
initially favors primitives unless exploration explicitly invokes an option. When the e-greedy policy
takes an exploration step, with probability ¢nitp the agent chooses a random option, otherwise
a random primitive action. We fix initp at 0.1 for reward based evaluations in Figure [3} we
evaluate the impact of the initp parameter in Figure 4| An option can be initiated in any state
that was part of the graph used when the option was constructed (in other states, there would
be no constructed option policy). Each transition triggers the usual one-step Q-learning update
Q(s,a) + (1 — a)Q(s,a) + af[r + ymax, Q(s',a’) — Q(s,a)]. Additionally, at the end of an
episode, the entire episode’s transitions are replayed in reverse order, with the same Q-learning update
to accelerate reward propagation in our sparse-reward task. Option values are learned using SMDP

Q-learning backups: Q(s,0) + (1—a)Q(s,0) + « Zj:& Y g i1 + 7T maxey Q(se4r,a’) |,

where s is the state in which option o was initiated, 7 is option duration until termination, and 7, ;1
are the rewards accrued while executing option o.

In all domains, there is a single goal state. Upon reaching the goal state, the agent receives a reward
of 4100 and the episode terminates. All other transitions give a reward of 0. We use an adaptive
episode horizon: 500 steps for domains under 1000 states, 1000 steps for domains with 501-3000
states, and otherwise the number of states in the domain. For each evaluation agent instance, a goal
state is randomly chosen and the farthest state from the goal state is set to be the start state for all runs
for the agent instance. For each method, we run 20 agent instances; we use a random seed (equal
to run number) before selecting goal and start states, ensuring all start and goal states are the same
across compared agents.
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Figure 2: A visual depiction of the eight domains used in the empirical analysis.
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Figure 3: Comparative sparse reward empirical evaluation of learning agents with different option
discovery methods across a set of domains.

Options are discovered online every H decision stages, with H set to five times the number of nodes
in the domain’s full transition graph. We generate four new options per update, capping the total
stored options at 64 and discarding the oldest four options when capacity is exceeded and replacing
them with the most recent four options. Each option policy is defined by ascending a representation
until reaching a local maximum: for eigen-options, the representation is an eigenvector of the graph
Laplacian; for cover-options, it is the Fiedler vector over graph nodes; for the shortest-path-novelty [8]]
options, it is the shortest path distance to the most novel node in the agent’s working graph; and
for NEO options, it is the magnitude of the eigenvectors described previously in Theorem 3.3. The
eigenvectors can also be taken as intrinsic rewards for option policies instead of direct solutions. In
Appendix C, we include the results for eigen-options and cover-options solved with policy iteration.
In directed domains, the polar-decomposition variant of eigen-options are applied. We cannot use
cover options in directed domains because they rely on the construction of Fiedler vectors.

Every 2000 steps, which we define as an epoch, we freeze exploration and run an independent
evaluation episode where no exploration actions are taken (¢ = 0). We plot the evaluation results
with a 20 error width. As a baseline, we also include a Q-learning agent using only primitive action,

receiving an intrinsic novelty bonus 8/+/n(s, a), with 5 =0.01.

The learning curves are shown in Figure[3] Plots (a) — (d) show the learning curves for our simplest
benchmark domains: four rooms (undirected and directed), Rubik’s cube end game, and the tower of
Hanoi. All option-based agents reach the maximum reward relatively quickly, with the exception of
the shortest-path-novelty method, which exhibits slower learning on the tower of Hanoi.



Plots (e) — (g) compare performance on three undirected domains: office, hex, and large maze. Here
the proposed method NEO shows a clear advantage over the alternative approaches. By the end of
training, NEO agents achieve the maximum reward of 100 on average, while the other methods fail
to achieve higher than 40. We also include a variant of NEO that uses only the first (i.e., smoothest)
eigenvector, yielding a single option per update interval, which outperforms the related methods.
However, it is evident from the evaluations that leveraging multiple eigenvectors provides additional
learning benefits beyond this single eigenvector baseline.

