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Abstract

We study collaborative normal mean estimation, where m strategic agents col-1

lect i.i.d samples from a normal distribution N (µ, σ2) at a cost. They all wish2

to estimate the mean µ. By sharing data with each other, agents can obtain bet-3

ter estimates while keeping the cost of data collection small. To facilitate this4

collaboration, we wish to design mechanisms that encourage agents to collect a5

sufficient amount of data and share it truthfully, so that they are all better off than6

working alone. In naive mechanisms, such as simply pooling and sharing all the7

data, an individual agent might find it beneficial to under-collect and/or fabricate8

data, which can lead to poor social outcomes. We design a novel mechanism that9

overcomes these challenges via two key techniques: first, when sharing the others’10

data with an agent, the mechanism corrupts this dataset proportional to how much11

the data reported by the agent differs from the others; second, we design minimax12

optimal estimators for the corrupted dataset. Our mechanism, which is incentive13

compatible and individually rational, achieves a social penalty (sum of all agents’14

estimation errors and data collection costs) that is at most a factor 2 of the global15

minimum. When applied to high dimensional (non-Gaussian) distributions with16

bounded variance, this mechanism retains these three properties, but with slightly17

weaker results. Finally, in two special cases where we restrict the strategy space of18

the agents, we design mechanisms that essentially achieve the global minimum.19

1 Introduction20

With the rise in popularity of machine learning, data is becoming an increasingly valuable resource21

for businesses, scientific organizations, and government institutions. However, data collection is often22

costly. For instance, to collect data, businesses may need to carry out market research, scientists23

may need to conduct experiments, and government institutions may need to perform surveys on24

public services. However, once data has been generated, it can be freely replicated and used by many25

organizations [19]. Hence, instead of simply collecting and learning from their own data, by sharing26

data with each other, organizations can mutually reduce their own data collection costs and improve27

the utility they derive from data [20]. In fact, there are already several platforms to facilitate data28

sharing among businesses [1, 38], scientific organizations [2, 3], and public institutions [15, 32].29

However, simply pooling everyone’s data and sharing with each other can lead to free-riding [22, 33].30

If an agent (e.g an organization) sees that other agents are already contributing a large amount of data,31

then, the cost she incurs to collect her own dataset may not offset the marginal improvement in her32

own learned model due to diminishing returns of increasing dataset sizes (we describe this rigorously33

in §2). Hence, while she benefits from others’ data, she has no incentive to collect and contribute data34

to the pool. A seemingly simple fix to this free-riding problem is to only return the datasets of the35

others if an agent submits a large enough dataset herself. However, this can be easily manipulated by36

a strategic agent who submits a large fabricated (fake) dataset without incurring any cost, receives the37

others’ data, and then discards her fabricated dataset when learning. While the agent has benefited by38

this bad behavior, other agents who may use this fabricated dataset are worse off.39
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In this work, we study these challenges in data sharing in one of the most foundational statistical40

problems, normal mean estimation, where the goal is to estimate the mean µ of a normal distribution41

N (µ, σ2) with known variance σ2. We wish to design mechanisms for data sharing that satisfy42

the three fundamental desiderata of mechanism design; incentive compatibility (IC): agents have43

incentive to collect a sufficiently large amount of data and share it truthfully; individual rationality44

(IR): agents are better off participating in the mechanism than working on their own; and efficiency:45

the mechanism leads to outcomes with small estimation error and data collection costs for all agents.46

Contributions: (i) In §2, we formalize collaborative normal mean estimation in the presence of47

strategic agents. (ii) In §3, we design an IC and IR mechanism for this problem to prevent free-riding48

and data fabrication and show that its social penalty, i.e sum of all agents’ estimation errors and data49

collection costs, is at most twice that of the global minimum. (iii) In Appendix E, we study the same50

mechanism in high dimensional settings and relax the Gaussian assumption to distributions with51

bounded variance. We show that the mechanism retains its properties, with only a slight weakening of52

the IC and efficiency guarantees. (iv) In §4, we consider two special cases where we impose natural53

restrictions on the agents’ strategy space. We show that it is possible to design mechanisms which54

essentially achieve the global minimum social penalty in both settings. Next, we will summarize our55

primary mechanism and the associated theorem in §3.56

1.1 Summary of main results57

Formalism: We assume that all agents have a fixed cost for collecting one sample, and define an58

agent’s penalty (negative utility) as the sum of her estimation error and the cost she incurred to collect59

data. To make the problem well-defined, for the estimation error, we find it necessary to consider the60

maximum risk, i.e maximum expected error over all µ ∈ R. A mechanism asks agents to collect data,61

and then shares the data among the agents in an appropriate manner to achieve the three desiderata.62

An agent’s strategy space consists of three components: how much data she wishes to collect, what63

she chooses to submit after collecting the data, and how she estimates the mean µ using the dataset64

she collected, the dataset she submitted, and the information she received from the mechanism.65

Mechanism and theoretical result: In our mechanism, which we call C3D (Cross-Check and Corrupt66

based on Difference), each agent i collects a dataset Xi and submits a possibly fabricated or altered67

version Yi to the mechanism. The mechanism then determines agent i’s allocation in the following68

manner. It pools the data from the other agents and splits them into two subsets Zi, Z
′
i. Then, Zi is69

returned as is, while Z ′
i is corrupted by adding noise that is proportional to the difference between Yi70

and Zi. The mechanism also provides some side information to indicate the level of corruption. We71

show that this mechanism has a Nash equilibrium where all agents collect a sufficiently large amount72

of data, submit it truthfully, and use a carefully weighted average of the three datasets Xi, Zi, and Z ′
i73

as their estimate for µ. The weighting uses the side information. Below, we state an informal version74

of the main theoretical result of this paper, which summarizes the properties of our mechanism.75

Theorem 1 (informal): The above mechanism is incentive compatible, individually rational, and76

achieves a social penalty that is at most twice the globally minimum social penalty.77

Corruption is the first of two ingredients to achieving IC. If an agent collects less or fabricates, she78

risks looking different to the others, and will receive a dataset Z ′
i of poorer quality. The second79

ingredient is the design of the weighted average estimator which is (minimax) optimal after corruption.80

Had the mechanism assumed that an agent will use any other sub-optimal estimator (e.g a simple81

average), then it will need to lower the amount of corruption to ensure IR and efficiency. However, a82

strategic agent who realizes that a better estimator (e.g weighted average), will reduce their estimation83

error, can leverage this insight to collect less data and decrease their overall penalty.84

Proof techniques: The most challenging part of our analysis is to show IC, First, to show minimax85

optimality of our estimator, we construct a sequence of normal priors for µ and show that the86

minimum Bayes’ risk converges to the maximum risk of the weighted average estimator. However,87

when compared to typical minimax proofs, we face more significant challenges. The first of these88

is that the combined dataset Xi ∪ Zi ∪ Z ′
i is neither independent nor identically distributed as the89

corruption is data-dependent. The second is that the agent’s submission Yi also determines the degree90

of corruption, so we cannot look at the estimator in isolation when computing the minimum Bayes’91

risk; we should also consider the space of functions an agent may use to determine Yi from Xi.92

The third is that the expressions for the minimum Bayes’ risk do not have closed form solutions93

and require non-trivial algebraic manipulations. To complete the IC proof, we show that due to the94
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carefully chosen amount of corruption, the agent should collect a sufficient amount of data to avoid95

excessive corruption, but not too much so as to increase her data collection costs.96

1.2 Related Work97

Mechanism design is one of the core areas of research in game theory [12, 17, 34]. Our work here is98

more related to mechanism design without payments, which has seen applications in fair division [29],99

matching markets [30], and kidney exchange [31] to name a few. There is a long history of work in100

the intersection of machine learning and mechanism design, although the overwhelming majority101

apply learning techniques when there is incomplete information about the mechanism or agent102

preferences, (e.g [6, 8, 21, 27, 28]). On the flip side, some work have designed data marketplaces,103

where customers may purchase data from contributors [4, 5, 18, 36]. These differ from our focus104

where we wish to incentivize agents to collaborate without payments.105

Due to the popularity of shared data platforms [1, 2, 15, 32] and federated learning [20], there has106

been a recent interest in designing mechanisms for data sharing. Sim et al. [33] and Xu et al. [37]107

study fairness in collaborative data sharing, where the goal is to reward agents according to the108

amount of data they contribute. However, their mechanisms do not apply when strategic agents may109

try to manipulate a mechanism. Blum et al. [9] and Karimireddy et al. [22] study collaboration in110

federated learning. However, the strategy space of an agent is restricted to how much data they collect111

and their mechanism rewards each agent according to the quantity of the data she submitted. The112

above four works recognize that free-riding can be detrimental to data sharing, but assume that agents113

will not fabricate data. As discussed above, if this assumption is not true, agents can easily manipulate114

such mechanisms. Fraboni et al. [16] and Lin et al. [24] study federated learning settings where115

free-riders may send in fabricated gradients without incurring the computational cost of computing116

the gradients. However, their focus is on designing gradient descent algorithms that are robust to117

such attacks and not on incentivizing agents to perform the gradient computations. Some work have118

designed mechanisms for federated learning so as to elicit private information (such as data collection119

costs), but their focus is not on preventing free-riding or fabrication [14, 25].120

Our approach of using corruption to engender good behaviour draws inspiration from the robust121

estimation literature, which design estimators that are robust to data from malicious agents [11, 13, 26].122

However, to the best of our knowledge, the specific form of corruption and the subsequent design of123

the minimax optimal estimator are new in this work, and require novel analysis techniques.124

2 Problem Setup125

We will now formally define our problem. We have m agents, who are each able to collect i.i.d126

samples from a normal distribution N (µ, σ2), where σ2 is known. They wish to estimate the mean µ127

of this distribution. To collect one sample, the agent has to incur a cost c. We will assume that σ2, c,128

and m are public information. However, µ ∈ R is unknown, and no agent has auxiliary information,129

such as a prior, about µ. An agent wishes to minimize her estimation error, while simultaneously130

keeping the cost of data collection low. While an agent may collect data on her own to manage this131

trade-off, by sharing data with other agents, she can reduce costs while simultaneously improving her132

estimate. We wish to design mechanisms to facilitate such sharing of data.133

Mechanism: A mechanism receives a dataset from each agent, and in turn returns an allocation Ai134

to each agent. An agent will use her allocation to estimate µ. This allocation could be, for instance, a135

larger dataset obtained with other agents’ datasets. The mechanism designer is free to choose a space136

of allocationsA to achieve the desired goals. Formally, we define a mechanism as a tuple M = (A, b)137

where A denotes the space of allocations, and b is a procedure to map the datasets collected from the138

m agents to m allocations. Denoting the universal set by U , we write the space of mechanismsM as139

M =
{
M = (A, b) : A ⊂ U , b : (

⋃
n≥0 Rn)m → Am

}
. (1)

As is customary, we will assume that the mechanism designer will publish the space of allocations A140

and the mapping b (the procedure used to obtain the allocations) ahead of time, so that agents can141

determine their strategies. However, specific values computed/realized during the execution of the142

mechanism are not revealed, unless the mechanism chooses to do so via the allocation Ai.143

Agents’ strategy space: Once the mechanism is published, the agent will choose a strategy. In our144

setting, this will be the tuple (ni, fi, hi), which determines how much data she wishes to collect, what145

she chooses to submit, and how she wishes to estimate the mean µ. First, the agent samples ni points146
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to collect her initial dataset Xi = {xi,j}ni
j=1, where xi,j ∼ N (µ, σ2), incurring cni cost. She then147

submits Yi = {yi,j}j = fi(Xi) to the mechanism. Here fi is a function which maps the collected148

dataset to a possibly fabricated or falsified dataset of a potentially different size. In particular, this149

fabrication can depend on the data she has collected. Finally, the mechanism returns the agent’s150

allocation Ai, and the agent computes an estimate hi(Xi, Yi, Ai) for µ using her initial dataset Xi,151

the dataset she submitted Yi, and the allocation she received Ai. We include Yi as part of the estimate152

since an agent’s submission may affect the allocation she receives. Consequently, agents could try to153

elicit additional information about µ via a carefully chosen Yi. We can write the strategy space of an154

agent as S = N× F ×H, where F is the space of functions mapping the dataset collected to the155

dataset submitted, andH is the space of all estimators using all the information she has. We have:156

F =
{
f :
⋃

n≥0 Rn → ⋃
n≥0 Rn

}
, H =

{
h :
⋃

n≥0 Rn × ⋃
n≥0 Rn × A → R

}
. (2)

One element of interest in F is the identity I which maps a dataset to itself. A mechanism designer157

would like an agent to use fi = I, i.e to submit only the data that she collected, so that other agents158

can benefit from her data. Going forward, when s = {si}i ∈ Sm denotes the strategies of all agents,159

we will use s−i = {sj}j ̸=i to denote the strategies of all agents except i.160

Agent penalty: The agent’s penalty pi (i.e negative utility) is the sum of her squared estimation error161

and the cost cni incurred to collect her dataset Xi of ni points. The agent’s penalty depends on the162

mechanism M and the strategies s = {sj}j of all the agents. Making this explicit, pi is defined as:163

pi(M, s) = sup
µ∈R

E
[
(hi(Xi, Yi, Ai)− µ)2

∣∣∣µ
]
+ cni (3)

The term inside the expectation is the squared difference between the agent’s estimate and the true164

mean (conditioned on the true mean µ). The expectation is with respect to the randomness of165

all agents’ data and possibly any randomness in the strategies employed by the agents and/or the166

mechanism. We consider the maximum risk, i.e supremum over µ ∈ R, since the true mean µ is167

unknown to the agent a priori, and their strategy should yield good estimates, and hence small penalty,168

over all possible values µ. To illustrate this further, note that when the value of true mean µ is µ′,169

the optimal strategy for an agent will always be to not collect any data and choose the estimator170

hi(·, ·, ·) = µ′ leading to 0 penalty. However, this strategy can be meaningfully realized by an agent171

only if she knew that µ = µ′ a priori which renders the problem meaningless1. Considering the172

maximum risk accounts for the fact that µ is unknown and makes the problem well-defined.173

