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In this supplementary material, we introduce more details about (1) the experimental settings, (2) the
pre-training loss curves, and (3) the ablation study of different hyperparametric strategies.

0.1 EXPERIMENTAL SETTINGS

We employ the ViT-B |Dosovitskiy et al.| (2020) architecture from MAE He et al.| (2022)) as the
generator G within the framework of Vision ELECTRA VE. For the discriminator D component
of Vision ELECTRA V&, we utilize the ViT-B architecture. Our experimental configuration en-
tails self-supervised pre-training using the ImageNet-1K training dataset|Deng et al.| (2009). Sub-
sequently, we also have evaluated the learnt representations on downstream tasks such as image
classification [Lu & Weng| (2007, semantic segmentation (Guo et al.| (2018), and object detection
Zou et al. (2023)).

During the phase of self-supervised pre-training, the utilization of an AdamW optimizer Kingma &
Bal(2014) in conjunction with a cosine learning rate scheduler is employed. The pre-training process
spans 50 epochs and is executed on a computing cluster comprising 4x NVIDIA Tesla V100-SXM?2
GPUs. Both the generator and discriminator are subjected to akin training hyper-parameters. These
parameters encompass a batch size of 80 for each GPU, a base learning rate set at 2e-5, weight decay
fixed at 0.05, 31 at 0.9, B2 at 0.999, and a warm-up |[He et al.| (2016) period of 10 epochs. A modest
data augmentation strategy is implemented, encompassing random resizing cropping with a scale
range of [0.67, 1] and an aspect ratio range of [3/4, 4/3], accompanied by random flipping and color
normalization procedures.

Classification: We initiate the fine-tuning process by utilizing our pre-trained discriminator ViT-
B, on the ImageNet-1K image classification task |Deng et al.|(2009). In the course of fine-tuning, we
implement an AdamW optimizer, undertake 100 epochs of training distributed across 4x NVIDIA
Tesla V100-SXM2 GPUs, and adopt a cosine learning rate scheduler integrated with a 20-epoch
warm-up phase. The hyper-parameters governing the fine-tuning protocol encompass a batch size
set at 160, a fundamental learning rate of 1.25¢e-3, a weight decay rate of 0.05, 5, at 0.9, 35 at 0.999,
a stochastic depth |Huang et al.| (2016)) ratio of 0.1, and a layer-wise learning rate decay of 0.9. The
data augmentation regimen is aligned with that of |Bao et al.| (2021), encompassing methodologies
such as RandAug |Cubuk et al.| (2020), Mixup Zhang et al.| (2017), Cutmix |Yun et al.[|(2019), label
smoothing [Szegedy et al.|(2016), and random erasing Zhong et al.| (2020).

Segmentation: We further experiment on ADE20K [Zhou et al.|(2019) using UperNet |Xiao et al.
(2018)). In fine-tuning, we based on the mae-segmentatio Li| (2022) to train our model. The fine-
tuning procedure is supported by an AdamW optimizer, encompassing a training duration of 16K
iterations distributed across 4x NVIDIA Tesla V100-SXM2 GPUs. The hyper-parameters steering
the fine-tuning process comprise a batch size fixed at 2, a foundational learning rate of 1e-4, a weight
decay of 0.05, 3 set to 0.9, 55 set to 0.999, and an image size configured as 512 x 512.

Detection: We fine-tune Mask R-CNN [He et al.| (2017) end-to-end on COCO |Lin et al.| (2014).
The ViT backbone is adapted for use with FPN Lin et al.|(2017). During the fine-tuning phase, our
approach is built upon the MIMDet |[Fang et al.| (2022)) framework. The execution of this procedure
is facilitated by the utilization of an AdamW optimizer, spanning a training interval of 100 epochs
that is distributed across 4x NVIDIA Tesla V100-SXM2 GPUs. The set of hyper-parameters gov-
erning this fine-tuning process encompasses a batch size maintained at 64, an initial learning rate
established at 8e-5, a weight decay coefficient of 0.1, 31 specified as 0.9, 35 as 0.999, and an image
dimension of 768 x 768.
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Figure 1: Illustration of Pre-training Loss Curves.

0.2 PRE-TRAINING LOSSs CURVES

In this section, we provide the visualization of the loss curves for two different pre-training schemes
to further analyze and explain the content of our main manuscript in Section 4.1. We divide our
analysis into two parts.

First, in the context of the ’from scratch’ scheme (as depicted in Figure @, it becomes evident
that the V&, which follows the adversarial pre-training manner, is difficult to converge (i.e. drop
into the local optimal state) and frequently leads to model collapse (Salimans et al., [2016). This
demonstrates that the generator can generate images that are indistinguishable to the discriminator,
despite potential deficiencies in realistic or information content (as illustrated in Figure 3 of the
main manuscript). Therefore, the model collapse will cause the fluctuations in the training loss of
discriminator and can not coverage in a few number of epochs. Consequently, the performance of
discriminator demonstrates limited improvement during fine-tuning for downstream tasks.