In plots (h) — (k), we present results in directed domains. As in the undirected setting, both NEO
variants outperform the alternative methods across all directed tasks. The agent’s state transition
graphs remained weakly connected throughout most of learning, and we obtained no complex
eigenvalues in the construction of any option policy for NEO, with all 4 smoothest eigenvalues
computed every H update iterations being real valued. We hypothesized that the presence of sink
states stabilizes the eigenvalues and makes it more likely that they are real valued. In Appendix E, we
provide a theoretical bound showing that the imaginary part of the eigenvalue is notably impacted by
the sink weights and present empirical results. For the NYC directed domain, eigen-options could
not be computed because the solver would crash. We suspect this issue arises from the interaction
between the polar decomposition method and initially weakly connected graphs, which may impair
numerical stability during option computation.

In Figure[d] we present the number of unique nodes visited by each method, with various values of
the option initialization probability init p. Lower initialization probabilities consistently improve
coverage for all methods. However, only NEO approaches full coverage in hex and large maze. These
are the largest symmetric domains where it is possible to compare all methods. In these domains,
NEO achieves a higher unique-node count during evaluations, roughly twice that of the competing
approaches.

Overall, these evaluations demonstrate that NEO achieves or surpasses state-of-the-art performance
in both undirected and directed environments, in terms of exploration and, by extension, learning.

One boundary of the Fiedler vector tends to sit in a well-visited region. Eigen-options and
cover options include the Fiedler vector among their option sets. To understand the performance
gap between these methods and NEO, we analyze how the signed option pair, corresponding to
eigenvectors f and — f, can undo progress by steering the agent back to states that are relatively well
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Figure 4: Comparative initialization probability and node count evaluations of learning agents with
different option discovery methods across a set of domains.



explored. For this analysis, we use the two largest symmetric domains where Fiedler vectors can be
computed, hex and large maze.

Consider an agent that begins near a corner of the full graph and builds the graph incrementally.
That corner typically becomes the region that is the most connected and the most frequently visited.
Placing one boundary (say b1, an extremum of the Fiedler vector f) in this region tends to be part of

2
the first non-trivial solution of the Rayleigh quotient R(f) = W because the dense

local connectivity allows f to taper off gradually, keeping each edge difference (f,, — f,) and thus
the numerator small. If the second boundary were nearby, neighbouring nodes would carry opposite
extreme values, the numerator would spike, and the quotient would rise. Minimising the quotient
therefore pushes the second boundary to a geometrically far away state, such as another corner of the
graph, rarely visited.

After 250K steps, we freeze the exploration graph and visitation counts N (-), compute eigen-options,
and extract the Fiedler vector f. Let b and by be the two boundary states (the extrema of f), and
define bioy := argmin{N(b1), N(b2)}, and bpign := argmax{N(b1), N(b2)}. We initialize the
agent at bjo, and execute the Fiedler-vector option that follows the increasing f-gradient, moving
toward the opposite boundary until the gradient stalls at a local or global maximum. Our aim is
to assess whether one of the pair tends to undo progress. Table 1 shows the visitation counts N(.)
at Fiedler vector boundaries bio, and byign, the difference, and the visitation counts at the option
termination state. For both domains, one of the signed options lifts the agent from relatively novel
states to frequently visited states (e.g., mean 68.5 — 822.6, median 14.5 — 745.0 in hex). Because
the two options are chosen with the same probability, the option that drives the agent back to the
high-visitation boundary can directly undo the progress made by its counterpart that moves toward
the low-visitation boundary.

Table 1: Visitation count statistics in 20 runs.

N(blow) N(bhigh) N(bhigh) — N(blow) N(termination)
Domain Mean Median Mean Median Mean Median Mean Median
Large Maze  129.8 39.0 1355.1 1070.5 1225.3 952.5 985.6 638.0
Hex 68.5 14.5 958.9 503.5 890.5 467.0 822.6 745.0

7 Conclusion and Future Work

We presented a principled approach for generating exploration options via a proposed source Lapla-
cian, leveraging theoretical insights and spectral graph properties to guide exploration to novel parts
of the state space. The proposed method is shown to drive agents toward novel regions, improving
learning performance across a range of challenging domains compared to the existing state-of-the-art.
The approach is shown to be applicable to both undirected and directed environments, demonstrating
versatility.