Recommended strategies: In addition to publishing the mechanism, the mechanism designer will174

recommend strategies s⋆ = {s⋆i }i ∈ Sm for the agents so as to incentivize collaboration and induce175

optimal social outcomes.176

Desiderata: We can now define the three desiderata for a mechanism:177

1. Incentive compatibility (IC): A mechanism M = (A, b) is said to be IC at the recommended178

strategy profile s⋆ if, for each agent i, and for every other alternative strategy si ∈ S for that179

agent, we have pi(M, s⋆) ≤ pi(M, (si, s
⋆
−i)). That is, s⋆ is a Nash equilibrium so no agent has180

incentive to deviate if all other agents are following s⋆.181

2. Individual rationality (IR): We say that a mechanism M is IR at s⋆ if no agent suffers from182

a higher penalty by participating in the mechanism than the lowest possible penalty she could183

achieve on her own. If an agent does not participate, she does not submit nor receive any data from184

the mechanism; she will simply choose how much data to collect and design the best possible185

estimator. Formally, we say that a mechanism M is IR if the following is true for each agent i:186

pi(M, s⋆) ≤ inf
ni∈N, hi∈H

{
sup
µ∈R

E
[
(hi(Xi,∅,∅)− µ)2 |µ

]
+ cni

}
. (4)

3. Efficiency: The social penalty P (M, s) of a mechanism M when agents follow strategies s, is the187

sum of agent penalties (defined below). We define PR(M, s⋆) to be the ratio between the social188

penalty of a mechanism at the recommended strategies s⋆, and the lowest possible social penalty189

among all possible mechanisms and strategies (without IC or IR constraints). We have:190

1This is akin to the reason why it is customary to study the maximum risk in frequentist statistics [23,
35]. An alternative approach is to take a Bayesian view, considering a prior on µ and using the Bayes’ risk
Eµ[E[(hi(Xi, Yi, Ai) − µ)2|µ]] instead of the maximum risk in pi. While we have adopted a frequentist
formalism here, our main proof ideas can be ported over to the Bayesian setting as well.
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P (M, s) =
∑

i∈[m]

pi(M, s), PR(M, s⋆) =
P (M, s⋆)

inf
M ′∈M, s∈Sm

P (M ′, s)
(5)

Note that PR ≥ 1. We say that a mechanism is efficient if PR(M, s⋆) = 1 and that it is191

approximately efficient if PR(M, s⋆) is bounded by some constant that does not depend on m. If192

s⋆i is a Nash equilibrium, then PR(M, s⋆) is an upper bound on the price of stability [7].193

For what follows, we will discuss optimal strategies for agents working on her own and present a194

simple mechanism which minimizes the social penalty, but has a poor Nash equilibrium.195

Optimal strategies for an agent working on her own: Recall that, given n samples {xi}ni=1 from196

N (µ, σ2), the sample mean is a minimax optimal estimator [23]; i.e among all possible estimators h,197

the sample mean minimizes the maximum risk supµ∈R E[(µ− h({xi}ni=1,∅,∅))2 |µ] (note that the198

agent only has the dataset she collected). Moreover, its mean squared error is σ2/n for all µ ∈ R.199

Hence, an agent acting on her own will choose the sample mean and collect ni = σ/
√
c samples so200

as to minimize their penalty; as long as the amount of data is less than σ/
√
c, an agent has incentive201

to collect more data since the cost of collecting one more point is offset by the marginal decrease in202

estimation error. This can be seen via the following simple calculation:203

inf
ni∈R
hi∈H

(
sup
µ

E
[
(hi(Xi,∅,∅)− µ)2

∣∣∣µ
]
+ cni

)
= min

ni∈R

(σ2

ni
+ cni

)
= 2σ

√
c

∆
= pIRmin . (6)

Let pIRmin = 2σ
√
c denote the lowest achievable penalty by an agent working on her own. If all m204

agents work independently, then the total social penalty is mpIRmin = 2σm
√
c. Next, we will look at a205

simple mechanism and an associated set of strategies which achieve the global minimum penalty. This206

will show that it is possible for all agents to achieve a significantly lower penalty via collaboration.207

A globally optimal mechanism without strategic considerations: The following simple mechanism208

Mpool, pools all the data from the other agents and gives it back to an agent. Precisely, it chooses209

the space of allocation A =
⋃

n≥0 Rn to be datasets of arbitrary length, and sets agent i’s allocation210

to be Ai =
⋃

j ̸=i Yi. The recommended strategies spool = {(npool
i , f pool

i , hpool
i )}i asks each agent211

to collect npool
i = σ/

√
cm points2, submit it as is f pool

i = I, and use the sample mean of all points212

as her estimate hpool
i (Xi, Xi, Ai) = 1

|Xi∪Ai|
∑

z∈Xi∪Ai
z. It is straightforward to show that this213

minimizes the social penalty if all agents follow spool. After each agent has collected their datasets214

{Xi}i, the social penalty is minimized if all agents have access to each other’s datasets and they all215

use a minimax optimal estimator: this justifies using Mpool with f pool
i = I and setting hpool

i to be the216

sample mean. The following simple calculation justifies the choice of
∑

i n
pool
i :217

inf
s∈Sm

m∑

i=1

(
sup
µ

E
[
(hi(Xi, fi, Ai)− µ)2

∣∣∣µ
]
+ cni

)
= min

{ni}i

(
mσ2

∑
i ni

+ c
∑

i

ni

)
= 2σ

√
mc.

However, spool is not a Nash equilibrium of this mechanism, as an agent will find it beneficial to218

free-ride. If all other agents are submitting σ/
√
cm points, by collecting no points, an agent’s penalty219

is σ
√
mc/(m − 1), as she does not incur any data collection cost. This is strictly smaller than220

2σ
√
c/m when m ≥ 3. In fact, it is not hard to show that Mpool is at a Nash equilibrium only when221

the total amount of data is σ/
√
c; for additional points, the marginal reduction in the estimation error222

for an individual agent does not offset her data collection costs. The social penalty at these equilibria223

is σ
√
c(m+ 1) which is significantly larger than the global minimum when there are many agents.224

A seemingly simple way to fix this mechanism is to only return the datasets of the other agents if225

an agent submits at least σ/
√
cm points. However, as we will see in §4.1, such a mechanism can226

also be manipulated by an agent who submits a fabricated dataset of σ/
√
cm points without actually227

collecting any data and incurring any cost and then discarding the fabricated dataset when estimating.228

Next, we will present our mechanism for this problem which satisfies all three desiderata.229

3 Method and Results230

We have outlined our mechanism MC3D, and its interaction with the agents in Algorithm 1 in the231

natural order of events. We will first describe it procedurally, and then motivate our design choices.232

2To avoid rounding effects, henceforth we will treat σ/
√
cm, and σ/

√
c as integers.
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Algorithm 1 MC3D

1: Mechanism designer publishes:
2: The allocation space A =

⋃
n≥0 Rn ×⋃n≥0 Rn × R+, and the procedure in lines 6–15.

3: Each agent i:
4: Choose strategy si = (ni, fi, hi). # See (8) for recommended strategies.
5: Sample ni points Xi = {xi,j}ni

j=1 and submit Yi = fi(Xi) to the mechanism.
6: Mechanism:
7: For each agent i ∈ [m]: # can be done simultaneously for all agents
8: Y−i ←

⋃
j ̸=i Yj .

9: If m ≤ 4: # Simply pool and return all of the other agents’ data to agent i.
10: Ai ← (Y−i,∅, 0). Return Ai to agent i.
11: Else:
12: Zi ← sample min{|Y−i|, σ/

√
cm} points in Y−i without replacement.

13: η2i ← α2
(

1
|Yi|
∑

y∈Yi
y − 1

|Zi|
∑

z∈Zi
z
)2

# See (7) for α.

14: Z ′
i ← {z + ϵz,i, for all z ∈ Y−i\Zi where ϵz,i ∼ N (0, η2i )}

15: Ai ← (Zi, Z
′
i, η

2
i ). Return Ai to agent i.

16: Each agent i:
17: Compute estimate hi(Xi, Yi, Ai). # See (8) for recommended estimator.

Our mechanism uses the following allocation space,A =
⋃

n≥0 Rn×⋃n≥0 Rn×R+. An allocation233

Ai = (Zi, Z
′
i, η

2
i ) ∈ A consists of an uncorrupted dataset Zi, a corrupted dataset Z ′

i, and the234

variance η2i of the noise added to Z ′
i for corruption. Once the mechanism and the allocation space235

are published, agent i chooses her strategy s = (ni, fi, hi). She collects a dataset Xi = {xi,j}ni
j=1,236

where xi,j ∼ N (µ, σ2), and submits Yi = fi(Xi) to the mechanism.237

Our mechanism determines agent i’s allocation as follows. Let Y−i be the union of all datasets238

submitted by the other agents. If there are at most four agents, we simply return all of the other239

agents’ data without corruption by setting Ai ← (Y−i,∅, 0). If there are more agents, the mechanism240

first chooses a random subset of size min{|Y−i|, σ/
√
cm} from Y−i; denote this Zi. In line 13, the241

mechanism individually adds Gaussian noise to the remaining points Y−i\Zi to obtain Z ′
i (line 14).242

The variance η2i of the noise depends on the difference between the sample means of the subset Zi243

and the agent’s submission Yi. It is modulated by a value α, which is a function of c, m, and σ2.244

Precisely, α is the smallest number larger than
√
σ(cm)−1/4 which satisfies G(α) = 0, where:245

G(α) :=

(
m − 4

m − 2

4α2

σ/
√
cm

− 1

)
4α

√
σ(m/c)1/4

−
(
4(m + 1)

α2

σ
√

m/c
− 1

)
√
2π exp

(
σ
√

m/c

8α2

)
Erfc

(√
σ(m/c)1/4

2
√
2α

)
(7)

Finally, the mechanism returns the allocation Ai = (Zi, Z
′
i, η

2
i ) to agent i and the agent estimates µ.246

Recommended strategies: The recommended strategy s⋆i = (n⋆
i , f

⋆
i , h

⋆
i ) for agent i is given in (8).247

The agent should collect n⋆
i = σ/(m

√
c) samples if there are at most four agents, and n⋆

i = σ/
√
cm248

samples otherwise. She should submit it without fabrication or alteration fi = I, and then use a249

weighted average of the datasets (Xi, Zi, Z
′
i) to estimate µ. The weighting is proportional to the250

inverse variance of the data. For Xi and Zi this is simply σ2, but for Z ′
i, the variance is σ2 + η2i since251

the mechanism adds Gaussian noise with variance η2i . We have:252

n⋆
i =

{
σ

m
√
c

if m ≤ 4
σ√
cm

if m > 4
, f⋆i = I, h⋆i (Xi, Yi, (Zi, Z

′
i, η

2
i )) =

1
σ2

∑
u∈Xi∪Zi

u+ 1
σ2+η2

i

∑
u∈Z′

i
u

1
σ2

∣∣Xi ∪ Z′
i

∣∣+ 1
σ2+η2

i

∣∣Z′
i

∣∣
(8)

Design choices: Next, we will describe our design choices and highlight some key challenges. When253

m ≤ 4, it is straightforward to show that the mechanism satisfies all our desired properties (see254

beginning of §3.1), so we will focus on the case m > 4. First, recall that the mechanism needs to255

incentivize agents to collect a sufficient amount of samples. However, simply counting the number256

of samples can be easily manipulated by an agent who simply submits a fabricated dataset of a257

large number of points. Instead, Algorithm 1 attempts to infer the quality of the data submitted258

by the agents using how well an agent’s submission Yi approximates µ. Ideally, we would set the259

variance η2i of this corruption to be proportional to the difference ( 1
|Yi|
∑

y∈Yi
y − µ)2, so that the260
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more data she submits, the less the variance of Z ′
i, which in turn yields a more accurate estimate for261

µ. However, since µ is unknown, we use a subset Zi obtained from other agents’ data as a proxy262

for µ, and set η2i proportional to
(

1
|Yi|
∑

y∈Yi
y − 1

|Zi|
∑

z∈Zi
z
)2

. If all agents are following s⋆,263

then |Yi| = |Zi| = σ/
√
cm = n⋆

i ; it is sufficient to use only n⋆
i points for validating Yi since both264

1
|Yi|
∑

y∈Yi
y and 1

|Zi|
∑

z∈Zi
z will have the same order of error in approximating µ.265

The second main challenge is the design of the recommended estimator h⋆
i . In §3.1 we show how266

splitting Y−i into a clean and corrupted parts Zi, Z
′
i allows us to design a minimax optimal estimator.267

A minimax optimal estimator is crucial to achieving IC. To explain this, say that the mechanism268

assumes that agents will use a sub-optimal estimator, e.g sample mean of Xi ∪ Zi ∪ Z ′
i. Then,269

to account for the larger estimation error, it will need to choose a lower level of corruption η2i to270

minimize the social penalty. However, a smart agent who uses the weighted average (or any other271

better estimator) will realize that she can achieve a lower maximum risk with a better estimator272

instead of more data. She can leverage this insight to collect less data and lower her overall penalty.273

This concludes the description of our mechanism. The following theorem, which is the main274

theoretical result of this paper, states that MC3D achieves the three desiderata outlined in §2.275

Theorem 1. Let m > 1, α be as defined in (7), and s⋆i be as defined in (8). Then, the following276

statements are true about the mechanism MC3D in Algorithm 1. (i) The strategy profile s⋆ is a Nash277

equilibrium. (ii) The mechanism is individually rational at s⋆. (iii) The mechanism is approximately278

efficient, with PR(MC3D, s
⋆) ≤ 2.279

The mechanism is IC as, provided that others are following s⋆i , there is no reason for any one agent280

to deviate. Moreover, we achieve low social penalty at s⋆i . Before we proceed, the expression for281

α in (7) warrants explanation. If we treat α is a variable, we find that different choices of α can282

lead to other Nash equilibria with corresponding bounds on PR. This specific choice of α leads to a283

Nash equilibrium where agents collect σ/
√
cm points, and a small bound on PR. Throughout this284

manuscript, we will treat α as the specific value obtained by solving (7), and not as a variable.285

High dimensional non-Gaussian distributions: In Appendix E, we study MC3D when applied to286

d–dimensional distributions. In Theorem 7, we show that under bounded variance assumptions, s⋆ is287

an εm-approximate Nash equilibrium and that PR(MC3D, s
⋆) ≤ 2 + εm where εm vanishes with m.288

3.1 Proof sketch of Theorem 1289

When m ≤ 4: First, consider the (easy) case m ≤ 4. At s⋆i , the total amount of data collected is290

σ/
√
c (see n⋆

i in (8)), and as there is no corrupted dataset, h⋆
i simply reduces to the sample mean of291

