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Appendix

A Experiment Setup

A.1 Datasets, DNNs, Hyperparameters

Datasets: We use five datasets in our experiments to test different black-box DNNs-under-test. First, as a
proof-of-concept for our overall approach, we use the CelebA (Liu et al., 2015) dataset with a rich collection
of 40 facial attributes (metadata) for 202599 images of celebrity faces. We used the aligned PNG images
provided by the authors, which have a resolution of 178 x 218 pixels. Next, for pedestrian detection tasks, we
consider BDD100k (Yu et al., 2020), Cityscapes (Cordts et al., 2016), RailSem19 (Zendel et al., 2019), and
EuroCity Persons dataset (Braun et al., 2019). In these datasets, we focus only on the pedestrian class in
the 2D-bounding box and semantic segmentation tasks. For BDD100k, we consider the predefined validation
set of 10k samples of resolution 1280 x 720, while in Cityscapes and RailSem19, due to their smaller dataset
sizes, we use the entire train and validation sets containing 3475 (the test set is not considered due to the
lack of GT) and 8500 samples with image resolutions 2048 x 1024 and 1920 x 1080 respectively. In EuroCity
Persons, we separately analyse the “day” and “night” subsets provided in the dataset. For each, we used
combined training and validation splits, comprising 28,158 images for the day subset and 4,992 images for
the night subset.

Models (DNNs-under-test): We evaluate five black-box models for ODD aligned systematic weaknesses.
For the first experiment, we consider the publicly available ViT-B-16 (Dosovitskiy et al., 2021) model pre-
trained on ImageNet21k (Ridnik et al., 2021) from the python library timmﬁ Second, we use the pre-trained
publicly available Faster R-CNN (Ren et al., 2015) object detector with ConvNeXt-T (Liu et al., 2022)
backbone. The model weights are available on the BDD100k model Zooﬂ Third, for the Cityscapes dataset,
we use a pre-trained SETR PUP (Zheng et al., 2021) semantic segmentation model. The model weights
are available on the mmsegmentation CodebaseH From the railway domain, we use a PanopticFCN (Li
et al., 2021) model, which has been trained by an industrial partner on a large proprietary dataset also
including RailSem19 (Zendel et al., 2019). We consider this as a complete black box and have no details on
the concrete training procedure. We additionally evaluate the YOLOv11m (Jocher & Qiu, 2024) model to
illustrate the performance of our approach on larger models. For the autonomous datasets, the black-box
model performance per-object (i.e., pedestrian) is measured by the intersection-over-union (IoU). For our
experiments, we consider an IoU greater than 0 as a true positive and the rest as false negatives to simplify
the evaluation.

Parameters of CLIP and SliceLine: For metadata generation, we use a pre-trained CLIP (Radford et al.,
2021) with image encoder (ViT-L/14 (Dosovitskiy et al., 2021)). For SliceLine, we use a python implemen-
tation and choose default o and o values of 0.95 and n/100 where n defines the size of the structured data
as proposed in Sagadeeva & Boehm (2021). For the synthetic data experiment, we incrementally increase k
from 1 to 60.

A.2 Synthetic Data Generation Parameters

The purpose of the synthetic data experiment is to evaluate the algorithm with control over the quality
of labeling and without the influence of correlations. Therefore, we build a tabular dataset with 9 “real”
semantic dimensions (diml, ..., dim9) containing 200,000 rows. For each of these dimensions, we generate
a synthetic dimension as a proxy for labeling by CLIP. All dimensions contain binary attributes. For the
first five dimensions, the distribution of true attributes is imbalanced, i.e., only 5% of overall samples ([8000,
9000, 10000, 11000, 12000]), respectively. The other dimensions are balanced between both attributes. The
final column contains errors simulating the DuT performance. Next, we define a set of slices and induce
errors for each of the slices. For our experiments, we induce the following errors: {diml: 0.19, dim2 &
dim3: 0.18, dim3: 0.23, dim4: 0.3, dim5: 0.07, dim6: 0.04, dim7: 0.01, dim8: 0.05, dim9: 0.02}. As we

8https://github.com/huggingface/pytorch-image-models
9https://github.com/SysCV /bdd100k-models/tree/main /det
Ohttps://github.com/open-mmlab/mmsegmentation
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have 100 runs for different labeling qualities, we introduce random fluctuations between -0.01 and 0.01 to
these error values. The choice of errors and number of dimensions is to align the synthetic data with the
CelebA experiment and also to effectively induce errors. If all dimensions contribute roughly equally to the
error rate, no strong signal for a specific slice, in contrast to the others, could be found. We generate 100
runs each for 3 different labeling qualities. That is, we generate the “observed” metadata from the “real”
one using a random predefined “precision” value. For good quality, this precision value to detect attribute
1 of each dimension is sampled from a uniform distribution between 0.8 and 1.0. For attribute 0, we sample
between 0.8 and 1.0. For medium quality and attribute 1, we sample from 0.4 and 0.6 and for attribute 0
between 0.4 and 0.7. For bad quality, for attribute 1, we sample between 0.1 and 0.4 and for attribute O
between 0.3 and 0.6.