Although the theoretical and empirical results presented in this paper center on using state novelty as
the driving signal, the proposed framework is general and is not restricted to the use of novelty alone.
In fact, any real-valued state functions could be plugged in. Future work can, for instance, replace or
augment novelty with expected reward, reward prediction error, or competence signals. We discuss
the future extension to symmetric Hilbert spaces in Appendix D.

Recent approaches to approximate the eigenvector of the Laplacian [31} 132} 33]] and commute
times [34] via these eigenvectors provide a foundation for future work in extending Laplacian-based
option discovery methods to the large and continuous setting.

A current limitation is obtaining eigenvectors of the source Laplacian L, in Hilbert space as done
in the symmetric case of the random walk Laplacian [33]]. This limitation currently exists for
all asymmetric Laplacians, with potentially complex eigenvalues, complex eigenvectors, and non-
Euclidean inner products. Another limitation is that exploration policies are currently being learned
for a particular environment, one at a time. Future work can explore how these policies can be learnt
in a general way, to be used effectively in other parts of the environment or even in new environments,
drawing inspiration from approaches to temporal abstraction that focus on generalisation [35]].
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: Yes

Justification: In the paper we do provide evidence that the proposed method (NEO) outper-
forms related state of the art methods, that we get gradient guarantees and bounds for our
method.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: Yes

Justification: We discuss the limitation in the supplementary material, particularly on the
problem of obtaining directed eigenvectors in large continuous spaces.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: Yes

Justification: We provide the assumptions and complete, correct proofs, further details of
related proofs are given are in the supplementary material.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: Yes

Justification: We provide the details needed to re-implement the proposed method (NEO)
and do the comparative evaluations of the main results.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: Yes
Justification: We provide the source code and data to reproduce the main experiments.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: Yes
Justification: We provide all of the parameters to reproduce the results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: Yes
Justification: We use a 2-sigma error width within the learning plots and state this within the
main paper.
Guidelines:
* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: NA

Justification: We provide the detail on the hardware used to run experiments in supplementary
material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: Yes
Justification: We have reviewed the code of ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: NA
Justification: We do not see negativity of societal impacts from our work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: NA
Justification: We do not see how the paper can pose a risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: Yes
Justification:
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: NA
Justification: The paper does not release new assets beyond the source code for experiments.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: NA
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: NA

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: NA
Justification: LLMs are not involved in the core method development of this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A. Experimental Details

Hardware. All results are obtained using a 9900k CPU, 16GB of ram, a 256 SSD hard drive and a
2080Ti NVIDIA GPU. Results are obtained in hours on a local computer.

Parameter settings.

Parameter Value

Epoch length 2,000 steps

Option initialization probability (init,) {0.1,0.2,0.3,0.4, 0.5}

Update horizon (H) 5x number of nodes in the domain
Learning rate («) 04

Discount factor () 0.99

Epsilon (¢) 0.1

Instances per agent 20

Domain size.

Environment Number of nodes Number of edges
Four rooms 104 168
Office 2558 3849
Double large maze 5363 9010
Tower of Hanoi 729 1092
Hex 5334 8346
Torus 5336 19028
NYC 10000 22354
Rubik’s cube 1051 1380

B. Novelty Scaling Function

As noted in the main text, raw novelty counts are scaled by using Equation [2] which has two
parameters, § and k. Here we present experiments with different values of these parameters in the
directed hex domain, shown in Figure[5| where we represent by d in the plots. The experimental
conditions are otherwise identical to those reported in Figure ] of the main paper.