Xi ∪ Y−i. The mechanism is IR since an agent’s penalty will be σ
√
c(1 + 1/m) which is smaller292

than pIRmin (6). It is approximately efficient since the social penalty is σ
√
c(m+ 1) which is at most293

twice the global minimum 2σ
√
mc when m ≤ 4. Finally, IC is guaranteed by the same argument294

used in (6); as long as the total amount of data is less than σ/
√
c, the cost of collecting one more295

point is offset by the marginal decrease in the estimation error. Moreover, as Ai does not depend on296

fi under these conditions, there is no incentive to fabricate or falsify data.297

When m > 4: We will divide this proof into four parts. We first show that G(α) = 0 in line (6) has a298

solution α larger than
√
n⋆
i =
√
σ(cm)−1/4. This will also be useful when analyzing the efficiency.299

1. Equation (7) has a solution. We derive an asymptotic expansion of Erfc(·) using integration by300

parts to analyze the solution to (7). When m ≥ 5, we show that G
(√

n⋆
i

)
×G

(√
n⋆
i (1 + 8/

√
m)
)
<301

0. By continuity of G, there exists αm ∈
(√

n⋆
i ,
√
n⋆
i (1 + 8/

√
m)
)

s.t. G(αm) = 0. For m302

large enough such that the residual in the asymptotic expansion is negligible, we show αm ∈303 (√
n⋆
i ,
√
n⋆
i (1 + logm/m)

)
via an identical technique.304

2. The strategies s⋆ in (8) is a Nash equilibrium: We show this via the following two steps. First305

(2.1), We show that fixing any ni, the maximum risk and thus the penalty pi is minimized when agent306

i submits the raw data and uses the weighted average as specified in (8), i.e for all ni,307

pi(MC3D, ((ni, f
⋆
i , h

⋆
i ), s

⋆
−i)) ≤ pi(MC3D, ((ni, fi, hi), s

⋆
−i)), ∀(ni, fi, hi) ∈ N×F ×H. (9)

Second (2.2), we show that pi is minimized when agent i collects n⋆
i samples under (f⋆

i , h
⋆
i ), i.e.308

pi(MC3D, ((n
⋆
i , f

⋆
i , h

⋆
i ), s

⋆
−i)) ≤ pi(MC3D, ((ni, f

⋆
i , h

⋆
i ), s

⋆
−i)), ∀ni ∈ N. (10)
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2.1: Proof of (9). As the data collection cost does not change for fixed ni, it is sufficient to show that309

(f⋆
i , h

⋆
i ) minimizes the maximum risk. The following is a well-known recipe for proving minimax310

optimality of an estimator [23]: design a sequence of priors {Λℓ}ℓ, compute the minimum Bayes’311

risk {Rℓ}ℓ for any estimator, and then show that Rℓ converges to the maximum risk of the proposed312

estimator as ℓ→∞. To apply this recipe, we use a sequence of normal priors Λℓ = N (0, ℓ2) for µ.313

Before we proceed, we need to handle two issues. The first of these concerns the posterior for µ314

when conditioned on (Xi, Zi, Z
′
i). Since the corruption terms ϵz,i added to Z ′

i depend on Xi and315

Zi, this dataset is not independent. Moreover, as the variance η2i is the difference between two316

normal random variables, Z ′
i is not normal. Despite these, we are able to show that the posterior317

µ|(Xi, Zi, Z
′
i) is normal. The second challenge is that the submission fi also affects the estimation318

error as it determines the amount of noise η2i . We handle this by viewing F ×H as a rich class of319

estimators and derive the optimal Bayes’ estimator (fB
i,ℓ, h

B
i,ℓ) ∈ F ×H under the prior Λℓ. We then320

show that the minimum Bayes’ risk converges to the maximum risk when using (f⋆
i , h

⋆
i ).321

Next, under the prior Λℓ = N (0, ℓ2), we can minimize the Bayes’ risk with respect to hi ∈ H by322

setting hB
i,ℓ to be the posterior mean. Then, the minimum Bayes’ risk Rℓ can be written as,323

Rℓ = inf
fi∈F

E

∣∣Z′
i

∣∣(σ2 + α2

(
1

|Yi|
∑
y∈Yi

y − 1

|Zi|
∑
z∈Zi

z

)2)−1

+
|Xi|+ |Zi|

σ2
+

1

ℓ2

−1
Note that Yi = fi(Xi) depends on fi. Via the Hardy-Littlewood inequality [10], we can show that324

the above quantity is minimized when fB
i,ℓ is chosen to be a shrunk version of the agent’s initial325

dataset Xi, i.e fB
i,ℓ(Xi) =

{(
1 + σ2/(|X|ℓ2)

)−1
x, ∀x ∈ Xi

}
. This gives us an expression for326

the minimum Bayes’ risk Rℓ under prior Λℓ. To conclude the proof, we note that the minimum327

Bayes’ risk under any prior is a lower bound on the maximum risk, and show that Rℓ approaches the328

maximum risk of (f⋆
i , h

⋆
i ) from below. Hence, (f⋆

i , h
⋆
i ) is minimax optimal for any ni. (Above, it is329

worth noting that fB
i,ℓ → f⋆

i = I as ℓ→∞. In the Appendix, we also find that hB
i,ℓ → h⋆

i . )330

2.2: Proof of (10). We can now write pi(MC3D, ((ni, f
⋆
i , h

⋆
i ), s

⋆
−i)) = R∞ + cni, where R∞ is the331

maximum risk of (f⋆
i , h

⋆
i ) (and equivalently, the limit of the minimum Bayes’ risk):332

R∞ := Ex∼N (0,1)

[(
(m− 2)n⋆

i

(
σ2 + α2

(
σ2/ni + σ2/n⋆

i

)
x2
)−1

+ (ni + n⋆
i )σ

−2
)−1

]

The term inside the expectation is convex in ni for each fixed x. As expectation preserves convexity,333

we can conclude that pi is a convex function of ni. The choice of α in (7) ensures that the derivative334

is 0 at n⋆ which implies that n⋆ is a minimum of this function.335

3. MC3D is individually rational at s⋆: This is a direct consequence of step 2 as we can show that an336

agent ‘working on her own’ is a valid strategy in MC3D.337

4. MC3D is approximately efficient at s⋆: By observing that the global minimum penalty is 2σ
√
cm,338

we use a series of algebraic manipulations to show PR(MC3D, s
⋆) = 1

2

(
10α2/n⋆

i −1
4(m+1)α2/(mn⋆

i )−1 + 1
)
. As339

α >
√
n⋆
i , some simple algebra leads to PR(MC3D, s

⋆) < 2. (The above expression holds for the340

specific value of α in (7), and should not be viewed as a function of α.)341

4 Special Cases: Restricting the Agents’ Strategy Space342

In this section, we study two special cases motivated by some natural use cases, where we restrict the343

agents’ strategy space. In addition to providing better guarantees on the efficiency, this will also help344

us better illustrate the challenges in our original setting.345

4.1 Agents cannot fabricate or falsify data346

First, we study a setting where agents are not allowed to fabricate data or falsify data. Specifically,347

in (2), F is restricted to functions which map a dataset to any subset. This is applicable when there348

are regulations preventing such behavior (e.g government institutions, hospitals)349

Mechanism: The discussion at the end of §2 motivates the following modification to the pooling350

mechanism. We set the allocation space to be A =
⋃

n≥0 Rn, i.e the space of all datasets. If an351
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agent i submits at least σ/
√
cm points, then given her all the other agents’ datasets, i.e Ai = ∪j ̸=iYj ;352

otherwise, set Ai = ∅. The recommended strategy s⋆i = (n⋆
i , f

⋆
i , h

⋆
i ) of each agent is to collect353

σ/
√
cm points, submit it as is f⋆

i = I, and then use the sample mean of Zi ∪Ai to estimate µ. The354

theorem below, whose proof is straightforward, states the main properties of this mechanism.355

Theorem 2. The following statements about the mechanism and strategy profile s⋆ in the paragraph356

above are true when F is restricted to functions which map a dataset to any subset: (i) s⋆ is a Nash357

equilibrium. (ii) The mechanism is individually rational at s⋆. (iii) At s⋆, the mechanism is efficient.358

It is not hard to see that this mechanism can be easily manipulated by the agent if there are no359

restrictions on F . As the mechanism only checks for the amount of data submitted, the agent can360

submit a fabricated dataset of σ/
√
cm points, and then discard this dataset when computing the361

estimate, which results in detrimental free-riding. Any naive modification to check for the quality of362

the data can also be sidestepped by agents who sample only a few points, and use that to fabricate a363

larger dataset (e.g by sampling a large number of points from a Gaussian fitted to the small sample).364

4.2 Agents accept an estimated value from the mechanism365

Our next setting is motivated by use cases where the mechanism may directly deploy the estimated366

value for µ in some downstream application for the agent, i.e the agents are forced to use this value.367

This is motivated by federated learning, where agents collect and send data to a server (mechanism),368

which deploys a model (estimate) directly on the agent’s device [9, 22]. This requires modifying the369

agent’s strategy space to S = N× F . Now, an agent can only choose (ni, fi), how much data she370

wishes to collect, and how to fabricate or falsify the dataset. A mechanism is defined as a procedure371

b :
(⋃

n≥0 Rn
)m → Rm, which maps m datasets to m estimated mean values.372

Algorithm 3 (see Appendix D) outlines a family of mechanisms parametrized by ϵ > 0 for this setting.373

As we will see shortly, with parameter ϵ, the mechanism can achieve a PR of (1+ϵ). This mechanism374

computes agent i’s estimate for µ as follows. First, let Y−i be the union of all datasets submitted by375

the other agents. Similar to Algorithm 1, the algorithm individually adds Gaussian to each Y−i to376

obtain Zi (line 10). Unlike before, this noise is added to the entire dataset and the variance η2i of this377

noise depends on the difference between the sample means of the agent’s submission Yi and all of378

the other agents’ submissions Y−i. It also depends on two ϵ-dependent parameters defined in line 6.379

Finally, the mechanism deploys the sample mean of Yi ∪ Zi as the estimate for µ. The recommended380

strategies s⋆i = (n⋆
i , f

⋆
i ) for the agents is to simply collect n⋆

i = σ/
√
cm points and submit it as is381

f⋆
i = I. The following theorem states the main properties of the mechanism.382

Theorem 3. Let ϵ > 0. The following statements about Algorithm 3 and the strategy profile s⋆ given383

in the paragraph above are true: (i) s⋆ is a Nash equilibrium. (ii) The mechanism is individually384

rational at s⋆. (iii) At s⋆, the mechanism is approximately efficient with PR(M, s⋆) ≤ 1 + ϵ.385

The above theorem states that it is possible to obtain a social penalty that is arbitrarily close to the386

global minimum under the given restriction of the strategy space. However, this mechanism is not IC387

if agents are allowed to design their own estimator. For instance, if the mechanism returns Ai = Zi388

(line 10), then using a weighted average of the data in Xi and Zi yields a lower estimation error389

than simple average used by the mechanism (see Appendix D). An agent can leverage this insight to390

collect and submit less data and obtain a lower overall penalty at the expense of other agents.391

5 Conclusion392

We studied collaborative normal mean estimation in the presence of strategic agents. Naive mecha-393

nisms which only look at the quantity of the dataset submitted, can be manipulated by agents who394

under-collect and/or fabricate data, leaving all agents worse off. To address this issue, when sharing395

the others’ data with an agent, our mechanism MC3D corrupts this dataset proportional to how much396

the data reported by the agent differs from the other agents. We design minimax optimal estimators397

for this corrupted dataset to achieve a socially desirable Nash equilibrium.398

Future directions: We believe that designing mechanisms for other collaborative learning settings399

may require relaxing the exact IC guarantees to make the analysis tractable. For many learning400

problems, it is difficult to design exactly optimal estimators, and it is common to settle for rate-401

optimal (i.e up to constants) estimators [23]. For instance, even simply relaxing to high dimensional402

distributions with bounded variance, MC3D can only provide an approximate IC guarantee.403
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Note to reviewers: In the main text of the supplementary submission, we fixed 3 typos in equations506

and rephrased a potentially confusing sentence in line 272 after the deadline. The original submission507

can still be evaluated without any significant hindrance in understanding the paper.508

A Proof of Theorem 1509

In this section, we prove Theorem 1. This section is organized as follows. First, in §A.1, we consider510

the case where m ≤ 4. In the remainder of this section, we will assume m ≥ 5. First, in §A.2, we511

will show that (7) can be solved for α and state some properties about the solution. Then, in §A.3, we512

will prove the incentive compatibility result, in §A.4 we will prove individual rationality, and in §A.5,513

we will prove the result on efficiency.514

A.1 When m ≤ 4515

First, consider the (easy) case m ≤ 4. At s⋆i , the total amount of data collected is σ/
√
c as each agent516

will be collecting n⋆
i = σ

m
√
c

(see (8)). As there is no corrupted dataset, h⋆
i simply reduces to the517

sample mean of Xi ∪ Y−i. The individual rationality property follows from the following simple518

calculation:519

pi(MC3D, s
⋆) =

(
1 +

1

m

)√
cσ < 2

√
cσ = pIRmin.

Similarly, the bound on the ratio between the penalties can also be obtained via the following520

calculation:521

PR =
m
(
1 + 1

m

)√
cσ

2σ
√
cm

<
√
m ≤ 2.

