
A More Motivating Examples and Analysis

Additional explanations for Table 1 We provide two real examples of how graph properties can
decide important graph patterns as the signals for graph classifications. The first example is about
social networks. Among the graph properties, social networks (such as IMDB-BINARY shown in Table
1) have a significant high clustering coefficient (CC), which means they contain many triangles as a
graph pattern. This may be an important signal for effective graph classification, which is consistent
with commonly used social network classification methods such as motif-counting. On the other hand,
if a set of random graphs does not possess high CC, the prominent graph patterns might be some
subtrees or long edges, where the training of a graph classification model is not likely to facilitate the
capturing of triangles, and thus not beneficial for the classification of social networks. The second
example is about protein networks and superpixel networks (such as ENZYMES and MSRC_21 shown
in Table 1). ENZYMES is a protein dataset, in which a graph is an enzyme with secondary structure
elements as nodes and the links connect nodes if they are neighbors in space. MSRC_21 is a semantic
image processing dataset, in which nodes represent superpixels and links are constructed if two
superpixels are adjacent. Although the two datasets are from totally different domains, they are both
formed by spatial structures, which is reflected in Table 1 where the two datasets have very close
values regarding multiple properties (degree distribution, shortest path length, CC). For ENZYME, it
is known that the tertiary structure of proteins is essential and necessary for their biological activities,
and the tightly knit groups are important signals for classifying an enzyme into different catalyzed
levels. For MSRC_21, the environment information is also essential for identifying the superpixels or
describing objects in the images. Thus, there exists the case that two cross-domain datasets contain
certain significant graph patterns that correspond to different dataset-specific meanings and tasks, but
can be shared across datasets towards the training of more powerful graph models.

Figure 5: GIN Performance on
PROTEINS (proteins) federated av-
eragely trained with datasets from
the same or different domains.

Additional analysis for clustered FL With analysis from
Table 2, it shows significant statistical heterogeneity regarding
features and structures in graphs. To motivate clustered FL,
we conduct additional experiments regarding the connections
between such statistical heterogeneity and the power of GNNs.
Specifically, we use PROTEINS as one example dataset, and pair
it with other datasets from the same and different domains. We
focus on structure heterogeneity here and use one-hot degree
features in order to avoid the effects of feature heterogeneity.
We then train a GIN model with basic FedAvg on all pairs,
and analyze the GIN performance versus the structural hetero-
geneity as defined in our paper on PROTEINS in Figure 5. As
observed from Figure 5: (1) at first, the GNN on one graph
dataset (PROTEINS) can benefit from the federated learning on
another graph dataset, and that benefit becomes larger as the
structure heterogeneity between two graphs becomes larger (DD, ENZYMES, MUTAG, NCI1), which
clearly supports the benefit of cross-dataset/cross-domain graph federated learning. However, (2)
as the heterogeneity becomes too large, the performance of GNN starts to degenerate (PTC_MR,
COLLAB), which clearly supports our design of clustered federated learning. Our whole framework
is built to achieve a good trade-off between (1) and (2), which we achieved to some extent, but can
further improve on it in future studies.

Example real scenario for the single-dataset setting In this work, we use the public IMDB
datasets to mimic the real scenario for social networks. For example, TikTok as an emerging
video sharing platform has branches in different countries nowadays, among which direct data
sharing is illegal. However, the users in different countries naturally reside in social networks with
similar properties. It is then very viable to perform graph federated learning across branches in
different countries towards the training of more powerful graph learning models for tasks such as
group/community profiling.

Example real scenario for multi-dataset setting In this work, we synthesized the extreme setting
where each client holds data from totally different domains for experimental purposes, to establish
the benefit of cross-domain collaboration. A realistic scenario in a less extreme setting can be about
various types of apps on mobile phones. For example, different types of iPhone users may leverage
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healthcare apps and social media apps and opt in their data collection. As a consequence, the two
apps will both hold some user data that may complement each other but cannot be directly shared
across the departments. Since Apple owns both departments, it is then easier for them to collaborate
through a federated learning framework.

B Missing Proofs in Section 4.4

B.1 Proof of Proposition 4.1

Assume the structure difference between graph G and G
0 is bounded with

||L0 � L||22 = ||EL||22  ✏L, (9)
The difference between the original weights ⇥ and the weights trained on the new graph structure ⇥0

is represented as
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X)�1
Y

0 � (LX)�1
Y ||22

= ||X�1(L0�1
Y

0 � L�1
Y )||22.

(10)

Given that ||L · L0||22 = ||L · (L + EL)||22 � ||LEL||22. Let ||LEL||22 = �L, then we can get
||L0�1 � L�1||22 = ||EL�1 ||  ✏L

�L
.

Given the Bourgain theorem [50], the difference between the embedding Y and Y
0 is bounded with

||Y 0 � Y||22 = ||EY ||22  ✏Y , (11)
The weight difference can then be bounded with
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With the trained SGC, the feature and graph structure is fixed as X and L. Thus the weight difference
is bounded with X and L.

B.2 Proof of Proposition 4.2

Assume the feature difference between graph G and G
0 is bounded with

||X 0 �X||22 = ||EX ||22  ✏X , (13)
The difference between the original weights ⇥ and the weights trained on the new graph structure ⇥0

is represented as

||⇥0 �⇥||22 = ||(LX 0)�1
Y

0 � (LX)�1
Y ||22 (14)

Given that ||X · X 0||22 = ||X · (X + EX)||22 � ||XEX ||22. Let ||XEX ||22 = �X , then we can get
||X 0�1 �X

�1||22 = ||EX�1 ||  ✏X
�X

.