Hex (Directed) Hex (Directed) Hex (Directed) Hex (Directed)
5000 5000 1 5000 4
=" 000 = 5000 =
// £ x T A
1000 /V o0 7 1000 { P o0 | Z
/ pr
} /j{ ¥ 72
£ 300 7 £ a0 v £ 3007 re/ £ 300
3 7 3 /e 3 ,/J 3
g, W/ 3 L 3 A 3
2 a0 2 2 o0 | 200
—— NEO (¢-01 k-1) 2000 NEO (d=05 k=1) 20T e NEO (d-1k-1) 2000 NEO (d=2 k= 1)
—=— NEO (d=0.1 k=4) —=— NEO (d-05 k-4) —=— NEO (d=1k=14) —=— NEO (d=2 k= 4)
Lo | —*— NEO (4=01 k=16) 1ooo | NEO (d=05k=16) Lo |+ NEO (é=1k=16) w0 | ¥ NEO (42K 16)
—— NEO (d=0.1 k=32) —— NEO (d=05 k=32) —— NEO (d=1k=122) —— NEO (d=2 k= 32)
NEO (d=0.1 k=64) NEO (d=05 k=64) NEO (d-1 k-164) NEO (d=2 k= 64)
o NEO (d=0.1 k=128) o NEO (d=0.5 k=128) od NEO (d=1k=128) ol NEO (d=2 k= 128)
¢ B % B o W 15 10 0 15 3 5 0 B % 105 120 O B W B 0 5 % 15 13 G B % H @ B W s 1
Epoch Epoch Epoch Epoch
(@) (b) © (@

Figure 5: Hyperparameter sweeps of ¢ (d) and & in the directed hex domain.
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C. Solving Eigen-options and Cover-options with Policy Iteration

Hex Large Maze Office Torus (Directed)

100 100 100 100

Reward
Reward _

—e— Eigen (Policy Iteration)

oo 105 120 0700 105 120 0 80 5 60 7 90 105 120

5
Epoch Epoch

(c) (d)

Figure 6: Comparative sparse reward empirical evaluation of the learning agents with the option
discovery methods eigen-options and cover-options with option policies solved using policy iteration
across a set of domains.

In the main paper, for all eigenvector-based methods, we derived option policies by using the
eigenvector values directly, hill-climbing toward higher values. In the original eigen-options work [[1]],
however, option policies are obtained by treating the eigenvector f as a potential function and defining
an intrinsic reward R(s, a, s’) = f(s')— f(s), then solving for the option policy using policy iteration.
Here we report results for the eigen-options and cover-options using this original formulation [1]]: we
construct the intrinsic reward from the associated eigenvector and run policy iteration until the policy
stabilizes (using a threshold 0.001 as in the original work [1I]). As shown in Figure[6] solving option
policies in this manner does not yield a significant performance improvement against the eigen-option
and cover-option results for the set of large domains evaluated in the main paper.

D. Extension to Continuous Domains

As mentioned in the main paper, if the graph is symmetric, then, for our source Laplacian, we can
express the Rayleigh quotient [36] as follows:

- 5D Piylei—ay)® + Y Gad
x Lex i.j i

R(zx) = =

=
i

This is the standard Rayleigh quiotient for a symmetric matrix L™ = I — P with the additional
term Y, (; #? which is the added squared smoothness error contributions ¢;(z; — 0)? between the
values z; and the pulls to zero weighted by (;. Therefore, extending the proposed method (NEO)
to symmetric continuous domains is in principle, simply a matter of extending currently Laplacian
representation approaches such as [33]] by adding a mean square error loss to move sink nodes towards
zero based on sink strengths which we can obtain by pseudo-count methods such as distribution
random network distillation [\5]].