Finally, to show IC, consider agent i and assume that all other agents have followed the recommended522

strategies, i.e collected σ/(m
√
c). Then, the agent will have an uncorrupted dataset Y−i =

⋃
j ̸=i Xj523

of n⋆
−i = (m−1)σ/(m

√
c) points with no corruption. Regardless of what she chooses to submit, the524

best estimator she could use with the union of this dataset Y−i and the data she collects Xi and will525

be the sample mean as it is minimax optimal. The number of points that minimizes her penalty is,526

argmin
ni

(
sup
µ

E
[
(hi(Xi, Yi, Y−i)− µ)2

∣∣∣µ
]
+ cni

)
= argmin

ni∈R

( σ2

ni + n⋆
−i

+ cni

)
=

σ

m
√
c

Finally, as Ai does not depend on fi under these conditions, there is no incentive to fabricate or527

falsify data, i.e choosing anything other than f⋆ = I does not lower her utility.528

In the remainder of this section, will study the harder case, m ≥ 4.529

A.2 Existence of a solution to (7) and some of its properties530

In this section, we show that G
(

σ1/2

(cm)1/4

)
< 0 and G

((
1 + Cm

m

)
σ1/2

(cm)1/4

)
> 0, where Cm = 20531

when m ≤ 20 and Cm = 5 when m > 20. This means equation G(α) = 0 has solution in532 (
σ1/2

(cm)1/4
,
(
1 + Cm

m

)
σ1/2

(cm)1/4

)
.533

First, in Lemma 12, we derive an asymptotic expansion of the Gaussian complementary error function,534

and construct lower and upper bounds for G(α) that are easier to work with. We have restated these535

lower (ErfcLB) and upper (ErfcUB) bounds below.536

ErfcUB(x) :=
1√
π

(
exp(−x2)

x
− exp(−x2)

2x3
+

3 exp(−x2)

4x5

)
(11)

ErfcLB(x) :=
1√
π

(
exp(−x2)

x
− exp(−x2)

2x3

)
(12)

We can now use this to derive the following lower (GLB) and upper (GUB) bounds on G. Here, we537

have used the fact that 4(m+ 1) α2

σ
√

m/c
− 1 > 0 when α ≥ (σ/

√
cm)1/2. We have:538

GLB(α) :=

(
m− 4

m− 2

4α2

σ/
√
cm
− 1

)
4α√

σ(m/c)1/4
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Figure 1: Plot for G
((

1 + Cm

m

)
σ1/2

(cm)1/4

)
. See G_em_plot.py. The discontinuity at m = 20 is due

to the different values for Cm when m ≤ 20 and when m > 20.

−
(
4(m+ 1)

α2

σ
√
m/c

− 1

)
√
2π exp

(
σ
√
m/c

8α2

)
ErfcUB

(√
σ(m/c)1/4

2
√
2α

)
,

GUB(α) :=

(
m− 4

m− 2

4α2

σ/
√
cm
− 1

)
4α√

σ(m/c)1/4

−
(
4(m+ 1)

α2

σ
√
m/c

− 1

)
√
2π exp

(
σ
√
m/c

8α2

)
ErfcLB

(√
σ(m/c)1/4

2
√
2α

)
.

By first, substituting σ/
√
cm for α in the expressions for GUB and ErfcUB, and then via a sequence539

of algebraic manipulations, we can verify that540

G

(
σ1/2

(cm)1/4

)
≤ GUB

(
σ1/2

(cm)1/4

)

=
4
(

4(m−4)
m−2 − 1

)(
σ√
cm

)1/2

√
σ
(
m
c

)1/4 −
√
2

(
4(m+ 1)√

m
c

√
cm
− 1

)

2
√
2
(

σ√
cm

)1/2

√
σ
(
m
c

)1/4 −
8
√
2
(

σ√
cm

)3/2

σ3/2
(
m
c

)3/4




=− 128

(m− 2)m5/2
< 0.

Next, we will show that G
((

1 + Cm

m

)
σ1/2

(cm)1/4

)
> 0 by studying the lower bound GLB. For m ∈541

[5, 500], we can verify individually that G
((

1 + Cm

m

)
σ1/2

(cm)1/4

)
> 0 (See Figure 1). For m > 500,542

we have:543

G

((
1 +

Cm

m

)
σ1/2

(cm)1/4

)
= G

((
1 +

5

m

)
σ1/2

(cm)1/4

)
≥ GLB

((
1 +

5

m

)
σ1/2

(cm)1/4

)

=

4

(
4( 5

m+1)
2
(m−4)

m−2 − 1

)(
5
m + 1

) (
σ√
cm

)1/2

√
σ
(
m
c

)1/4

−
√
2

(
4
(

5
m + 1

)2
(m+ 1)√

m
c

√
cm

− 1

)(
2
√
2
(

5
m + 1

) (
σ√
cm

)1/2

√
σ
(
m
c

)1/4 −
8
√
2
(

5
m + 1

)3 ( σ√
cm

)3/2

σ3/2
(
m
c

)3/4

+
96
√
2
(

5
m + 1

)5 ( σ√
cm

)5/2

σ5/2
(
m
c

)5/4

)

=
64(m+ 5)3

(
m6 − 191m5 − 1566m4 − 3920m3 + 2100m2 + 19500m+ 15000

)

(m− 2)m21/2
.
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When m > 500,544

m6 − 191m5 − 1566m4 − 3920m3 = m3(m3 − 191m2 − 1566m− 3920)

>m3((200 + 200 + 100)m2 − 191m2 − 1566m− 3920)

>m3(200m2 + 105m+ 2.5× 107 − 191m2 − 1566m− 3920) > 0.

Combining the results from the two previous displays, we have, G
((

1 + Cm

m

)
σ1/2

(cm)1/4

)
> 0 which545

completes the proof for this section.546

A.3 Algorithm 1 is incentive compatible547

In this section, we will prove the following lemma which states that s⋆i , as defined in (8) is a Nash548

equilibrium in MC3D.549

Lemma 4 (NIC). The recommended strategies s⋆ = {(n⋆
i , f

⋆
i , h

⋆
i )}i as defined in (8) in mechanism550

MC3D (Algorithm 1) satisfies:551

pi(MC3D, s
⋆) ≤ pi(MC3D, (si, s

⋆
−i))

for all i ∈ [m] and si ∈ N×F ×H.552

The Proof of Lemma 4 relies on the following two lemmas:553

Lemma 5 (Optimal Estimation and Submission). For all i ∈ [m] and (ni, fi, hi) ∈ N×F ×H.554

pi(MC3D, ((ni, f
⋆
i , h

⋆
i ), s

⋆
−i)) ≤ pi(MC3D, ((ni, fi, hi), s

⋆
−i)).

See the Proof of Lemma 5 in §A.3.1555

Lemma 6 (Optimal Sample Size). For all i ∈ [m] and ni ∈ N.556

pi(MC3D, ((n
⋆
i , f

⋆
i , h

⋆
i ), s

⋆
−i)) ≤ pi(MC3D, ((ni, f

⋆
i , h

⋆
i ), s

⋆
−i)).

See the Proof of Lemma 6 in §A.3.2557

Proof of Lemma 4. By Lemma 5 and 6, we have, for all i ∈ [m] and s′i = (ni, fi, hi) ∈ N×F ×H,558

pi(MC3D, s
⋆) = pi(MC3D, ((n

⋆
i , f

⋆
i , h

⋆
i ), s

⋆
−i)) ≤ pi(MC3D, ((ni, f

⋆
i , h

⋆
i ), s

⋆
−i))

≤ pi(MC3D, ((ni, fi, hi), s
⋆
−i)) = pi(MC3D, (s

′
i, s

⋆
−i))

559

A.3.1 Proof of Lemma 5560

In this section, we will prove Lemma 5, which, intuitively states that, regardless of the amount561

of data collected, agent i should submit the data as is (f⋆
i = I) and use the weighted average562

estimator in (8) to estimate µ. We will do so via the following three step procedure, inspired by563

well–known techniques for proving minimax optimality of estimators (e.g see Theorem 1.12, Chapter564

5 of Lehmann and Casella [23]).565

1. First, we construct a sequence of prior distributions {Λℓ}ℓ≥1 for µ and calculate the sequence566

of Bayesian risks under the prior distributions:567

Rℓ := inf
fi∈A,hi∈H

Eµ∼Λℓ

[
E
[
(hi(Xi, fi(Xi), Ai)− µ)

2∣∣µ
]]
, ℓ ≥ 1.

2. Then, we will show that limℓ→∞ Rℓ = supµ E
[
(h⋆

i (Xi, f
⋆
i (Xi), Ai)− µ)2

∣∣µ
]
.568

3. Finally, as the Bayesian risk is a lower bound on maximum risk, we will conclude that569

(f⋆
i , h

⋆
i ) is minimax optimal.570

Without loss of generality, we focus only on the deterministic fi and hi. If either of them are571

stochastic, we can condition on the external source of randomness and treat them as deterministic572

functions. Our proof holds for any realization of this external source of randomness, and hence it will573

hold in expectation as well. Similarly, Zi is randomly chosen in Algorithm 1. In the following, we574

condition on this randomness and the entire proof will carry through.575

Note that Yi = fi(Xi). We will use both of them interchangeably in the subsequent proof.576

15



Step 1 (Bounding the Bayes’ risk under the sequence of priors): We will use a sequence of577

normal priors Λℓ := N (0, ℓ2) for all ℓ ≥ 1. To bound the Bayes’ risk under these priors, we will first578

note that for a fixed fi ∈ F ,579

x|µ ∼ N (µ, σ2) ∀x ∈ Xi ∪ Zi; (13)

x|µ, η2i ∼ N (µ, σ2 + η2i ) ∀x ∈ Z ′
i. (14)

Here, recall that η2i is a function of Yi and Zi. Because both Yi = fi(Xi) and η2i are deterministic580

functions of Xi, Zi when fi is fixed, the posterior distribution for µ conditioned on (Xi, Yi, Ai) can581

be calculated as follows:582

p(µ|Xi, Yi, Ai) = p
(
µ|Xi, Yi, Zi, Z

′
i, η

2
i

)
= p(µ|Xi, Zi, Z

′
i)

∝ p(µ,Xi, Zi, Z
′
i) = p(Z ′

i|Xi, Zi, µ)p(Xi, Zi|µ)p(µ) = p(Z ′
i|Xi, Zi, µ)p(Xi|µ)p(Zi|µ)p(µ)

∝ exp


− 1

2(σ2 + η2i )

∑

x∈Z′
i

(x− µ)2


 exp

(
− 1

2σ2

∑

x∈Xi∪Zi

(x− µ)2

)
exp

(
− µ2

2ℓ2

)

∝ exp

(
−1

2

( |Z ′
i|

σ2 + η2i
+
|Xi|+ |Zi|

σ2
+

1

ℓ2

)
µ2

)
exp

(
1

2
2

(∑
x∈Z′

i
x

σ2 + η2i
+

∑
x∈Xi∪Zi

x

σ2

)
µ

)

= exp

(
−1

2

(
1

σ2
ℓ

µ2 − 2
µℓ

σ2
ℓ

µ

))
∝ exp

(
− 1

2σ2
ℓ

(µ− µℓ)
2

)
,

where583

µℓ =

∑
x∈Z′

i
x

σ2+η2
i

+
∑

x∈Xi∪Zi
x

σ2

|Z′
i|

σ2+η2
i
+ |Xi|+|Zi|

σ2 + 1
ℓ2

, and σ2
ℓ =

1

|Z′
i|

σ2+η2
i
+ |Xi|+|Zi|

σ2 + 1
ℓ2

. (15)

We can therefore conclude that (despite the non i.i.d nature of the data), the posterior for µ is Gaussian584

with mean and variance as shown above. We have:585

µ|Xi, Yi, Ai ∼ N (µℓ, σ
2
ℓ ).

Next, following standard steps (See Corollary 1.2 in Chapter 4 of [23]), we know that586

Eµ

[
(hi(Xi, Yi, Ai)− µ)

2|Xi, Yi, Ai

]
is minimized when hi(Xi, Yi, Ai) = Eµ[µ|Xi, Yi, Ai] = µℓ.587

This shows that for any fi ∈ hi, the optimal hi is simply the posterior mean of µ under the prior Λℓ588

conditioned on (Xi, fi(Xi), Ai). We can rewrite the minimum averaged risk overH by switching589

the order of expectation:590

inf
hi∈H

Eµ∼Λℓ

[
E
[
(hi(Xi, Yi, Ai)− µ)

2|µ
]]

= inf
hi∈H

EXi,Zi,Z′
i

[
Eµ

[
(hi(Xi, Yi, Ai)− µ)

2|Xi, Zi, Z
′
i

]]

= EXi,Zi,Z′
i

[
Eµ

[
(µℓ − µ)

2|Xi, Zi, Z
′
i

]]
= EXi,Zi,Z′

i

[
σ2
ℓ

]

= EXi,Zi


 1

|Z′
i|

σ2+η2
i
+ |Xi|+|Zi|

σ2 + 1
ℓ2


, (16)

the expectation in the last step involves only Xi, Zi because σ2
ℓ depends only on Xi, Zi and |Z ′

i|, but591

not the instantiation of Z ′
i.592

Next, we will show that (16) is minimized for the following choice of fi which shrinks each points in593

Xi by an amount that depends on the prior Λℓ’s variance ℓ2:594

fi(Xi) =

{ |Xi| /σ2

|Xi| /σ2 + 1/ℓ2
x , for each x ∈ Xi

}
. (17)

Remark 1. An interesting observation (albeit not critical to the proof) here is that fi in (17) converges595

pointwise to f⋆
i , i.e. I, as ℓ→∞. This shows that the optimal submission function under the prior596

converges to f⋆
i . We can make a similar observation about the posterior mean in (15), where µℓ597

converges to h⋆
i as ℓ→∞.598
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To prove (17), we first define the following quantities.599

µ̂(Xi) :=
1

|Xi|
∑

x∈Xi

x, µ̂(Yi) :=
1

|Yi|
∑

x∈Yi

x, µ̂(Zi) :=
1

|Zi|
∑

s∈Zi

x.

We will also find it useful to express η2i as follows. Here α is as defined in (7). We have:600

η2i = α2(µ̂(Yi)− µ̂(Zi))
2

The following calculations show that, conditioned on Xi, µ̂(Zi)− µ and µ− |Xi|/σ2

|Xi|/σ2+1/ℓ2 µ̂(Xi) are601

independent Gaussian random variables3:602

p(µ̂(Zi)− µ, µ|Xi) ∝ p(µ̂(Zi)− µ, µ,Xi)

=p(µ̂(Zi)− µ,Xi|µ)p(µ) = p(µ̂(Zi)− µ|µ)p(Xi|µ)p(µ)

∝ exp

(
−1

2

|Zi|
σ2

(µ̂(Zi)− µ)
2

)
exp

(
− 1

2σ2

∑

x∈Xi

(x− µ)2

)
exp

(
− 1

2ℓ2
µ2

)

∝ exp

(
−1

2

|Zi|
σ2

(µ̂(Zi)− µ)
2

)

︸ ︷︷ ︸
∝p(µ̂(Zi)−µ|Xi)

exp

(
−1

2

( |Xi|
σ2

+
1

ℓ2

)(
µ− |Xi| /σ2

|Xi| /σ2 + 1/ℓ2
µ̂(Xi)

)2
)

︸ ︷︷ ︸
∝p

(
µ− |Xi|/σ2

|Xi|/σ2+1/ℓ2
µ̂(Xi)|Xi

)
Thus conditioning on Xi, we can write603

(
µ̂(Zi)− µ

µ− |Xi|/σ2

|Xi|/σ2+1/ℓ2 µ̂(Xi)

)
∼ N

((
0
0

)
,

(
σ2

|Zi| 0

0 1
|Xi|/σ2+1/ℓ2

))
.

which leads us to604

µ̂(Zi)−
|Xi| /σ2

|Xi| /σ2 + 1/ℓ2
µ̂(Xi)

∣∣∣∣Xi ∼ N


 0,

σ2

|Zi|
+

1

|Xi| /σ2 + 1/ℓ2︸ ︷︷ ︸
=:σ̃2

ℓ


 (18)

Next, we will rewrite the squared difference in η2i as follows:605

η2i
α2

=(µ̂(Yi)− µ̂(Zi))
2

=


µ̂(Zi)−

|Xi| /σ2

|Xi| /σ2 + 1/ℓ2
µ̂(Xi)

︸ ︷︷ ︸
=σ̃ℓe

+




|Xi| /σ2

|Xi| /σ2 + 1/ℓ2
µ̂(Xi)− µ̂(Yi)

︸ ︷︷ ︸
=:ϕ(Xi,fi)







2

.