A.3 Human-understandable Dimensions

Herrmann et al. (2022) have proposed ontologies for different dynamic objects (e.g., pedestrians) to build
ODDs for AD vehicles. Although these proposed ontologies do not yet completely capture all safety-relevant
features, they provide a reference to the direction safety experts intend to take to build evidences for safety
augmentations of AD vehicles. To enable such a formulation of evidence, we performed our experiments on
a subset of the concepts discussed in these ontologies as shown in tables [f] and [6} In the case of BDD100k,
as information about occlusion is provided in the dataset, we combine our generated metadata with this
additional information. For the CelebA experiment, as the input distribution is not directly related to
the AD domain, we consider semantic concepts that are more suitable for this dataset as shown in table
Similar to Gannamaneni et al. (2023), we encode the input image using the CLIP image encoder. For CelebA
dataset, we encode the entire input image, while for the AD experiments, we encode individual pedestrian
crops as a single input. We consider each semantic dimension and its corresponding attributes to generate
metadata for an input image.

Semantic dimension \ Attributes

Gender Male Female

Pale-skin True  False

Age Young Adult

Beard True  False

Goatee True  False

Bald True  False

Wearing-Hat True  False

Wearing-Eyeglasses | True  False

Smiling True  False

Table 5: The ODD used for the CelebA experiment. The first column represents the different semantic
dimensions (in analogy to safety-relevant features). For each dimension, different attributes are considered
and generated as metadata using our metadata generation process.

A.4 SliceLine Workflow

SliceLine works on individual errors e; of data samples ¢. These, in the original work, can be defined as
e; = 1 — p; with the DuT predicted probability p; for the correct class. In the remainder, we make the
simplifying assumption that e; € {0,1} indicates whether i was classified correctly, e; = 0, or not, e; = 1.
The workflow of SliceLine to identify weak slices is as follows: Initially, for depth level 1, a breadth search
is performed on all attributes in the metadata such that only single features form a slice (e.g., a slice
containing all data points with condition (gender : male)). Checks are performed over these slices to ensure
that thresholds are met (e.g., minimum slice size specified via some parameter o). Next, based on the slice
scores from eq. , the slices are ordered, and a list of top-k weak slices is populated. The hyperparameter
a in eq. () allows us to weight the size of the slice as well as the error signal. At depth level 2 and above,
combinations of two attributes are chosen to form a slice (e.g., slice containing all data points with condition
(gender = male)&(occlusion = (0.9,1.0])). The list of weak slices is updated after each depth level. The
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Semantic dimension Attributes
Gender Male Female
Skin color White Dark
Age Young Adult
Clothing color Bright-color Dark-color
Blurry True False
Occlusion® True False
Construction-worker? True False
Size 10 quantile binned values of bounding box pixel area

Table 6: A sample ontology for pedestrians used in our AD dataset experiments. The first column represents
the different semantic dimensions (safety relevant features). For each dimension, different attributes are
considered and generated as metadata using our metadata generation process. Metadata that is generated
from CLIP but from available through other sources (e.g., GT) is not considered noisy and, therefore, we
do not perform precision and recall estimation by human sampling. 1 Occlusion is available as GT from
the BDD100k and EuroCity Persons dataset and we only consider it in the corresponding experiments.
1 RailSem19 dataset contains several images where construction-workers are present near railway tracks.
Therefore, we additionally consider this dimension for CLIP labeling to identify if models have weaknesses
identifying construction workers. Size of pedestrian is estimated by calculating product of bounding width
and height.

maximum depth level is a hyperparameter. In addition, pruning steps are also performed at each depth level
in the original implementation. The conditions for pruning have a monotonicity property, which ensures
that all potential sub-slices of a pruned slice would also fulfill the pruning condition. Due to the limited
sizes of the ODDs for our experiment, we do not consider the pruning step in our implementation. Once the
maximum depth level has been reached, the algorithm is terminated and the final list of top-k weak slices is
available.

e|$ — e|'D _ (1 _ Oé) D||;|S| (5)