E. Bounding | Im \(()|

We proceed in two stages. First, we show that when ( is sufficiently large, the spectrum of our
source Laplacian splits into two distinct families, type 1 eigenvalues (those with |A| > () and type 2
eigenvalues (those with |A| < (), each occupying a different region and characterized by different
spectral radii. Secondly, we form the Schur complement [37] of a carefully chosen submatrix of the
source Laplacian. By working with an expanded version of this complement, we derive a bound
on the imaginary parts of the type 2 eigenvalues. This is achieved by quantifying how the real
and imaginary components of the corresponding eigenvectors interact with the Schur complement.
Table 2| gives a list of symbols used throughout this section.
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Symbol

Description

n Matrix dimension; indices split into .S and T’
S, T Index partition with |S| = m, |T'| = t; S precedes T' (block order)
P e R»x" Row-stochastic: p;; > 0, Zj pij =1
Pss, Pst, Prs, Prr Blocks of P after permutation
¢>0 Uniform sink weight applied to S
F(C) dla‘g(C7aC70770)
—— Rt,_/
L(¢) Source Laplacian [ + I'({) — P
A(C) (¢ + 1)1, — Pss (the SS block)
B,C,D B=—Psr, C=—Prs, D=1;— Prr
spec(X) Spectrum (set of eigenvalues) of X
Sc(N) Schur complement (D — A\I) — C(A—XI)™'B
K(\) Coupling C(A - XI)~'B
R(), Q) (Pss + AI)/(¢ + 1) in the Neumann series
Ry (A, €) Tail -, R(A, ¢)
Dy, Dsi Symmetric/skew parts: Dy = 5(D + D "), Dgy = (D — D7)
Y T-block (source nodes block) of an eigenvector {ﬂ of L(¢)
T S-block (sink nodes block) of the same eigenvector
Il oo Max absolute row-sum operator norm

- ll2

Spectral (Euclidean) operator norm

Table 2: List of symbols.

Standard inequalities and tools

Operator norms and parts: We use || - || to denote the maximum absolute row-sum, || - ||2 the spectral
norm. For a (possibly complex) matrix M, we write My = 2(M + M*) and Mgy = 5 (M — M*
For a real matrix, M = My + Mgys is the split into symmetric and skew-symmetric parts.

Determinant factorization: For a block matrix {

F| . . .
a H} with FE invertible,

E F| _ 1
det [G H} =det(E) -det(H — GE™'F),
where H — GE~'F is known as the Schur complement [37].

Neumann-series resolvent: If || R|| < 1 in an operator norm, then (I — R)~! = > o RJ converges
and [[(1 = R)7! < 1/(1 — [[R]).

Cauchy-Schwarz Inequality: Given two vectors u and v,

wo < luflz [[o]f2-

Source Laplacian and block form

Fixn > 2and anonempty T C {1,...,n} with|T| > 1 =tand S :={1,...,n}\ T with |[S| = m.
For { > 0 define
) :=diag( ¢,...,¢, 0,...,0).
——
m indices in St indices in T
Here we consider the T-block as the source nodes and the S-block as the sink nodes,
with sink strength = (.

Let P € R™ ™ be row-stochastic. Set L(¢) := I, + I'({) — P. After ordering indices so
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S comes first,

L(¢) = [A((j() g} ; A(Q) == (¢+1)In—Pss, B:=—Psr, C:=—Prg, D:=1,—Prr.

3)
Notice that the sink-strength ¢ only affects the S'S block A(¢): it appears through the added diagonal
damping on the sink-indexed nodes and therefore modifies only the interactions among sinks. The
remaining blocks are (-independent: B contains connections from sink nodes to source nodes, C'
contains connections from source nodes back to sink nodes, and D contains connections among the
source nodes themselves.

Schur complement and the 7-block equation

For A € C,
Whenever A(C) — AI,, is invertible, we can define the Schur complement [37]] as:

Sc(N) == (D — \I) — C (A(C) — M) 'B. )
Then the block determinant identity gives

det(L(C) - /\In) = det(A(C) - /\Im) - det SC(/\) )

Moreover, writing an eigenvector of L(¢) in blocks as B] , where y is the T-block (source node
block) of an eigenvector and x is the S-block (sink node block) of the eigenvector, the equation

(L(¢) — AI) [z] = 0 is equivalent to

(A(¢) — AMIn)r + By =0, Cz+ (D — M)y =0.
If A(¢) — A, is invertible, then
v = —(A(¢) = M)~ By, ©)
and substituting into the second block gives
Sc(N)y=0. )

Thus we focus on y because it is the T-block of the full eigenvector and it determines x via (6)).