Secondly, within the framework of the continual pre-training scheme (illustrated in Figure[Tb), the
utilization of the official pre-trained model results in an advantageous initialization for the discrimi-
nator. Therefore, the discriminator can obtain the preliminarily discriminative ability to discern the
reconstructed and original images/patches in the early training stages, effectively avoiding the model
collapse and coveraging into the stable statue. As the model undergoes optimization, the generator
continuously enhance itself performance, producing increasingly realistic images that defy discrim-
ination by the discriminator. Consequently, the image encoder of discriminator can progressively
encode more realistic and enhance the hierarchical discrimination throughout representation learn-
ing, improving the generalization performance. This, in turn, transfers the superior generalization
performance in downstream tasks.

In conclusion, from the Figure[T} we can see that a strong discriminator is necessary, which stabilizes
the training process and results in high-quality reconstructed images, leading to better performance.
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Figure 2: Examples of different Mask Ratios, e.g., 60%, 85%, 95%.

GAN loss  Top-1

Strategies  Pre-training strategies Mask ratio weight  acc (%)

Mask Official+50ep 60% 0.2 83.01
Ratio Official+50ep 85% 0.2 83.19
Official+50ep 95% 0.2 82.93

GAN Loss .
Weight Official+50ep 75% 0.5 76.71
VE Official+50ep 75% 0.2 83.43

Table 1: Comparisons of Different Mask Ratios and GAN Loss Weights.

0.3 HYPERPARAMETRIC STRATEGIES

In this section, we have discussed and analyzed the impact of different hyperparameteric strategies
on model performance and visual reconstruction results in detail. It contains the following two
hyperparameters: 1. Mask ratio, 2. GAN loss weight.

Mask Ratio Due to the mask ratio has an important impact on the quality and diversity of the
reconstruction results, therefore, we have delved into the impact of varying mask ratios (e.g. 60%,
85%, 95%) on the quantitative outcomes of the image classification task, as presented in Table [I]
Looking at the quantitative results in Table [T} our V& obtain the best Top-1 acc compared to other
mask ratio strategies by using the 75% mask ratio (75% (Our): 83.43 vs. 60%: 83.01 vs. 85%: 83.19
vs. 95%: 82.93). Furthermore, we also present the corresponding reconstruction results for different
mask ratios, as illustrated in Figure Q We can observe that since the 60% mask ratio can make
the generator reconstruct the authenticity of images nearly as close to the original, the performance
of V& gradually proximities the *Official+50ep’ effect. Moreover, as the mask ratio increases, it
becomes more difficult for the generator to recover more realistic images, which can improve the
representation learning of the discriminator. Specifically, for 95% mask ratio, the extremely less
visible patches results in a reduced benefit of the generated images for pre-training in the hierarchical
discrimination.

During the pre-training of V€ with 95% mask ratio, we also find an interesting observation. Di-
versity of generated image with low mask ratio: As shown in Figure 3] although most of generated
images are visible collapse or invaluable to cause the performance reduction, constrained by the
hierarchical discrimination loss, the generator is still capable of the imagination to make generated
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Figure 3: Examples of 95% Mask Ratio.
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Figure 4: Examples of different GAN Loss Weights. V& adopts the GAN Loss weight as 0.2 in all
experiments.

images to be more reasonable. For the intention of discussion, we believe that future exploration of
a generator that generates high-quality images based on a low mask ratio, which is constrained by
the hierarchical discrimination loss, can increase the diversity of images and thus further improve
the performance of the model.

GAN Loss Weight As the GAN loss significantly contributes to the authenticity of reconstruction
results, we engage in a comprehensive discussion and analysis of the influence exerted by varying
GAN loss weights (e.g. 0.5). We delve into its ramifications on the enhancement of reconstruc-
tion authenticity and, in turn, its repercussions on the generalization performance of discriminator
in downstream tasks. The quantitative results are presented in Table [I] As shown in Table [T} we
can observe that adopting the larger GAN loss weight will cause an extreme reduction of the im-
provement fine-tuning the downstream task, since a large weight leads to the generator saturation
(low-quality generated images) and unstable training (Goodfellow et al.l [2014). Furthermore, we
also present the corresponding reconstruction results for with and without GAN loss weights, as
illustrated in Figure [, We highlight the differences among several kinds of images: the original
image, the images generated with GAN loss weight=0.5 and the reconstructed images obtained by
VE. Itis clear to demonstrate that adopting a low but appropriate GAN loss weight can generate the
high-quality images to improve the performance of model. In the experiment, we set the GAN loss
weight to 0.2.
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