Scoring Function(S) = «
elp

A.5 Scalability

Here, we discuss the scalability of our algorithm w.r.t. size of the DuT M, the dataset D, the number of
metadata dimensions and their attributes Z, and the maximum number of semantic combinations considered
simultaneously, i.e., maximum search depth or level ¢ in SliceLine. First, considering the size of the DuT, an
inference step is performed on each sample s to obtain the predictions and calculate the errors. As inference
requires a constant time t,, per sample, the total time complexity is O(|D|). Similarly, considering the
size of the dataset D, the time complexity is linear. Furthermore, after inference on DuT, the generation
of metadata with G requires another round of inference as G (e.g., CLIP) performs both embedding and
classification steps. Since the images from D are only embedded once with G and metadata is generated
w.r.t. dimensions defined in Z, for a fixed Z, the time complexity for this is also linear O(|D|) assuming ¢,
is the constant time taken to generate metadata per sample. Next, regarding scalability of the metadata
Z, we consider two factors: the number of dimensions in Z and the number of attributes per dimension,
i.e., the cardinality. For a fixed dataset, for each sample s, metadata is generated with G independently per
dimension. Therefore, the total time taken increases linearly as given by O(|Z|).

Turning to the slice discovery problem, given the performance and generated metadata, we generally expect
a non-linear scaling with the number | Z| of considered semantic dimensions. For simplicity, we assume that
each of the dimensions is binary. However, since we limit the depth (denoted as “level”), i.e., the number
of combinations that are simultaneously considered, the number of slices is not exponential but algebraic in
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|Z|. This can be seen as follows: when considering all slices at a fixed level, the number of combinations is

level

N(|Z|,level) = 2‘“@1( 1] ) (6)

as we take all combinations of “level” number of dimensions from Z and within these combinations have
2level ways of distributing the absence or presence of the attribute. If we consider the total number of slices
up to a given level ¢, the following upper bound holds:

L L L L
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Sonizlh =3 (7)< TR < Sz - CEL S s iz (7)
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This shows that for a fixed level, the runtime of SliceLine, with complexity (9((2|Z |)le"el) grows polynomially
with the number of semantic dimensions. Despite this scaling, each individual calculation in SliceLine is
fast, implying that, in practice, the largest amount of absolute computation is incurred during the metadata
generation and DuT inference.

B Derivations

B.1 Derivation of p(¢|C) and p(e|S)

To derive eq. (1) and eq. (2) from section 3, we first consider the joined probability p(e,C, S), where e denotes
the DuT error, C labeling, and S the ground truth for some semantic attribute. Using Bayes’ Theorem we
can rewrite this as

p(e,C,8) = p(e|C,S)p(C, S) = p(elC, S)p(CIS)p(S) - (9)

Looking additionally at marginal distributions
8) =3 p(e,C.8) =p(S))_plelc,S)p(Cl$), (10)
c c

where the sum goes over all possible values C can take. We can write the conditional error probability (or
rate if considered over finite data) as

p(e]S) = Zp (e[C, S)p(C|S) (11)

At this point, using that C takes only binary values, which, for brevity, we denote as C if the attribute was
detected and as —C elseE we can expand the sum:

p(elS) = p(e|C, S)p(C|S) + p(e|=C, S)p(=C|S) (12)
Within this expression, we can identify the recall

= p(C|S) (13)

of the labeling method, that is the probability we will obtain correct identification of the semantic attribute
given its presence. Using further the normalisation property

1= p(ClS) — p(=C|S)=1-p(C|S), (14)
C

M This is a slight over-use of the notation, but it is apparent from context whether C is meant as the random variable for the
labeling, or as its value in the sense of positive detection.



Published in Transactions on Machine Learning Research (07/2025)

we arrive at the originally presented eq. (1):
p(e|S) = replelC, S) + (1 —r¢) ple|-C,S) (15)
Along the same lines eq. (2),
p(e|C) = pep(elC, S) + (1 = pe) p(elC, =S) (16)
can be derived, however with the identification
pc =p(S[C), (17)

i.e., the precision of the labeling process.

B.2 Derivation of Correction Equation

As discussed in section 3, the annotation process may not be a perfect process. Furthermore, there is no
guarantee that the failure modes within this process do not overlap the failures of DuT, i.e., there is a
possibility that some amount of correlation could exist between the errors of the annotation process and the
errors of DuT. Therefore, we frame this using the following

p(elS) = p(e|=C, S) — p(e|C, S) (18)

By considering earlier equations and their complementary forms for =S and reducing the equation set, we
obtain

A— ( pc 1-— pc) B (p(€|c) + (pc) op(e|S) )
l=pc pc )’ p(e|=C) + (p~c) op(elS) )’

A( p(e[C,S) > 5
ple|=C, =)

Here, the det(A) is given by p. + p_. — 1 and the inverse of A is given by
1 —c —(1- c
Al ———— P (1 =) . (19)
Petp-c—1 _(1 - pfc) Pc