Type-II region inside |\| < ¢ and invertibility of A({) — A\
Lemma 7.1 (Resolvent exclusion). Let A(¢) = (¢ + 1)1, — Pss with P row-stochastic. If |A| < (,
then A(¢) — A1, is invertible. Hence no eigenvalue of A(() lies in {|A| < ¢}.

Proof. Factor
A(Q) = MLy = (C+ 1)(1m _ Pssg%)
Let Q := (Pss + AL,,)/(¢ + 1). Since P is row-stochastic, || Pss||c < 1, s0

[Pssllos + 1Al _ 1+
¢+1 T C+1

Thus [,,, — @ is invertible by the Neumann series, hence so is A() — Al,,. O

1@l < <t (A<Q.

Remark 7.1 (Type-1I eigenvalues). Inside the disk |[A| < ¢, Lemmal[7.1|guarantees A(C) — AL, is
invertible. Therefore any eigenvalue of L(({) with |A| < ¢ must satisfy det S¢(\) = 0. We call such
eigenvalues type-I1.
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Neumann expansion in the smaller disk || < 7

Fix 0 < r < 1 and restrict to |A| < r(. Define

o0

Pss + M, ,
R()‘7 C) = %7 RQ()‘7 C) = Z R()‘a C)j
j=2

For clean, uniform 2-norm bounds on this disk, we assume the gap condition
6:=(C+1) = (|Pssll2+7¢) > 0. 8)

(Equivalently: ||Pss|l2 + ¢ < ¢+ 1.)

Lemma 7.2 (Neumann-series resolvent with tail bound). Assume (§) and |A] < r(. Then
[IR(A¢)|l2 < 1 and

1

(A(Q) = ML) "' = 1

(£ + RO + B2V Q) ). ©

and the tail satisfies the uniform bound

IRA O3 _ (1Pssll2 +r¢)?

Ro(A, < < 10
10Ol < TR0 O = (¢ 19 1o
Proof. First we have:
A(C) = Mm = (¢ + 1) (Im = R(X, Q). (1D
Next since ||R(A, ¢)||2 < 1,
[Pssllz+ Al _ [Psslla+r¢ 8
[R(A, Q)2 < C+1 < C+1 =1 Cﬁ<1»
50 (I, — R)™" = 3°72 R/ and (Q) follows. Finally,
el = | SO, < S Il = (12
j=2 =2 2
Using 1 — || R||y > 1 — LPesllatre — 0 vields (TD). O
Theorem 7.3 (Schur expansion). Assume (8) and |\| < r¢. Then
_ i, OB | C(Pss+AMn)B  CRy(MN()B
CB
where
. _C(PSS + \,,)B B CRy(\()B
E:(N) = 1) 1 (14)
(15)
Proof. Expand C(A(¢) — Ml,,) "' B by inserting @):
1
—1 .
CAWQ) = M) B = g C (I + RO Q) + R2(A, Q) B. (16)
1
= (CImB +CRC)B + CRy(\, g)B). (17)
_ OB | C(Pss+AL,)B . CRy(\,()B s
S C+1 (C+1)? ¢(+1
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Then the Schur complement expands as:

Sc(A) = (D = M) = C(A(C) = M) "' B. (19)
—(p_ [ CB | C(Pss+Aln)B  CRy(\()B
=D=M =17 CT1) Ci1 (20)
(21)
CB
= (D - \L) — m + Ec(N) (22)

giving ([3)—~(T4), with E¢()) being a collection of the higher order terms of (20).
O

Lemma 7.4 (Envelope bound on K () in |A| < r¢). Let K(\) := C(A(¢) — A\L,) "' B. Assume
() and |A| < r¢. Then

C
gl < BIICE (5 (1)~ 1pssla +0)).
Proof. From Lemma([7.2]
ALY Ml = — (1 — R LI vt 1
I4Q) =~ M)l = W = B € g T < 41 570 ST~ 5

Therefore

K)o < € 1(AQ) ~ ALw) o 18], < 1212190,

Expanded imaginary-part bound in || < 7

Theorem 7.5 (Explicit imaginary-part bound (disk [A| < 7()). Fix 0 < r < 1 and assume (g).
Let A(¢) € spec L(() satisfy [A(¢)| < r¢. Since r¢ < ¢, Lemma[7.1]implies A(¢) — A(¢) Iy is
invertible. Let B] # 0 be a corresponding eigenvector of L(¢), written in .S/ blocks. Then y # 0

satisfies the Schur-complement eigenvector equation
Sc(M¢))y =0,
and we can assume a normalized y so that ||y = 1.