Here, we observe that the first part of the RHS above is equal to σ̃ℓ, where e is a normal noise606

e|Xi ∼ N (0, 1) and σ̃ℓ is as defined in (18). For brevity, we will denote the second part of the607

RHS as ϕ(Xi, fi), which intuitively characterizes the difference between Xi and Yi. Importantly,608

ϕ(Xi, fi) = 0 when fi is chosen to be (17).609

Using e and ϕ, we can rewrite (16) using conditional expectation:610

EXi,Zi


 1

|Z′
i|

σ2+η2
i
+ |Xi|+|Zi|

σ2 + 1
ℓ2


 = EXi


EZi|Xi


 1

|Z′
i|

σ2+η2
i
+ |Xi|+|Zi|

σ2 + 1
ℓ2







= EXi


Ee|Xi


 1

|Z′
i|

σ2+α2(σ̃ℓe+ϕ(Xi,fi))
2 + |Xi|+|Zi|

σ2 + 1
ℓ2







3This is akin to the observation that given u, v ∼ N (0, 1), then u− v and u+ v are independent.
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= EXi




∫ ∞

−∞

1

|Z′
i|

σ2+α2σ̃2
ℓ (e+ϕ(Xi,fi)/σ̃ℓ)

2 + |Xi|+|Zi|
σ2 + 1

ℓ2︸ ︷︷ ︸
=:F1(e+ϕ(Xi,fi)/σ̃ℓ)

1√
2π

exp

(
−e2

2

)

︸ ︷︷ ︸
=:F2(e)

de



, (19)

where we use the fact that e|Xi ∼ N (0, 1) in the last step. To proceed, we will consider the inner611

expectation in the RHS above. For any fixed Xi, F1(·) (as marked on the RHS) is an even function612

that monotonically increases on [0,∞) bounded by σ
|Xi|+|Zi| and F2(·) (as marked on the RHS) is613

an even function that monotonically decreases on [0,∞). That means, for any a ∈ R,614

∫ ∞

−∞
F1(e− a)F2(e)de ≤

∫ ∞

−∞

σ

|Xi|+ |Zi|
F2(e)de =

σ

|Xi|+ |Zi|
<∞.

By a corollary of the Hardy-Littlewood inequality in Lemma 9, we have615

∫ ∞

−∞
F1(e+ ϕ(Xi, fi)/σ̃ℓ)F2(e)de ≥

∫ ∞

−∞
F1(e)F2(e)de, (20)

the equality is achieved when ϕ(Xi, fi)/σ̃ℓ = 0. In particular, the equality holds when fi is chosen616

as specified in (17).617

Now, to complete Step 1, we combine (16), (19) and (20) to obtain618

inf
hi∈H

Eµ∼Λℓ

[
E
[
(hi(Xi, Yi, Ai)− µ)

2|µ
]]

= EXi

[∫ ∞

−∞
F1(e+ ϕ(Xi, fi)/σ̃ℓ)F2(e)de

]

≥ EXi

[∫ ∞

−∞
F1(e)F2(e)de

]
=

∫ ∞

−∞
F1(e)F2(e)de, (21)

where the last step is because conditioning on each realization of Xi, the term inside the expectation619

is a constant. Using (21), we can write the Bayes risk Rℓ under any prior Λℓ as:620

Rℓ := inf
fi∈A,hi∈H

Eµ∼Λℓ

[
E
[
(hi(Xi, Yi, Ai)− µ)

2∣∣µ
]]

=

∫ ∞

−∞
F1(e)F2(e)de

=Ee∼N (0,1)


 1

|Z′
i|

σ2+α2σ̃2
ℓ e

2 + |Xi|+|Zi|
σ2 + 1

ℓ2




Because the term inside the expectation is bounded by σ2

|Xi|+|Zi| and limℓ→∞ σ̃2
ℓ = σ2

|Zi| +
σ2

|Xi| , we621

can use dominated convergence theorem to show that:622

R∞ := lim
ℓ→∞

Rℓ = Ee∼N (0,1)




1

|Z′
i|

σ2+α2

(
σ2

|Zi|+
σ2

|Xi|

)
e2

+ |Xi|+|Zi|
σ2


 (22)

Step 2: Maximum risk of (f⋆
i , h

⋆
i ): Next, we will compute the maximum risk of the (f⋆

i , h
⋆
i )623

(see (8)) and show that it is equal to the RHS of (22). First note that we can write,624

(
µ̂(Xi)− µ
µ̂(Zi)− µ

)
∼ N

((
0
0

)
,

(
σ2

|Xi| 0

0 σ2

|Zi|

))
.

By a linear transformation of this Gaussian vector, we obtain625

( |Xi|
σ2 (µ̂(Xi)− µ) + |Zi|

σ2 (µ̂(Zi)− µ)
µ̂(Xi)− µ̂(Zi)

)
=

( |Xi|
σ2

|Zi|
σ2

1 −1

)(
µ̂(Xi)− µ
µ̂(Zi)− µ

)

∼N
((

0
0

)
,

( |Xi|+|Zi|
σ2 0

0 σ2

|Xi| +
σ2

|Zi|

))
,
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which means |Xi|
σ2 (µ̂(Xi)− µ)+ |Zi|

σ2 (µ̂(Zi)− µ) and ηi

α = µ̂(Xi)−µ̂(Zi) are independent Gaussian626

random variables. Therefore, the the maximum risk of (f⋆
i , h

⋆
i ) is:627

sup
µ

E
[
(h⋆

i (Xi, Yi, Ai)− µ)2|µ
]
= sup

µ
Eηi


E







∑
x∈Z′

i
x

σ2+η2
i

+ |Xi|
σ2 µ̂(Xi) +

|Zi|
σ2 µ̂(Zi)

|Z′
i|

σ2+η2
i
+ |Xi|+|Zi|

σ2

− µ




2∣∣∣∣∣∣∣
ηi







=sup
µ

Eηi


E







∑
x∈Z′

i
(x−µ)

σ2+η2
i

+ |Xi|
σ2 (µ̂(Xi)− µ) + |Zi|

σ2 (µ̂(Zi)− µ)

|Z′
i|

σ2+η2
i
+ |Xi|+|Zi|

σ2




2∣∣∣∣∣∣∣
ηi







=sup
µ

Eηi




E

[(∑
x∈Z′

i
(x−µ)

σ2+η2
i

+ |Xi|
σ2 (µ̂(Xi)− µ) + |Zi|

σ2 (µ̂(Zi)− µ)

)2
∣∣∣∣∣ ηi
]

(
|Z′

i|
σ2+η2

i
+ |Xi|+|Zi|

σ2

)2




=sup
µ

Eηi




1
(
|Z′

i|
σ2+η2

i
+ |Xi|+|Zi|

σ2

)2

( |Z ′
i| (σ2 + η2i )

(σ2 + η2i )
2

+
|Xi|+ |Zi|

σ2

)



=Eηi


 1

|Z′
i|

σ2+η2
i
+ |Xi|+|Zi|

σ2


 = E


 1

|Z′
i|

σ2+α2(µ̂(Zi)−µ̂(Xi))
2 + |Xi|+|Zi|

σ2




Because µ̂(Zi)− µ̂(Xi) ∼ N
(
0, σ2

|Xi| +
σ2

|Zi|

)
, we can further write the maximum risk as:628

sup
µ

E
[
(h⋆

i (Xi, Yi, Ai)− µ)2|µ
]
= Ee∼N (0,1)




1

|Z′
i|

σ2+α2

(
σ2

|Zi|+
σ2

|Xi|

)
e2

+ |Xi|+|Zi|
σ2


 = R∞

Here, we have observed that the final expression in the above equation is exactly the same as the629

Bayes’ risk in the limit in (22) from Step 1.630

Step 3: Minimax optimality of (f⋆
i , h

⋆
i ): As the maximum is larger than the average, we can write,631

for any prior Λℓ, and any (fi, hi) ∈ F ×H,632

sup
µ

E
[
(hi(Xi, fi(Xi), Ai)− µ)2|µ

]
≥ EΛℓ

[
E
[
(hi(Xi, fi(Xi), Ai)− µ)2|µ

]]
≥ Rℓ.

As this is true for all ℓ, by taking the limit we have, for all (fi, hi) ∈ F ×H,633

sup
µ

E
[
(hi(Xi, fi(Xi), Ai)− µ)2|µ

]
≥ R∞ = sup

µ
E
[
(h⋆

i (Xi, f
⋆
i (Xi), Ai)− µ)2|µ

]
.

That is, the recommended (f⋆
i , h

⋆
i ) has a smaller maximum risk than all other (fi, hi) ∈ F ×H. This634

establishes that for any ni,635

pi(MC3D, ((ni, f
⋆
i , h

⋆
i ), s

⋆
−i)) = inf

fi∈A
inf

hi∈H
pi(MC3D, ((ni, fi, hi), s

⋆
−i)).

A.3.2 Proof of Lemma 6636

In the previous section, we showed that for any ni, the optimal (fi, hi) were (f⋆
i , h

⋆
i ) as given in (8).637

Now, we show that for the given (f⋆
i , h

⋆
i ), the optimal number of samples is n⋆

i = σ/
√
cm. For this,638

we will show that pi is a convex function of ni and then show that its gradient is 0 at n⋆
i .639

First, noting that640

µ̂(Zi)− µ̂(Xi) ∼ N
(
0,

σ2

|Xi|
+

σ2

|Zi|

)
,
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we can rewrite the penalty term as:641

p(ni) :=pi
(
MC3D, ((ni, f

⋆
i , h

⋆
i ), s

⋆
−i)
)
= E


 1

|Z′
i|

σ2+α2(µ̂(Zi)−µ̂(Xi))
2 + |Xi|+|Zi|

σ2


+ cni

=Ex∼N (0,1)




1

|Z′
i|

σ2+α2

(
σ2

|Xi|+
σ2

|Zi|

)
x2

+ |Xi|+|Zi|
σ2


+ cni

=Ex∼N (0,1)




1
(m−2)n⋆

i

σ2+α2

(
σ2

ni
+ σ2

n⋆
i

)
x2

+
ni+n⋆

i

σ2

︸ ︷︷ ︸
=:l(ni,x;α)




+ cni (23)

Convexity of penalty function: To show that p(ni) is convex in ni, let us consider l(ni, x;α). Fixing642

α and x, we have643

∂

∂ni
l(ni, x;α) = −σ2

1 +
(m−2)n⋆

i(
1+α2

(
1
ni

+ 1
n⋆
i

)
x2

)2
α2x2

n2
i


 (m−2)n⋆

i

1+α2

(
1
ni

+ 1
n⋆
i

)
x2

+ ni + n⋆
i




2 = −σ2

1 +
(m−2)n⋆

i α
2x2(

ni+α2

(
1+

ni
n⋆
i

)
x2

)2


 (m−2)n⋆

i

1+α2

(
1
ni

+ 1
n⋆
i

)
x2

+ ni + n⋆
i




2

As ∂
∂ni

l(ni, x;α) is an increasing function of ni, we have that l(ni, x;α) is a convex function in ni.644

As expectation preserves convexity (see Lemma 10), p(ni) is a convex function.645

Penalty is minimized when ni = n⋆
i . Lemma 13 provides an expression for the derivative of p(ni)646

(obtained purely via algebraic manipulations). Using this, we have647

p′(n⋆
i ) =−

σ2

64 α2

m−2
α√
mn⋆

i

mn⋆
i

(
4α√
mn⋆

i

(
4α2m

(m− 2)n⋆
i

− 1

)

− exp

(
mn⋆

i

8α2

)(
4α2

mn⋆
i

(m+ 1)− 1

)√
2πErfc


 1

2
√
2
√

α2

mn⋆
i



)

+ c (By Lemma 13)

=− σ2

64 α2

m−2
α√
mn⋆

i

mn⋆
i

(
4α√
mn⋆

i

(
4α2(m− 4)

(m− 2)n⋆
i

− 1

)

− exp

(
mn⋆

i

8α2

)(
4α2

mn⋆
i

(m+ 1)− 1

)√
2πErfc


 1

2
√
2
√

α2

mn⋆
i



)

=G(α) = 0.