Solving for the intermediate value of p(e|—C, S) and plugging this in eq. along with eq. , we obtain
the final equation eq. (4):

KS K-S
———
p(e|C) p—¢ + p(e|=C) (pc — 1 pep-c pc — 1)p-c
plels) = XPe VRO e 1) |y 5) (L) (el Le—DPe gy
pc+p-c—1 pc+p-c—1 pc+p-c—1
independence assumption correction terms

Regarding the denominator p¢ + p—¢ — 1, it can be zero (or approximately zero) for some combinations
of precision of the metadata annotation process. In these cases, no statement can be made on S as the
performance of the annotation classification does not allow separation of S from the rest of the data and any
observable error differences on C potentially stems only from the correction factors. Besides this technical
breakdown of the hypothesis, it should be pointed out that the scaling factors ks -s depend only on the
performance of the annotation process and thus can be determined without knowing the correction factors
op themselves. While the latter are challenging to determine in practice they are rarely non-zero, even in
cases where the hypothesis holds, due to fluctuations (e.g. when errors are determined on finite sample sizes).
Knowing the magnitude of x therefore allows us a degree of certainty on the statements of the hypothesis.
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B.3 Quantitative Evaluation of Metadata Generation Process

Our metadata generation is a form of data labeling process. Within this work, we chose CLIP (Radford et al.,
2021) to generate the metadata but know that for certain attributes of the ODDs the performance might be
far below human capabilities, compare, e.g., Gannamaneni et al. (2023). To estimate the performance of our
metadata generation process without large-scale evaluation or manual labeling, we take a simplifying view.
For each slice C containing a semantic concept identified by CLIP, for instance, images containing gender
“female”, we randomly draw a few samples to create a smaller subset R. Let ¢ denote the probability that
images within C contain the correct semantic concept. By manually evaluating the smaller sample of images
R C C (drawn with replacement), we can model the posterior distribution for ¢ using Bayes theorem, that is

p(e)p(Rlq)

p(gR) = »(R)

x p(Rlq) - (21)

Therein, we assumed a flat prior, i.e. p(q) = const.. The probability of the observed sample R is given by

n

Rl = ()=, (22)

where n = |R| is the size of the observed sample taken from S and ! < n is the number of observed positive,
i.e., correct instances. The true value for ¢ for the entire slice would describe the precision of the labeling
of the concept as it is the ratio of true instances to the overall number of samples. We can approximate it

using the small set using
n+1)! _

pprecision(Q|R) = l('(nl))'ql(l - Q)n ! ) (23)
where the factorials serve as the normalization. Using eq. , we can, therefore, determine both the
expected value of g as well as our uncertainty of its value, which we report in terms of the standard deviation
o. As a side note, for values of ¢ near 0 or 1, the Binomial distribution is asymmetric and the standard
deviation is not always a faithful measure of “true” deviation. However, we compared with a quantile-based
approach, taking the range from the 1/6'" to 5/6' quantile, and found only minor discrepancies.

Besides estimating the precision, we are also interested in estimating the recall of the labeling process. This
latter quantity is harder to evaluate as it depends both on the number of true positives and false negatives.
Let P and N denote the total number of data points that are classified as containing, or respectively, as not
containing, the semantic concept. Then the probability over the total number of true positives is given by
Pprecision (¢|Rp), where Rp is a random sample taken from the set Cp of positively classified elements. A
similar statement holds for the number of false negatives, where a sample R from the non-detected set can
be used. However, in this case, we either have to count (for I) the number of prediction errors or use the
inverse outcome 1 — ¢q. Given that both samples are free of intersection, that is Rp N Ry = (), we make the
assumption that the obtained probabilities gp and ¢y are independent from one another. In this case, we
can formulate the recall as

1 1
precall(Q|RPa RN) = / dgp / dgn
0 0

_ PqP (24)
X0 (q PQP+N(1—QN)>

prrecision (qP ‘RP )pprecision (qN |RN) )

where we interpret pprecision such that in both cases correct predictions are counted while ¢ denotes a Dirac-
Delta Distribution. We evaluate this function numerically and use the results of precan in the same way as
for the precision above regarding, e.g., the reported standard deviation.

B.4 Precision Sampling at different levels

In appendix we provide the framework for how precision and recall can be estimated by sampling data
in slices. In this section, we present the concrete steps taken at level 1 to operationalize it and also the steps
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taken to calculate precision and recall at higher levels. At level 1, in synthetic and CelebA experiments,
as GT labels are available in addition to classification function G labels, human evaluation of slices is not
necessary. For each slice in the data, before running SliceLine, we sample with replacement (n=60), and
using GT slice labels, calculate precision and recall based on appendix[B:3] This gives us mean and standard
deviations of precision and recall that can be used with eq. (4). For AD datasets, as GT labels are not
available, we performed human evaluation by first taking 60 samples for each level 1 slice. The results of
this are shown in table 3.