Split D = Dy + Dgy with Dy = %(DJrDT) and Dgy = %(D — D). Because DgH = —Dgpy
(real skew-symmetric), the scalar y* Dg gy is purely imaginary; hence there exists a(¢) € R such

that
Y Dspy =ia((),  B() = la()]-
Define a := || Pss||2 + ¢ and § as in (8). Then

[Bll2 IC]l2 , lIBll2 IC]l2 <a+‘12>.

SAQOI < 8O+ =77 C+ 1) 5

Proof. From S¢(\)y = 0 and the expansion (T3),

CB 1
0=y [(D =M = 5 + By = 9" (D= Ay — &gy CBy +y BNy P

Write y* Dy = y*Dgy + y*Dspy = y* Dy + ia(C) and take imaginary parts of (P1):

ly*CBy|

M| < (O] +

+ [y Ec(Nyl- (P2)

(i) Since y*C By = (By)*(Cy), Cauchy-Schwarz gives
ly"CBy| < [|Byll2[|Cyll2 < [ Bl|2[|C]2-
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(i1) Using (@), |lyll2 = 1, l[y* My| < || M||2, and submultiplicativity,

[ Pssll2 + [A| IIRz(A,C)II2>
(C+1)2 C+1 ’

1y Ec )yl < IBIIC 2 (

With |A| < r( this is

ly* Ec(\yl| < [IBl2/IC]l2 ( e R2()‘»C)2) .

(C+1)2 ¢+1
Finally, apply the tail bound (T0):

ROl . 1 @
C+1  — (41 (C+1)§ (¢+1)26°
* IBLLICI (, , @
* 2 2 a
[y Ec(Ny| < ) (a+ 5) :
Insert (i) and (i) into (P2) and use 3(¢) = |a({)]. O

Remark 7.2. If D is symmetric, then Dgy = 0 so 5(¢) = 0, and the imaginary part is controlled
entirely by the coupling terms that decay with ¢ (through factors (¢ 4+ 1)~! and (¢ + 1)~2) provided
the gap § = (C + 1) — (|| Pss||2 + 7¢) stays positive.

Eigenvalue bound observations

Figure 7] presents nine plots showing the real versus imaginary parts of the eigenvalues of our source
Laplacian with a sink strength (. According to our theory, the sink strength ¢ imposes an upper bound
on the imaginary parts of the type-2 eigenvalues. To test this, we work on the 104-node directed
four rooms domain, in which four nodes are designated as sources with sink-strength zero and the
remaining 100 nodes as sinks with strength ). For each of the nine chosen values of ¢, we repeat the
following 5,000 times: randomly select four source nodes, assign sink-strengths on the remaining
100 nodes, build the directed Laplacian, compute its spectrum, and collect all eigenvalues.

As ( increases, the two classes of eigenvalues — type 1 (those farther from zero) and type 2 (those
clustering near zero) — separate into distinct regions. In particular, the imaginary parts of the type
2 eigenvalues shrink toward zero as ¢ grows. When ¢ = 0 (in plot a), our Laplacian reduces to the
standard random-walk form where there is no distinction between type 1 and type 2 eigenvalues,
with both having significant imaginary parts. By contrast, at the largest ¢ (plot i), only the type 1
eigenvalues that exceed exhibit significant nonzero imaginary parts.
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Eigenvalues of P and L(0)
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Figure 7: Eigenvalue plots, where we show the real and imaginary parts for source Laplacian under

different sink strengths.
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