Here, the second step uses the fact that n⋆
i = σ√

cm
. Finally, we have observed that the expression is648

equal to G(α) as defined in (7) which is 0 by our choice of α. Since p′(n⋆
i ) = 0 and p(·) is convex,649

we can conclude that p(ni) is minimized when ni = n⋆
i . Therefore,650

pi(MC3D, ((n
⋆
i , f

⋆
i , h

⋆
i ), s

⋆
−i)) ≤ pi(MC3D, ((ni, f

⋆
i , h

⋆
i ), s

⋆
−i)).
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A.4 Algorithm 1 is individually rational651

As outlined in the main text, the IC property implies IR since ‘working on her own’ is a valid strategy652

in the mechanism. Precisely, if an agent collects any number of points ni, chooses not to submit653

anything fi(·) = ∅, and then uses the sample average of the points she collected hi(Xi,∅, Ai) =654

|Xi|−1
∑

x∈Xi
x, then (ni, fi, hi) ∈ S.655

Below, we will prove this more formally and also show that the agent’s penalty is strictly smaller656

when participating. For any fixed ni, without participating in the mechanism, the smallest penalty the657

agent can achieve is by using empirical mean estimation and the penalty is:658

σ2

ni
+ cni

When participating, the agent gets an additional n⋆
i number of clean data along with some noisy data,659

provided that all other agents are following s⋆−i. By using the empirical mean over the clean data, the660

penalty is:661

σ2

ni + n⋆
i

+ cni <
σ2

ni
+ cni

Now, since the weighted average estimator in s⋆i is minimax optimal, the agent gets even smaller662

maximum risk and hence smaller penalty. In other words, for any ni,663

pi(MC3D, s
⋆) ≤ pi(MC3D, ((ni, f

⋆
i , h

⋆
i ), s

⋆
−i)) ≤

σ2

ni + n⋆
i

+ cni <
σ2

ni
+ cni

By minimizing the RHS with respect to ni, we get pi(MC3D, s
⋆) < pIRmin. Thus Algorithm 1 is IR.664

A.5 Algorithm 1 is approximately efficient665

In this section, we will bound the penalty ratio PR for MC3D at the strategy profiles s⋆i .666

First, noting that G(α) = 0 (see (7)), we can rearrange the terms in the equation to obtain:667

exp

(
mn⋆

i

8α2

)
Erfc


 1

2
√
2
√

α2

mn⋆
i


 =

1√
2π

4α√
mn⋆

i

(
4α2(m−4)
(m−2)n⋆

i
− 1
)

4α2

mn⋆
i
(m+ 1)− 1

(24)

Next, we will use the expression for p(ni) = pi(MC3D, (s
⋆
−i, (ni, f

⋆
i , h

⋆
i ))) in Lemma 13 and the668

equation in (24) to simplify p(n⋆
i ) as follows:669

p(n⋆
i ) =

√
α2

mn⋆
i
σ2


2m

√
2π
√

α2

mn⋆
i
− exp

(
mn⋆

i

8α2

)
(m− 2)πErfc


 1

2
√
2

√
α2

mn⋆
i






4
√
2πα2

+ cn⋆
i

(By Lemma 13)

=

√
α2

mn⋆
i
σ2


2m

√
2π
√

α2

mn⋆
i
− (m− 2)π 1√

2π

4α√
mn⋆

i

(
4α2(m−4)

(m−2)n⋆
i

−1

)
4α2

mn⋆
i
(m+1)−1




4
√
2πα2

+ cn⋆
i (By (24))

=

σ2

(
m− (m− 2)

4α2(m−4)

(m−2)n⋆
i

−1

4α2

mn⋆
i
(m+1)−1

)

2mn⋆
i

+ cn⋆
i

=
σ2

2mn⋆
i

4α2

n⋆
i
(m+ 1)−m− 4α2

n⋆
i
(m− 4) + (m− 2)

4α2

n⋆
i

m+1
m − 1

+ cn⋆
i

=
σ2

2mn⋆
i

20α2

n⋆
i
− 2

4α2

n⋆
i

m+1
m − 1

+ cn⋆
i =

σ2

mn⋆
i

10α2

n⋆
i
− 1

4α2

n⋆
i

m+1
m − 1

+ cn⋆
i
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Algorithm 2 MPCS

1: Mechanism designer publishes:
2: The allocation space A =

⋃
n≥0 Rn, and the procedure in lines 6 –11.

3: Each agent i:
4: Choose strategy si = (ni, fi, hi).
5: Sample ni points Xi = {xi,j}ni

j=1 and submit Yi = fi(Xi) to the mechanism.
6: Mechanism:
7: For each agent i ∈ [m]: # can be done simultaneously for all agents
8: Ai ←

⋃
j ̸=i Yj if |Yi| ≥ σ/

√
cm, Ai ← ∅ otherwise.

9: Return Ai to each agent.
10: Each agent i:
11: Compute estimate hi(Xi, Yi, Ai).

=σ

√
c

m




10α2

n⋆
i
− 1

4α2

n⋆
i

m+1
m − 1

+ 1




From our conclusion in §A.2, we have α2 > σ√
cm

= n⋆
i , i.e. α2

n⋆
i
> 1. Therefore, we have:670

PR(MC3D, s
⋆) =

mp(n⋆
i )

2σ
√
cm

=
1

2




10α2

n⋆
i
− 1

4α2

n⋆
i

m+1
m − 1

+ 1




<
1

2




10α2

n⋆
i
− 1 + 10α2

n⋆
i

1
m +

(
2α2

n⋆
i

m+1
m − 2

)

4α2

n⋆
i

m+1
m − 1

+ 1


 = 2.

B Proof of Theorem 2671

We will use MPCS to denote the mechanism in §4.1, as it pools the datsets, but checks for the size of672

the dataset submitted by each agent. For clarity, we have stated MPCS algorithmically in Algorithm 2.673

We will also re-state the recommended strategies s⋆i = {(n⋆
i , f

⋆
i , h

⋆
i )}i below:674

n⋆
i =

σ√
cm

, f⋆
i = I, h⋆

i (Xi, Yi, Ai) =
1

|Xi ∪Ai|
∑

u∈Xi∪Ai

u (25)

Throughout this section, s⋆i will refer to (25) (and not (8)).675

We will first prove that s⋆i is a Nash equilibrium. Because the sample mean achieves minimax error676

for Normal mean estimation [23], we immediately have, for all (ni, fi, hi) ∈ S.677

pi(MPCS, ((ni, fi, h
⋆
i ), s

⋆
−i)) ≤ pi(MPCS, ((ni, fi, hi), s

⋆
−i)).

Because the agent can only submit the raw dataset or a subset, and the agent’s allocation only depends678

on the size of the dataset, the size of the dataset she receives can always be maximized by submittng679

the whole data set she collects, i.e. chooses fi = I. Therefore, we have for all (ni, fi, hi) ∈ S,680

pi(MPCS, ((ni, f
⋆
i , h

⋆
i ), s

⋆
−i)) ≤ pi(MPCS, ((ni, fi, h

⋆
i ), s

⋆
−i)) ≤ pi(MPCS, ((ni, fi, hi), s

⋆
−i)).

Finally, we can use the fact that the maximum risk of the sample mean estimator using n points is681

σ2/n to show that the penalty is minimized when ni = n⋆
i = σ/

√
cm. In particular, we have that if682

ni < σ/
√
cm,683

pi(MPCS, ((ni, f
⋆
i , h

⋆
i ), s

⋆
−i)) =

σ2

ni
+ cni > 2σ

√
c.

And if ni ≥ σ/
√
cm,684

pi(MPCS, ((ni, f
⋆
i , h

⋆
i ), s

⋆
−i)) =

σ2

ni + (m− 1)σ/
√
cm

+ cni ≥ 2σ

√
c

m
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Because 2σ
√
c ≥ 2σ

√
c/m, pi(MPCS, ((ni, f

⋆
i , h

⋆
i ), s

⋆
−i)) is minimized when ni = σ/

√
cm. We685

thus conclude that s⋆ is a Nash equilibrium. That is, for all (ni, fi, hi) ∈ N×F ×H686

pi(MPCS, s
⋆) ≤ pi(MPCS, ((ni, fi, hi), s

⋆
−i)).

Next, the IR and efficiency properties follow trivially from the fact that pi(MPCS, s
⋆) = 2σ

√
c/m for687

each agent i. In particular, pi(MPCS, s
⋆) < pIRmin and P (MPCS, s

⋆) = 2σ
√
cm.688

C Proof of Theorem 3689

We will use MCDED to denote our mechanism in §4.2, as it corrupts the deployed estimate based on690

the difference. We have stated this mechanism formally in Algorithm 3. We will also re-state the691

recommended strategies s⋆i = {(n⋆
i , f

⋆
i )}i below:692

n⋆
i =

σ√
cm

, f⋆
i = I. (26)

Throughout this section, s⋆i will refer to (26) (and not (8) or (25)).693

We will now present the proof of Theorem 3. First, in §C.1, we show that s⋆ is a Nash equilibrium of694

MCDED as the incentive compatibility result. Then, in §C.2, we show individual rationality at s⋆i . In695

§C.3, we conclude by showing that MCDED is approximately efficient by showing that its social penalty696

at most a (1 + ϵ) factor of the global minimum.697

C.1 Algorithm 3 is incentive compatible698

Step 1. We will first show that fixing any ni, the best strategy is to submit the raw data, i.e. for all699

(ni, fi) ∈ N×F .700

pi(MCDED, ((ni, f
⋆
i ), s

⋆
−i)) ≤ pi(MCDED, ((ni, fi), s

⋆
−i)). (27)

Let ez,i = ϵz,i/ηi, where ηi, and ϵz,i are as given in lines 9 and 10 respectively. We have that ez,i’s701

are i.i.d. standard Normal samples. Because the cost term cni is fixed when ni is fixed, we only need702

to consider the risk term. We will first define,703

µ̂(Xi) :=
1

|Xi|
∑

x∈Xi

x, µ̂(Yi) :=
1

|Yi|
∑

x∈Yi

x, µ̂(Y−i) :=
1

|Y−i|
∑

x∈Y−i

x. (28)

Via some algebraic manipulations, we can express the maximum risk as:704

sup
µ

E





 1

|Yi|+ (m− 1)n⋆
i


∑

y∈Yi

(y − µ) +
∑

z∈Y−i

(z + ez,iηi − µ)






2
∣∣∣∣∣∣∣
µ




=
1

(|Yi|+ (m− 1)n⋆
i )

2 sup
µ

E





∑

y∈Yi

(y − µ)




2

+


 ∑

z∈Y−i

(z + ez,iηi − µ)




2
∣∣∣∣∣∣∣
µ




=
1

(|Yi|+ (m− 1)n⋆
i )

2 sup
µ

E


 (|Yi| (µ̂(Yi)− µ))

2
+


 ∑

z∈Y−i

(z − µ)




2

+


 ∑

z∈Y−i

ez,iηi




2
∣∣∣∣∣∣∣
µ




=
1

(|Yi|+ (m− 1)n⋆
i )

2 sup
µ

E
[
(|Yi| (µ̂(Yi)− µ))

2
+ (m− 1)n⋆

i β
2
ϵ (µ̂(Yi)− µ̂(Y−i))

2kϵ

∣∣∣µ
]

+
(m− 1)n⋆

i σ
2

(|Yi|+ (m− 1)n⋆
i )

2

Recall that βϵ also involves |Yi|. Note that as we have fixed ni and s−i = s⋆−i, the maximum risk705

depends only on |Yi| and µ̂(Yi), that is, the agent’s maximum risk and hence penalty only depends on706

the number of points she submitted, and their average value. Hence, to find the optimal submission707
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Algorithm 3 MCDED

Require: Approximation parameter ϵ > 0 # to obtain a 1 + ϵ bound on PR.
1: Mechanism designer publishes: The procedure in lines 5 –11.
2: Each agent i:
3: Choose strategy si = (ni, fi).
4: Sample ni points Xi = {xi,j}ni

j=1 and submit Yi = fi(Xi) to the mechanism.
5: Mechanism:

6: kϵ ← min
{
⌈ 1
2ϵ⌉, 2

}
, βϵ ←

√
(
∑m

i=1|Yi|)2(m−1)kϵ−1

kϵ(2kϵ−1)!!σkϵc
kϵ−2

2 m3kϵ/2

7: For each agent i ∈ [m]: # can be done simultaneously for all agents
8: Y−i ←

⋃
j ̸=i Yj .

9: η2i ← β2
ϵ

(
1

|Yi|
∑

y∈Yi
y − 1

|Y−i|
∑

y∈Y−i
y
)2kϵ

.

10: Zi ← {z + ϵz,i, for all z ∈ Y−i where ϵz,i ∼ N (0, η2i )}
11: Deploy estimate

(
1

|Yi∪Zi|
∑

u∈Yi∪Zi
u
)

for agent i.

Yi, we will first fix the size of the agent’s submission |Yi| and optimize for the sample mean µ̂(Yi)708

(step 1.1), and then we will optimize for |Yi| (step 1.2).709

Step 1.1. Since the other agents have each collected σ/
√
cm = n⋆

i points and submitted it truthfully,710

we have µ̂(Y−i) ∼ N
(
µ, σ2

(m−1)n⋆
i

)
. Via a binomial expansion , we can write,711

E
[
(µ̂(Yi)− µ̂(Y−i))

2kϵ

]
=E
[
((µ̂(Yi)− µ)− (µ̂(Y−i)− µ))

2kϵ

]

=

2kϵ∑

j=0

(−1)j
(
2kϵ
j

)
E
[
(µ̂(Yi)− µ)

j
]
E
[
(µ̂(Y−i)− µ)

2kϵ−j
]

=

kϵ∑

j=0

(
2kϵ
2j

)
E
[
(µ̂(Yi)− µ)

2j
]
E
[
(µ̂(Y−i)− µ)

2kϵ−2j
]

Thus the maximum risk can be written as:712

sup
µ

E




kϵ∑

j=0

Aj(µ̂(Yi)− µ)2j

∣∣∣∣∣∣
µ


 (29)

where A0, . . . , Akϵ
is a sequence of positive coefficients.713

Similar to the proof of Theorem 1, we construct a lower bound on the maximum risk using a sequence714

of Bayesian risks. Let Λℓ := N (0, ℓ2), ℓ = 1, 2, . . . be a sequence of prior for µ. For fixed ℓ, the715

posterior distribution is:716

p(µ|Xi) ∝p(Xi|µ)p(µ) ∝ exp

(
− 1

2σ2

∑

x∈Xi

(x− µ)2

)
exp

(
− 1

2ℓ2
µ2

)

∝ exp

(
−1

2

(
ni

σ2
+

1

ℓ2

)
µ2 +

1

2
2

∑
x∈Xi

x

σ2
µ

)
.

This means the posterior of µ given Xi is Gaussian with:717

µ|Xi ∼ N
(

niµ̂(Xi)/σ
2

ni/σ2 + 1/ℓ2
,

1

ni/σ2 + 1/ℓ2

)
=: N

(
µℓ, σ

2
ℓ

)
.