At level 2 and higher, human sampling of precisions gets very labour-intensive even if considering only 9
semantic dimensions with binary attributes. Therefore, we incorporate the parent-level precisions calculated
earlier to estimate corrected errors by accounting for their contributions. From level 2 onward, we construct

a composite inverse matrix,
Agls, = A5l @ A5, (25)

which is a direct product of the inverse matrices given in eq. . for the respective semantic dlmensmns S
and S3. The direct product implies an element-wise multiplication of the differing elements of A in all
possible combinations. This approach can be understood by first considering that in the approxunatlon the
precision values in Ag, s, are given by products of the respective precisions for &; 2 or its negations —Sy 2.
That is, for two 2 x 2 matrices Ag, the resulting As, s, will be 4 x 4 dimensional. Second, the inverse of this
direct product matrix is given by the direct product of its constituent matrices, leading to eq. .

We can also extend the binary case of eq. to a multi-class setting by taking into account that the
matrices A are based on normalized confusion matrices. That is, row-wise the entries in A give the rate
or probability with which the classifier G will mistake a given element for an element of a foreign class.
This notion easily generalizes to arbitrary classes by taking the full confusion matrix for all classes, thereby
introducing all combinations besides “False Positives” or “False Negatives” from the binary case. For n
classes this would result in a n X n matrix for A, the inverse of which can be used to obtain the hypothesis

part of eq. .
C Results

C.1 Further results: CelebA Evaluations

In the synthetic data experiment, we provide the spread of errors and the precision and recall of slice recovery
in comparison to an Oracle for different values of k. With the GT metadata in the CelebA dataset, we build
a similar Oracle for comparison and provide similar error spread and precision and recall values of SWD-1,2,3
in fig. f] Here, the plot depicting the spread of errors is restricted to level 1 errors for better visualization.
However, the precision and recall plot is based on the full level 2 slices.

C.2 Evaluation of Top-5 Weak Slices

In this section, we provide both the quantitative and qualitative results of our experiments. For the CelebA
dataset, figs. [6] to[9] contain the identified top-5 weak slices in the experiments SWD-3, DOMINO, Spotlight,
and SVM FD respectively. We provide 8 samples from each of the top-5 slices found by the methods and 8
samples from the remaining data, except SVM FD which only provides 1 weak slice. In addition, we provide
four slice descriptions given by DOMINO for each slice and the single slice description of SVM FD. While
the actionability of our proposed approach is inherent as the identified weak slices are based on semantic
concepts from the ODD, the textual descriptions from DOMINO are comparatively less useful. Furthermore,
by focusing only on the samples from DOMINO, it is still hard to identify which semantic concepts uniquely
constitute a slice. For example, if we consider an image from the remaining data (rightmost column), it is
not straightforward to say if this image does or does not belong to any of the weak slices. Although the
fifth slice does appear to capture a coherent slice, images of sports persons, the observed error p(e|C) is
significantly lower than what is identified by our approach. It is important to note that both DOMINO and
SliceLine judge performance in terms of class probabilities, not false negative counts. Therefore, weak slices
can have slightly better performance in terms of p(e|C) compared to overall data, as observed for slice 3
found by DOMINO.
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Figure 5: Similar to synthetic data experiment, we provide spread of error (top) and Precision and Recall
at different levels of k for SWD-1,2,3 of algorithm 1 in comparison to the Oracle (bottom). The DuT is
a ViT-B-16 classification model trained on ImageNet21k and evaluated on CelebA dataset. Note that here

precision and recall are quality metrics of weak slice discovery and not of labeling quality.
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In figs. [10] to pedestrian crop samples from the top-5 weak slices obtained using our method are provided
for each autonomous driving experiment. The quantitative evaluation of the top-5 slices for the three
experiments can be found in tables [7] to [9}

Avg. Perf.

Slice No. | |S] peorc(€|S) Degra.

Slice Description

_
S |319 02206  -0.1636 | PMUrry: false}

occluded: true
\

>
blurry: false }

S2 508 0.2099 -0.1528 cloth.-color: dark-color

\

>
blurry: false
age: adult

Ss3 466 0.147 -0.0899

Sa 773 0.1263 -0.0693

>
blurry: false
Ss 582 0.1263 -0.0693 gender: Male

Table 7: Quantitative analysis of the top-5 weak slices obtained using SWD-3 for the Faster R-CNN object
detector trained and evaluated on BDD100k dataset.

Y

blurry: false]

Avg. Perf.

Slice No. | |S] peorr(€|S) Degra.