Given the Bourgain theorem [50], the difference between the embedding Y and Y
0 is bounded with

||Y 0 � Y||22 = ||EY ||22  ✏Y , (15)
The weight difference can then be bounded with

||⇥0 �⇥||22 = ||(X 0�1L�1
Y

0 �X
�1L�1

Y ||22
= ||(X 0�1L�1(Y + EY )�X

�1L�1
Y ||22

= ||(X 0�1L�1
Y +X

0�1L�1
EY �X

�1L�1
Y ||22

= ||(X 0�1L�1
Y �X

�1L�1
Y +X

0�1L�1
EY ||22

= ||(X 0�1 �X
�1)L�1

Y +X
0�1L�1

EY ||22
= ||EX�1L�1

Y + (X + EX)�1L�1
EY ||22

= ||EX�1L�1
Y + (LX + LEX)�1

EY ||22

 ✏X

�X
||L�1

Y ||22 +
✏
2
X✏Y

�X
||(LX)�1||22 + ✏X✏Y ||(LX)�1||42

(16)

16



With the trained SGC, the feature and graph structure is fixed as X and L. Thus the weight difference
is bounded.

B.3 Proof of Proposition 4.3

The difference between the weights trained with different tasks can be written as

||⇥i �⇥j ||22 = ||(LX)�1(Yi � Yj)||22. (17)

With the Bourgain theorem, we have the transformed embedding bounded with

||Yi � Yj ||22 = ||EY ||22  ✏Y . (18)

By substituting ||Yi � Yj ||22 = ||EY ||22, we have

||⇥i �⇥j ||22 = ||(LX)�1
EY ||22

 ✏Y ||(LX)�1||22
(19)

C Dataset Details

We provide details of the datasets we use in Table 5.

Table 5: The statistics of datasets.
dataset statistics dataset statistics

#graphs avg. #nodes avg. #edges #classes node features #graphs avg. #nodes avg. #edges #classes node features

MUTAG 188 17.93 19.79 2 original ENZYMES 600 32.63 62.14 6 original
BZR 405 35.75 38.36 2 original DD 1178 284.32 715.66 2 original
COX2 467 41.22 43.45 2 original PROTEINS 1113 39.06 72.82 2 original
DHFR 467 42.43 44.54 2 original COLLAB 5000 74.49 2457.78 3 degree
PTC_MR 344 14.29 14.69 2 original IMDB-BINARY 1000 19.77 96.53 2 degree
AIDS 2000 15.69 16.20 2 original IMDB-MULTI 1500 13.00 65.94 3 degree
NCI1 4110 29.87 32.30 2 original

D More Detailed Experiment Results

Violin plots instead of tables Figures 6, 7, and 8 show the detailed experiment results regarding
more various client settings including overlapped vs. non-overlapped data partitioning, original
vs. synthetic node features, standardized vs. non-standardized multi-variant time-series matrix in
GCFL+. Since we want to provide more detailed results by clients, we use violin plots to display the
distributions of performance gains of all clients compared to self-train, instead of the average
numbers in Tables 3 and 4. In Figure 6 and 7, each violin represents a distribution of all clients’
performance gain using one algorithm, and in Figure 8 each violin represents a distribution of all
clients’ performance gain on one dataset or data group. In Figures 6, 7, and 8, the blue left sides of
violins are corresponding to the results in the main tables 3 and 4.

Overlapping versus non-overlapping For distributing one dataset to multiple clients, we compare
the two settings of allowing overlapping (same graphs appearing multiple clients) and not. As can be
seen in Figure 6, our frameworks can also improve on overlapped clients.

(a) oneDS: NCI1 (b) oneDS: PROTEINS (c) oneDS: IMDB-BINARY

Figure 6: Distributions of performance gains of all clients with overlapped versus non-overlapped
data partitioning.
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Original node features versus one-hot degree features Apart from the original node features, we
also use one-hot node degree features, in order to study the influence of node features. Figure (7a,
7b) and (7c, 7d) show the comparisons between original features and one-hot degree features on the
single-dataset (oneDS) setting and the multi-dataset (multiDS) setting, respectively. Overall, our
frameworks can consistently improve when using one-hot degree features. However, as in Figure 7c,
the performance gains decreased when using only one-hot node degrees, which can be because of the
decease of feature heterogeneity.

(a) oneDS: NCI1 (b) oneDS: PROTEINS

(c) multiDS: MOLECULES (d) multiDS: MIX

Figure 7: Distributions of performance gains of all clients using original node features versus one-hot
degree features on the oneDS (top) and multiDS (bottom) settings.

Standardized versus non-standardized multi-variant time-series matrix For the GCFL+ frame-
work, we compared the performance gains of clients using the standardized or non-standardized
multi-variant time-series matrix Q 2 R{n,d}. By standardization, only the trends of gradients’
fluctuation are considered and the scales are ignored. The standardization step is performed before
calculating the distance matrix � as

Q
0(i, :) = Q(i, :)/std(Q(i, :)), i = 0, 1, . . . , n. (20)

As shown in Figure 8, the average performance gains of standardization and non-standardization are
similar.

(a) oneDS (b) multiDS

Figure 8: Distributions of performance gains of all clients using standardized gradient-sequence
matrix versus non-standardized gradient-sequence matrix in GCFL+ on the oneDS and multiDS
settings.
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