Therefore, the posterior risk is:718

E




kϵ∑

j=0

Aj(µ̂(Yi)− µ)2j

∣∣∣∣∣∣
Xi


 =E




kϵ∑

j=0

Aj((µ̂(Yi)− µℓ)− (µ− µℓ))
2j

∣∣∣∣∣∣
Xi



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=

∫ ∞

−∞

kϵ∑

j=0

Aj(e− (µ̂(Yi)− µℓ))
2j

︸ ︷︷ ︸
=:F1(e−(µ̂(Yi)−µℓ))

1

σℓ

√
2π

exp

(
− e2

2σ2
ℓ

)

︸ ︷︷ ︸
=:F2(e)

de

Because:719

• F1(·) is even function and increases on [0,∞);720

• F2(·) is even function and decreases on [0,∞, and
∫
R F2(e)de <∞721

• For any a ∈ R,
∫
R F1(e− a)F2(e)de <∞,722

By the corollary of Hardy-Littlewood inequality in Lemma 9,723

∫

R
F1(e− a)F2(e)de ≥

∫

R
F1(e)F2(e)de,

which means the posterior risk is minimized when µ̂(Yi) = µℓ. In Lemma 11, we have stated724

expressions for the expected value of the power of a normal random variable. Using this, we can725

write the Bayes risk as:726

Rℓ := E




kϵ∑

j=0

AjE
[
(µ− µℓ)

2j
∣∣∣Xi

]

 =

kϵ∑

j=0

Aj(2j − 1)!!σ2j
ℓ

and the limit of Bayesian risk as ℓ→∞ is727

R∞ := lim
ℓ→∞

kϵ∑

j=0

Aj(2j − 1)!!
σ2j

nj
i

When µ̂(Yi) = µ̂(Xi), the maximum risk is:728

sup
µ

E




kϵ∑

j=0

Aj(µ̂(Yi)− µ)2j

∣∣∣∣∣∣
µ


 = sup

µ
E




kϵ∑

j=0

Aj(µ̂(Xi)− µ)2j

∣∣∣∣∣∣
µ




=

kϵ∑

j=0

Aj(2j − 1)!!σ2jn−j
i = R∞.

This means, fixing ni and |Yi|, agent i achieves minimax risk when choosing µ̂(Yi) = µ̂(Xi); as the729

maximum is larger than the average, this follows using a similar argument to Step 3 in §A.3.730

Step 1.2. Next, we will show that the best size of the submission is |Yi| = |Xi| = ni, assuming731

µ̂(Yi) = µ̂(Xi). For this, we will first use n⋆
i to rewrite β2

ϵ as732

β2
ϵ =

n⋆
i
kϵ−2(m− 1)kϵ−1(|Yi|+ (m− 1)n⋆

i )
2

kϵ(2kϵ − 1)!!mkϵ+1σ2kϵ−2
.

Because733

µ̂(Xi)− µ̂(Y−i) ∼ N
(
0,

(
1

ni
+

1

(m− 1)n⋆
i

)
σ2

)
,

the risk term in the penalty can be rewritten and lower bounded as follows:734

1

(|Yi|+ (m− 1)n⋆
i )

2

(
|Yi|2 σ2/ni + (m− 1)n⋆

i β
2
ϵ (2kϵ − 1)!!

(
1

ni
+

1

(m− 1)n⋆
i

)kϵ

σ2kϵ

)

+
(m− 1)n⋆

i σ
2

(|Yi|+ (m− 1)n⋆
i )

2

=
|Yi|2 σ2

ni
+ (m− 1)n⋆

i σ
2

(|Yi|+ (m− 1)n⋆
i )

2 +
n⋆
i
kϵ−1(m− 1)kϵ

kϵmkϵ+1

(
1

ni
+

1

(m− 1)n⋆
i

)kϵ

σ2
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≥ σ2

ni + (m− 1)n⋆
i

+
n⋆
i
kϵ−1(m− 1)kϵ

kϵmkϵ+1

(
1

ni
+

1

(m− 1)n⋆
i

)kϵ

σ2.

Here, the last step follows from the fact that735

|Yi|2 σ2

ni
+ (m− 1)n⋆

i σ
2

(|Yi|+ (m− 1)n⋆
i )

2 =
|Yi|2 σ2

ni
+ (m− 1)n⋆

i σ
2

ni
|Yi|2
ni

+ 2 |Yi| (m− 1)n⋆
i + (m− 1)2n⋆

i
2

≥
|Yi|2 σ2

ni
+ (m− 1)n⋆

i σ
2

ni
|Yi|2
ni

+
(
ni +

|Yi|2
ni

)
(m− 1)n⋆

i + (m− 1)2n⋆
i
2
=

|Yi|2 σ2

ni
+ (m− 1)n⋆

i σ
2

(ni + (m− 1)n⋆
i )
(

|Yi|2
ni

+ (m− 1)n⋆
i

)

=
σ2

ni + (m− 1)n⋆
i

.

Equality holds in this inequality if and only if |Yi| = ni.736

In conclusion, fixing ni, the agent can minimize her penalty by submitting ni points with the same737

sample mean as the dataset Xi she collected. One way to achieve this is set fi = I. This completes738

the proof of (27).739

Step 2: Our next step is to show that the agent’s best strategy is to collect n⋆
i data points. That is, we740

will show for all ni ∈ N.741

pi(MCDED, ((n
⋆
i , f

⋆
i ), s

⋆
−i)) ≤ pi(MCDED, ((ni, f

⋆
i ), s

⋆
−i)). (30)

In the following, we will use p(ni) as a shorthand for pi(MCDED, ((ni, f
⋆
i ), s

⋆
−i)). The penalty can be742

rewritten as:743

p(ni) =
σ2

ni + (m− 1)n⋆
i

+
n⋆
i
kϵ−1(m− 1)kϵ

kϵmkϵ+1

(
1

ni
+

1

(m− 1)n⋆
i

)kϵ

σ2 + cni

We need to show that pi(ni) achieves minimum at ni = n⋆
i . The derivative of pi(·) is:744

p′(ni) =−
σ2

(ni + (m− 1)n⋆
i )

2
+

n⋆
i
kϵ−1(m− 1)kϵ

mkϵ+1

(
1

ni
+

1

(m− 1)n⋆
i

)kϵ−1

σ2

(
− 1

n2
i

)
+ c

Because p′(ni) increase in ni, p(ni) is convex. Moreover, because745

p′(n⋆
i ) =−

σ2

m2n⋆
i
2 +

n⋆
i
kϵ−1(m− 1)kϵ

mkϵ+1

(
1

n⋆
i

+
1

(m− 1)n⋆
i

)kϵ−1

σ2

(
− 1

n⋆
i
2

)
+ c

=− σ2

m2n⋆
i
2 −

(m− 1)σ2

m2n⋆
i
2 + c = − σ2

mn⋆
i
2 + c = 0,

we know p(ni) reaches minimum at ni = n⋆
i . This concludes the proof for (30).746

C.2 Algorithm 3 is individually rational747

The penalty of an agent at the recommended strategies can be expressed as:748

pi(MCDED, s
⋆
i ) = p(n⋆

i ) =
σ2

mn⋆
i

+
n⋆
i
kϵ−1(m− 1)kϵ

kϵmkϵ+1

(
1

n⋆
i

+
1

(m− 1)n⋆
i

)kϵ

σ2 + cn⋆
i

=
σ2

mn⋆
i

+
n⋆
i
kϵ−1(m− 1)kϵ

kϵmkϵ+1

mkϵ

n⋆
i
kϵ(m− 1)kϵ

σ2 + cn⋆
i

=
σ2

mn⋆
i

+
1

kϵ

σ2

mn⋆
i

+ cn⋆
i =

(
2 +

1

kϵ

)
σ
√
c√

m
. (31)

We have that MCDED is IR when m ≥ 2, via the following simple calculation:749

(
2 +

1

kϵ

)
σ
√
c√

m
≤
(
2 +

1

2

)
σ
√
c√
2

< 2σ
√
c = pIRmin
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C.3 Algorithm 3 is approximately efficient750

Using the expression for pi(MCDED, s
⋆
i ) in (31), the penalty ratio can be bounded by:751

PR(MCDED, s
⋆) =

(
2 + 1

kϵ

)
σ
√
cm

2σ
√
cm

= 1 +
1

2kϵ
≤ 1 + ϵ.

D Additional Materials for Section 4.2752

D.1 Mechanism detail753

See Algorithm 3.754

D.2 Using a weighted average under the original strategy space from §2755

In this section, we will consider a variation of MCDED when applied to our original strategy space756

N×F ×H. For this, we will assume that MCDED will return Ai = Zi as the agent’s allocation, and757

then an agent can use Xi, Yi, Zi to estimate µ. In this situation, below we show that the agent can758

achieve a smaller penalty using a weighted average over Xi ∪ Zi instead of the sample mean used759

by the mechanism. Here, the weights are proportional to the inverse of the variance of each data760

point. (Our mechanism purposefully uses the sub-optimal sample mean in the restricted strategy761

space N×F as a way to shape the agent’s penalty and incentivize good behavior.)762

This shows that MCDED (with the above modification) is not IC in this more general strategy space.763

The agent can obtain a lower penalty using a better estimator (such as the weighted average we show764

over here) and achieve a lower penalty. More importantly, as the agent knows that she can achieve a765

lower estimation error via a better estimator instead of more data, she can leverage this insight to766

collect less data and reduce her penalty even further.767

We should emphasize that it is unclear if this weighted average is minimax optimal. It is also unclear768

if there exists a Nash equilibrium for MCDED (or any straightforward modification of MCDED) in the769

expanded strategy space.770

The weighted average estimator: We will now present the weighted average estimator that771

achieves a lower maximum risk. To show this, first note that for all x ∈ Xi, V[x] = σ2; when772

(ni, fi) = (n⋆
i , f

⋆
i ), for all x ∈ Zi,773

V[x] =E
[
(z + ϵz,i − µ)

2
]
= σ2 + β2

ϵE
[
(µ̂(Xi)− µ̂(Y−i))

2kϵ

]

=σ2 +
n⋆
i
kϵ−2(m− 1)kϵ−1(mn⋆

i )
2

kϵ(2kϵ − 1)!!mkϵ+1σ2kϵ−2
(2kϵ − 1)!!

(
1

n⋆
i

+
1

(m− 1)n⋆
i

)kϵ

σ2kϵ

=σ2 +
n⋆
i
kϵ(m− 1)kϵ−1

kϵmkϵ−1

mkϵ

(m− 1)kϵn⋆
i
kϵ
σ2

=σ2 +
1

kϵ

m

m− 1
σ2

Consider the following weighted-average estimator:774

hi(Xi, Yi, (Zi, η
2
i )) =

1
σ2

∑
x∈Xi

x+ 1
σ2+ 1

kϵ
m

m−1σ
2

∑
x∈Zi

x

n⋆
i

σ2 +
(m−1)n⋆

i

σ2+ 1
kϵ

m
m−1σ

2

The maximum risk of hi is775

E
[(
hi(Xi, Yi, (Zi, η

2
i ))− µ

)2]
=

1
n⋆
i

σ2 +
(m−1)n⋆

i

σ2+ 1
kϵ

m
m−1σ

2

=
1

1 + m−1
1+ 1

kϵ
m

m−1

σ2

n⋆
i

=
1 + 1

kϵ

m
m−1

m+ 1
kϵ

m
m−1

σ2

n⋆
i

<

(
1 + 1

kϵ

)(
1 + 1

kϵ

1
m−1

)

m+ 1
kϵ

m
m−1

σ2

n⋆
i

=

(
1 +

1

kϵ

)
σ2

mn⋆
i

(32)
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Note that the RHS of (32) is the risk of the sample average deployed by MCDED. This means, suppose776

all other agents choose s⋆, then agent i can choose a weighted average to reduce her penalty without777

collecting more data.778

E High dimensional mean estimation with bounded variance779

In this section, we will study estimating a d–dimensional mean µ(θ) ∈ Rd for distributions θ with780

bounded variance. We will focus on our original setting in §2, but will outline the modifications to781

the formalism to accommodate the generality. For x ∈ Rd, let x(i) denote the ith dimension.782

Modifications to the setting in §2: First, we should change the definitions of F ,H and M in783

equations 1 and (2) to account for the fact that the data is d dimensional. For instance, the space784

of functions mapping the dataset collected to the dataset submitted should be defined as F = {f :785 ⋃
n≥0 Rd×n → ⋃

n≥0 Rd×n}. Next, let Θ = {θ; supp (θ) ⊂ Rd, Ex∼θ

[
(x(i) − µ(θ)(i))2

]
≤786

σ2, ∀ i ∈ [d]} be the class of all d–dimensional distributions where the variance along each dimension787

is bounded by σ2. Here, the maximum variance σ2 is known and is public information. Note that788

we do not assume that the individual dimensions are independent. An agent’s penalty pi is defined789

similar to (3) but considers the maximum risk over Θ, i.e790

pi(M, s) = sup
θ∈Θ

E
[
∥hi(Xi, Yi, Ai)− µ(θ)∥22

∣∣ θ
]
+ cni. (33)

Finally, the social penalty and ratio PR are as defined in (5), but with the above definition for pi.791

Mechanism: Our mechanism for this problem is the same as the one outlined in Algorithm 1, with792

the following cosmetic modifications. First, the allocation space should now be A =
⋃

n≥0 Rd×n ×793 ⋃
n≥0 Rd×n × Rd

+. The noise modulating parameter α is determined by a similar equation as in (7),794

but with c replaced with c/d. In line 12 of Algorithm 1, we should set the size of the dataset Zi to795

be min{|Y−i|, σ
√
d/(cm)}. Finally, the operations in lines 13 and 14 should be interpreted as d–796

dimensional operations that are performed elementwise. The recommended strategy s⋆i = (n⋆
i , f

⋆
i , h

⋆
i )797

for agent i is as follows:798

n⋆
i =





σ
m

√
d
c if m ≤ 4,

σ
√

d
cm if m ≥ 5

, f⋆
i = I, (34)

h⋆
i (Xi, Yi, (Zi, Z

′
i, η

2
i )) =

1
σ2

∑
u∈Xi∪Zi

u+ 1
σ2+τ2

i

∑
u∈Z′

i
u

1
σ2 |Xi ∪ Z ′

i|+ 1
σ2+τ2

i
|Z ′

i|
, where, τ2i =

2α2σ2

n⋆
i

∈ R+.