Slice Description

S1 690 0.1046 -0.0897

-
age: adult
skin-color: dark

\

>
skin-color: dark
S2 591 0.0921 -0.0773 cloth.-color: dark—color}

\

Ss 349  0.0896 -0.0748 <kin-color: dark
.

>
gender: female }

(skin-color: dark

Si o |766 0.0778 00630 | gt e
.

Ss 997  0.0594 -0.0446 [skin-color: dark]

Table 8: Quantitative analysis of the top-5 weak slices obtained using SWD-3 for the SETR semantic
segmentation model trained and evaluated on Cityscapes dataset.

D Evaluation of YOLOv11m on EuroCity Persons dataset

We evaluate a publicly available YOLOv11lm (Jocher & Qiu, 2024) model as our DuT containing 20.1
million parameters in the EuroCity Persons dataset (Braun et al., 2019). We separately analyse the “day”
and “night” subsets provided by the dataset to enable a targeted investigation of the systematic weaknesses
of the DuT model under varying lighting conditions. Given the challenging nature of the dataset, the YOLO
model achieves a recall of only 0.42 on the day subset and 0.41 on the night subset, suggesting the presence
of potential systematic failures. Consistent with our AD experiments, we exclude pedestrian instances
occupying fewer than 3,000 pixels, as both human- and CLIP-based annotations exhibit low reliability for
metadata generation on small instances due to data-induced uncertainty. Similar to table 3, we calculate the
estimated precision and estimated recall for both subsets using human evaluation on 60 samples and present
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Slice Description Slice S; Slice Statistics Slice Description Slice S, Slice Statistics

Slice Size |S|: 7600 Slice Size | S|: 5132
wearing-hat: true Deorr(€]S) of Slice: 0.6856 wearing-hat: true peorr(€|S) of Slice: 0.5994
beard: false Performance degradation: -0.6304 smiling: false Performance degradation: -0.5442

Slice Description Slice S; Slice Statistics Slice Description Slice S Slice Statistics
Slice Size |S|: 4435 Slice Size |S|: 7974
gender: female Peorr(e]|S) of Slice: 0.6095 age: young Peorr(€|S) of Slice: 0.5441

wearing-hat: true Performance degradation: -0.5543 wearing-hat: true Performance degradation: -0.4889

Slice Description Slice S; Slice Statistics

Slice Size |S|: 8606
wearing-hat: true Peorr(€]S) of Slice: 0.538
eye-glasses: false Performance degradation: -0.4828

Figure 6: Samples from top-5 weak slices obtained using SWD-3 for the ViT-B-16 classification model trained
on ImageNet21k and evaluated on the full CelebA dataset with metadata generated from CLIP using step 3
in algorithm 1. The statistics provide a quantitative evaluation of the entire slice. For qualitative evaluation,
we provide some sample images from the slice.

10
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Slice 1

Slice Size |S| 11726

p(e|C) of Slice 0.6182

Performance -0.5622
Degradation

Slice 2 Slice 3

2317 3344
0.2486 0.0499
-0.1926 0.0061 -0.0493

“a photo of the
vocalist person”

“a band photo of

. a person”
Slice

Descriptions “a photo of the

choreographer
person”

“a photo of a
person or
author.”

“kate moss photo  ““~ bolivia photo

“judy garland
of a person” of a person” photo of a
person”
“a fashion photo “a photo of a
of a person” beauty person”  “a photo of judy
garland person”
“a photo of a “a woman photo
person on of a person” “a postwar photo
runway.” of a person”
“a photo of a
“aphotoofa  modeling person”  “a photo of a
person or postwar person”
model.”

Slice 4
2565
0.1053

Slice 5
2307
0.1756
-0.1196

“a photo of a
tennis person”

“a photo of a
person playing
playing tennis.”

“a photo of a
person playing
tennis.”

“a photo of a
person
clinching.”

Remaining Data

180340
0.0146
0.0414

Figure 7: Samples from top-5 weak slices of a ViT-B-16 classification model trained on ImageNet21k and

evaluated on the full CelebA dataset (DOMINO). From the 8 samples in each slice, 4 are true positives
(green outline) and 4 are false negatives (red outlinea. ]
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Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Remaining Data
Slice Size |S| 4050 3930 1873 2498 3096 187152
p(e|C) of Slice . 0.0151
Performance
Degradation

Figure 8: Samples from top-5 weak slices of a ViT-B-16 classification model trained on ImageNet21k and
evaluated on the full CelebA dataset (Spotlight). From the 8 samples in each slice, 4 are true positives
(green outline) and 4 are false negatives (red outline). Spotlight does not provide automatic descriptions of
the slices 12
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Weak Slice

Slice Size |S| = 2642

ple|C) = 0.4295

Perf. Degr. = —0.3742

Slice Description

S| = 199957

ple|C) = 0.0502

Perf. Degr. = 0.0049

- “a photo of a person wearing a hat”

Remaining Data

Figure 9: Samples from top-1 weak slices of a ViT-B-16 classification model trained on ImageNet21k and
evaluated on the full CelebA dataset (SVM-FD). From the 10 samples in each slice, 5 are true positives
(green outline) and 5 are false negatives (red outline). Unlike other SDMs, SVM-FD only outputs one weak

slice.

Slice No. | |S| peor:(€|S) A‘S’;gl;;?f' Slice Description
S |51 08663  -0.222 |age: young
S2 510 0.8723 -0.228 f:l;g)re;:st};c:(i%on-worker: false
S3 405 0.8819 -0.2376 (S:ll{(i:;ll-l(.:-oclc?lrc:)r(:l?:rk—color
Si 319 09095 02652 | PP VMR
S |173 100 04602 | 28X YOS dark’

Table 9: Quantitative analysis of the top-5 weak slices obtained using SWD-3 for the Panoptic-FCN model

trained and evaluated on RailSem19 dataset.
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Slice S; Slice S,

Figure 10: Samples from top-5 weak slices obtained using SWD-3 for the Faster R-CNN object detector
trained and evaluated on BDD100k dataset.
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Slice S; Slice S,

S
) v“ ‘

Slice S; Slice S,

Figure 11: Samples from top-5 weak slices obtained using SWD-3 for the SETR semantic segmentation
model trained and evaluated on Cityscapes dataset.
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Slice S; Slice S,

Figure 12: Samples from top-5 weak slices obtained using SWD-3 for the Panoptic-FCN model trained and
evaluated on RailSem19 dataset.
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the results in table In samples where human evaluation is not clear, the benefit of the doubt is given to
the CLIP model. This could, for instance, lead to higher precision in the night subset as it might be hard
for the human labeler to also interpret some samples.

Based on the evaluation with SWD-3, we uncover that for the DuT, “occlusion” and its related sub-slices
are the primary cause of systematic weaknesses in the day subset, compare table For the night subset,
table pedestrians with potentially “dark” clothing or “dark” skin-color are semantics that lead to sys-
tematic weakness. The slice errors for all top-slices indicate significant performance degradation in the night
and day subsets. Examples from the slices can be found in figures [13| and respectively.

Sem. Attri Estimated Precision p¢ Estimated Recall r¢
dim. " | EuroCity (Day) FEuroCity (Night) ‘ EuroCity (Day) EuroCity (Night)
Ape  Adult 0.97 + 0.02 0.92 + 0.03 0.57 + 0.02 0.54 + 0.03
8 Young 0.42 + 0.06 0.63 =+ 0.06 0.94 + 0.06 0.93 + 0.06
Condey  Fomale 0.89 + 0.03 0.95 + 0.03 0.88 +0.03 0.89 + 0.03
Male 0.92 +0.03 0.94 + 0.03 0.91 +0.03 0.96 + 0.03
Cloth.- B;igfrt' 0.70 + 0.06 0.52 + 0.06 0.26 + 0.05 0.32 + 0.06
color Dark.
olon 0.77 + 0.05 0.90 + 0.04 0.95 + 0.05 0.95 + 0.04
Skin-  Dark 0.74 + 0.06 0.73 + 0.06 0.86 + 0.06 0.87 + 0.06
color  White 0.97 + 0.02 0.87 + 0.04 0.91 + 0.02 0.72 + 0.04
Blurs True 0.48 + 0.06 0.53 + 0.06 0.29 + 0.06 0.40 + 0.06
WY False 0.79 + 0.05 0.76 + 0.05 0.89 + 0.05 0.84 + 0.05

Table 10: The estimated precision and recall using our proposed approach for evaluating the quality of the
generated metadata for the EuroCity Persons dataset. Here, we provide the mean and o/2, for n of 60, of
the estimated precision and recall. Certain dimensions like occlusion are available as part of the datasets
themselves. We do not perform human-evaluation for these dimensions but these are considered in the weak
slice search.

Avg. Perf.

Degra. Slice Description

Slice No.| |S]  Peorr(€]S)

_
S |17227 06960  -0.373 | occlusion: true}

blurry: false
\

>
occlusion: true

Sy 16732  0.6863 -0.3628 clothing-color: dark}
\

S3 7215  0.6877 -0.3642

>
blurry: false
skin-color: dark

\
>

S 24484 06089  -0.2854 |Clothing-color: dark}

blurry: false
.

Ss 5664  0.7045 -0.381 skin-color: dark

>
occlusion: true }

\

Table 11: Quantitative analysis of the top-5 weak slices obtained using SWD-3 for the YOLOv11lm model
evaluated on EuroCity Persons (day) dataset. For examples from the slices see fig.
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Slice S; Slice S,

Slice S,

Figure 13: Samples from top-5 weak slices obtained using SWD-3 for the YOLOv11lm model evaluated on
EuroCity Persons (day) dataset. For the slice descriptions see the statistics in table
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Slice S; Slice S,

Slice S; Slice S,

Slice S;

Figure 14: Samples from top-5 weak slices obtained using SWD-3 for the YOLOv11lm model evaluated on
EuroCity Persons (night) dataset. For the slice descriptions see the statistics in table
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Avg. Perf.

Slice No.| [S]  peorc(€]S) Degra.

Slice Description

_
S 7215 06877  -0.3079 | SKin-color: dark}

blurry: false
\

clothing-color: dark

Sa 24484 06089 -0.2291 blurry: false
\

>
clothing-color: dark

Ss 7091  0.6465 -0.2667 skin-color: dark

\

>
age: adult }

Sa 6946  0.6188 -0.239 skin-color: dark

\

>
age: young

Ss 8168  0.5608 -0.1809 ki false}
.

Table 12: Quantitative analysis of the top-5 weak slices obtained using SWD-3 for the YOLOv11lm model
evaluated on EuroCity Persons (night) dataset. For examples images from the slices see fig.

E Comparison of CLIP and GPT-40 for metadata generation

We compare the metadata generation quality of CLIP with a more powerful model, GPT-40 (Hurst et al.,
2024) in version ‘gpt-40-2024-08-06°¢. As discussed, we expect newer models like GPT-40 to outperform
CLIP due to advancements in training data quality, model architecture, and scale. Nevertheless, CLIP was
chosen for this work due to its lightweight nature and ease of access, whereas large models such as GPT-40
may face scalability challenges. Following the evaluation strategy of (Gannamaneni et al., 2023), we assess
both models on the full CelebA dataset (202,599 images) across relevant attributes for metadata generation.
GPT-40 is accessed via the OpenAl API, with each image provided as input alongside a prompt that requests
metadata in JSON format. The prompt template will be shared along with the experiment code. Table
reports the precision, recall, and F1 scores of the evaluations. CLIP outperforms GPT-40 only on the “Age”
and “Pale Skin” attributes, while results for “Gender” and “Smiling” are comparable. For all other attributes,
GPT-4o significantly outperforms CLIP. However, this improvement comes with considerable financial and
computational costs (~ 170 million tokens), whereas CLIP offers negligible overhead in both respects. While
manageable for the CelebA dataset, this might not scale for larger datasets. In either case, since the models
do not have perfect precision, the error correction approach would need to be implemented to correctly
identify the systematic weaknesses of a DuT.
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Semantics  Attribute = Counts CLIP GPT-40

Precision Recall F1 score | Precision Recall F1 score

Age Young 156734 0.91 0.90 0.90 0.98 0.23 0.38

Not-young 45865 0.67 0.68 0.68 0.27 0.99 0.43

Gender Male 84434 0.99 0.99 0.99 0.99 0.99 0.99

Not-male 118165 0.99 1.00 0.99 0.99 1.00 0.99

Paleskin Pale 8701 0.06 0.84 0.11 0.17 0.34 0.23

Not-Pale 193898 0.98 0.39 0.56 0.97 0.92 0.95

Eyeglasses 13193 0.50 0.94 0.65 0.94 0.98 0.96

No eyeglasses 189406 1.00 0.93 0.96 1.00 1.00 1.00

Hat 9818 0.52 0.87 0.65 0.71 0.96 0.82

No Hat 192781 0.99 0.96 0.98 1.00 0.98 0.99

Bald 4547 0.19 0.54 0.28 0.63 0.77 0.69

Mise. Not Bald 198052 0.99 0.95 0.97 0.99 0.99 0.99

Goatee 12716 0.21 0.62 0.31 0.57 0.62 0.60

No Goatee 189883 0.97 0.84 0.90 0.97 0.97 0.97

Beard 33441 0.31 0.33 0.32 0.95 0.44 0.60

No Beard 169158 0.87 0.86 0.86 0.90 0.99 0.95

Smiling 97669 0.84 0.85 0.85 0.90 0.91 0.91

Not-smiling 104930 0.86 0.85 0.86 0.90 0.90 0.90

Table 13: The performance of CLIP in predicting different attributes on the celebrity images in the CelebA
dataset similar to evaluations in (Gannamaneni et al., 2023). There are minor deviations between the results
shown in this work and our CLIP results due to small changes in used prompts for CLIP text encoder.
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