Above, one difference worth highlighting is the change in the recommended estimator h⋆
i . Previously,799

the weighting used the η2i term returned by the mechanism, which is a function of Yi and Zi. This800

data-dependent weighting was necessary to obtain an exactly (i.e including constants) minimax801

optimal estimator for the corrupted dataset, which in turn was necessary to achieve an exact Nash802

equilibrium. However, bounding the risk when using a data-dependent weighting is challenging803

when the Gaussian assumption does not hold. Instead, here we use a deterministic weighting via the804

quantity τ2i . While this is not exactly minimax optimal, we can show that its maximum risk is very805

close to a lower bound, which helps us obtain an approximate Nash equilibrium. It is worth pointing806

out that designing exactly minimax optimal estimators, even under i.i.d assumptions, is challenging807

for general classes of distributions [23].808

The following theorem states the main properties of this mechanism.809

Theorem 7. The following statements are true about the mechanism MC3D in Algorithm 1 with the810

above modifications. (i) The strategy profile s⋆ as defined in (34) is an approximate Nash equilibrium,811

i.e if all agents except i are following s⋆, then for any alternative strategy si for agent i, we have812

pi(MC3D, s
⋆) ≤ pi(MC3D, (s

⋆
−i, si))(1 + 5/m) (ii) The mechanism is individually rational at s⋆. (iii)813

The mechanism is approximately efficient at s⋆i , with PR(MC3D, s
⋆) < 2 + 10/m.814

We see that even under this more general setting, our mechanism retains its main properties with only815

a slight weakening of the results. We now have approximate, instead of exact, IC, with the benefit of816

deviation diminishing as there are more agents. Similarly, the bound on the efficiency is only slightly817

weaker than the one in Theorem 1.818
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E.1 Proof of Theorem 7819

When m ≤ 4, the claims follow using the exact steps in §A.1. Therefore, we focus on the case m ≥ 5.820

Moreover, some of the key steps of this proof follows along similar lines to Theorem 1, so we will821

provide an outline and focus on the differences.822

Approximate incentive compatibility. We will first prove the statement (i) of Theorem 7, which823

states that s⋆i , as defined in (34), is an approximate Nash equilibrium for MC3D. That is, we will824

show that the maximum possible reduction in penalty for an agent i when deviating from s⋆i is small,825

provided that all other agents are following s⋆−i.826

For this, we will first lower bound the penalty pi (33) using the family of independent Gaussian distri-827

butions. Let ΘN =
{
N (µ, σ2Id) : µ ∈ Rd

}
denote the space of d–dimensional normal distributions828

with identity covariance matrix. For any mechanism M and strategy profile s ∈ Sm, we define the829

penalty of agent i restricted to ΘN as:830

pNi (M, s) = sup
θ∈ΘN

E
[
∥hi(Xi, Yi, Ai)− µ(θ)∥22

∣∣ θ
]
+ cni.

Since ΘN ⊂ Θ, it is straightforward to see that for all M ∈M and s ∈ Sm,831

pNi (M, s) ≤ pi(M, s). (35)

We will now use this result to lower bound the penalty of an agent for any other alternative strategy.832

First note that, by independence, the mean estimation problem on ΘN can be viewed as d independent833

copies of the univariate normal mean estimation problem considered in Theorem 1 but with c replaced834

with c/d. Let h̃⋆
i be the weighted average that applies the estimator in (8) along each dimension.835

And let s̃⋆i = (n⋆
i , f

⋆
i , h̃

⋆
i ). We can now lower bound the penalty of agent i when following any836

(alternative) strategy si ∈ S, provided that other agents are following s⋆−i. We have:837

pi(MC3D, (si, s
⋆
−i)) = pi

(
MC3D,

(
si,
(
n⋆
−i, f

⋆
−i, h

⋆
−i

)))

≥ pNi
(
MC3D,

(
si,
(
n⋆
−i, f

⋆
−i, h

⋆
−i

)))
(By (35))

= pNi
(
MC3D,

(
si,
(
n⋆
−i, f

⋆
−i, h̃

⋆
−i

)))

(As agent i’s penalty will not be affected by other agents’ estimators)

≥ pNi
(
MC3D,

((
n⋆
i , f

⋆
i , h̃

⋆
i

)
,
(
n⋆
−i, f

⋆
−i, h̃

⋆
−i

)))

( By adapting the analysis in §A.3. )

= pNi (MC3D, s̃
⋆) (36)

Above, the second step uses (35) and the third step uses the fact that other agent’s estimator will838

not affect agent i’s penalty. The fourth step uses the fact that for estimation problems in ΘN , the839

strategy profile s̃⋆ = {(n⋆
i , f

⋆
i , h̃

⋆
i )}i is a Nash equilibrium; in §A.3, we showed this for the one840

dimensional case, but this proof can be easily adapted to d dimensions since we are assuming an841

identity covariance matrix in ΘN . Finally, by adapting the analysis in §A.5, we can obtain the842

following expression for agent i’s penalty pNi (MC3D, s̃
⋆) in ΘN :843

pNi (MC3D, s̃
⋆) = dσ

√
c/d

m




10α2

n⋆
i
− 1

4α2

n⋆
i

m+1
m − 1

+ 1


 (37)

To state the approximate IC result, we will now upper bound the penalty of the agent when following844

s⋆i . Using the bounded variance assumption, we have:845

pi(M, s⋆) = sup
θ∈Θ

E



∥∥∥∥∥

1
σ2

∑
u∈Xi∪Zi

u+ 1
σ2+τ2

i

∑
u∈Z′

i
u

1
σ2 |Xi ∪ Z ′

i|+ 1
σ2+τ2

i
|Z ′

i|
− µ(θ)

∥∥∥∥∥

2

2

∣∣∣∣∣∣
θ


+ cn⋆

i

= sup
θ∈Θ

d∑

k=1

E



( 1

σ2

∑
u∈Xi∪Zi

(
u(k) − µ(θ)(k)

)
+ 1

σ2+τ2
i

∑
u∈Z′

i

(
u(k) − µ(θ)(k)

)

1
σ2 |Xi ∪ Z ′

i|+ 1
σ2+τ2

i
|Z ′

i|

)2
∣∣∣∣∣∣
θ


+ cn⋆

i
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Figure 2: E(m) plot. See G_em_plot.py.

= sup
θ∈Θ

d∑

k=1

1
σ2

∑
u∈Xi∪Zi

E
[(
u(k) − µ(θ)(k)

)]
+ 1

σ2+τ2
i

∑
u∈Z′

i
E
[(
u(k) − µ(θ)(k)

)]

1
σ2 |Xi ∪ Z ′

i|+ 1
σ2+τ2

i
|Z ′

i|
+ cn⋆

i (38)

≤ d
2n⋆

i

σ2 +
(m−2)n⋆

i

σ2+ 2α2σ2

n⋆
i

+ cn⋆
i =

σ2

n⋆
i

d

2 + m−2

1+ 2α2

n⋆
i

+ cn⋆
i = σ

√
cd

m


 m

2 + m−2

1+ 2α2

n⋆
i

+ 1


, (39)

where (38) is because: for all k ∈ [d], ∀x(k)
1 , x

(k)
2 ∈ Xi ∪ Zi, ∀z(k)1 , z

(k)
2 ∈ Z ′

i, x
(k)
1 − µ(k), x

(k)
2 −846

µ(k), z
(k)
1 − µ(k), z

(k)
2 − µ(k) are uncorrelated pairwise. The final inequality is due to the bounded847

variance assumption.848

Next, for brevity, let us write Am := α√
n⋆
i

where α is as defined in (7). By adapting the analysis in849

§A.2, we can show that850

Am :=
α√
n⋆
i

∈
(
1, 1 +

Cm

m

)
, where, Cm =

{
20, if m ≤ 20

5, if m > 20
. (40)

By combining the results in (36), (39), and (40), we obtain the following bound:851

pi(MC3D, s
⋆)

infsi pi(MC3D, (si, s⋆−i))
− 1 ≤ pi(MC3D, s

⋆)

pNi (MC3D, s̃⋆)
− 1

≤
σ
√

cd
m

(
m

2+ m−2

1+2A2
m

+ 1

)

dσ
√

c/d
m

(
10A2

m−1

4A2
m

m+1
m −1

+ 1
) − 1 =

m
2+ m−2

1+ 2α2

n⋆
i

+ 1

10α2

n⋆
i

−1

4α2

n⋆
i

m+1
m −1

+ 1

− 1

=
4A2

m

(
(A2

m − 1)m+ 1− 4A2
m

)
m

(4A2
m +m)((7A2

m − 1)m+ 2A2
m)

=: E(m). (41)

Let E(m) denote the final upper bound obtained above. Next, we will prove E(m) < 5/m. When852

m ∈ [5, 500], this can be individually verified for each value of E(m) (see Figure 2). When m ≥ 500,853

we have Am ≤ 1.01 (see (40)). From this we can conclude,854

E(m) ≤4× 1.012 × (2.01× 5
mm− 3)m

6m2
<

5

m
. (42)

Combining the results in (41) and (42), we obtain the following approximate IC result:855

∀ i ∈ [m], si ∈ S, pi(MC3D, s
⋆) ≤ pi(MC3D, (si, s

⋆
−i))

(
1 +

5

m

)
.

Individual rationality: This proof is very similar to the proof in §A.4. In particular, using calculations856

similar to (39), we can show that regardless of the choice of ni, the agent’s penalty is strictly smaller857

when using the uncorrupted (Zi) and corrupted (Z ′
i) datasets along with the weighted average in (34).858
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Approximate efficiency: To bound the penalty ratio, first note that by (37) and using the same859

reasoning as §A.5, we have that860

∑
i p

N
i (MC3D, s̃

⋆)

infM∈M,s∈Sm

∑
i p

N
i (M, s)

=
mpNi (MC3D, s̃

⋆)

infM∈M,s∈Sm

∑
i p

N
i (M, s)

=
mpNi (MC3D, s̃

⋆)

2σ
√
cmd

≤ 2. (43)

Next, as ΘN ⊂ Θ, and noting that P (M, s) =
∑

i pi(M, s) for all M, s, we can also write,861

inf
M∈M,s∈Sm

∑

i

pNi (M, s) ≤ inf
M∈M,s∈Sm

P (M, s). (44)

We can combine the above results to obtain the following upper bound on PR:862

PR(MC3D, s
⋆) =

P (MC3D, s
⋆)

infM∈M,s∈Sm P (M, s)
≤ mpi(MC3D, s

⋆)

infM∈M,s∈Sm

∑
i p

N
i (M, s)

(By (44))

=
mpNi (MC3D, s̃

⋆)

infM∈M,s∈Sm

∑
i p

N
i (M, s)

pi(MC3D, s
⋆)

pNi (MC3D, s̃⋆)

≤ 2
pi(MC3D, s

⋆)

pNi (MC3D, s̃⋆)
(By (43))

= 2(1 + E(m))) (By definition of E(m), see (41))

< 2 +
10

m
. (By (42))

This establishes approximate efficiency for MC3D for the high dimensional setting.863

F Useful Results864

In this section, we will state some useful results that we have used throughout this proof.865

Lemma 8 (Hardy-Littlewood inequality, Lemma 1.6 in Burchard [10]). Let f and g be non-negative866

measurable functions that vanish at infinity. Let f∗ and g∗ to denote the symmetric decreasing867

rearrangement of f and g. If
∫
f∗g∗ <∞, then,868

∫
fg ≤

∫
f∗g∗.

Next, we will use the above result to derive a corollary that will be useful in our proofs.869

Lemma 9 (A corollary of Hardy-Littlewood). Let f , g be nonnegative even functions such that,870

• f is monotonically increasing on [0,∞).871

• g is monotonically decreasing on [0,∞), and has a finite integral
∫
R g(x)dx <∞.872

• ∀a,
∫
R f(x− a)g(x)dx <∞.873

Then for all a,874 ∫

R
f(x)g(x)dx ≤

∫

R
f(x− a)g(x)dx

Proof. We will break this proof into two cases. The first is when sup f <∞ and the second is when875

sup f =∞. First consider the case sup f <∞. Let876

M := lim
x→∞

f(x).

By using Lemma 8, ∀a,877

∫

R
(M − f(x))g(x)dx ≥

∫

R
(M − f(x− a))g(x)dx.

The result follows after rearrangement.878
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If sup f =∞, let fn(x) := min{f(x), n}. For all n and a, by Lemma 8,879

∫

R
(n− fn(x))g(x)dx ≥

∫

R
(n− fn(x− a))g(x)dx,

thus880 ∫

R
fn(x)g(x)dx ≤

∫

R
fn(x− a)g(x)dx.

Note that |fn(x)g(x)| ≤ f(x)g(x), the result follows by letting n → ∞ on both sides and using881

dominated convergence theorem.882

Below, we provide a brief example on using Lemma 9 to calculate the Bayes risk in a normal mean883

estimation problem with i.i.d data. While it is not necessary to use Hardy-Littlewood for this problem,884

this example will illustrate how we have used it in our proofs.885

Example 1. Consider the Normal mean estimation problem given samples X[n] ∼ N (µ, σ2), where886

µ admits a prior distribution N (0, ℓ2). The goal is to minimize the average risk:887

Eµ∼N (0,ℓ2)

[
EX[n]∼N (µ,σ2)[L(µ̂− µ)|µ]

]
,

where the loss function, L(·), is an even function that increases on [0,∞). By a standard argument,888

one can show that the posterior distribution of µ conditioned on X[n] is Gaussian with data-dependent889

parameters µ̄, σ̄2:890

µ|X[n] ∼ N (µ, σ2).

The posterior risk is:891

Eµ|X[n]
[L(µ̂− µ)] = Eµ|X[n]

[L((µ− µ) + (µ− µ̂))] =

∫

R
L(x+ (µ− µ̂))︸ ︷︷ ︸
=:f(x+(µ−µ̂))

exp
(
− x2

2σ2

)

σ
√
2π︸ ︷︷ ︸

=:g(x)

dx

By applying Lemma 9 with f and g, the posterior risk above is minimized when µ̂ = µ. So is the892

average risk.893

The next Lemma shows that convexity is preserved under expectation under certain conditions.894

Lemma 10. Let y be a random variable and f(x, y) be a function s.t.895

• f(x, y) is convex in x;896

• Ey[|f(x, y)|] <∞ for all x.897

Then Ey[f(x, y)] is also convex in x.898

Proof. For any x1, x2, we have899

Ey[f(x1, y)] + Ey[f(x2, y)]

2
=Ey

[
f(x1, y) + f(x2, y)

2

]
≥ Ey

[
f

(
x1 + x2

2
, y

)]

900

Lemma 11 (Centered moments of normal random variable). Let X ∼ N (µ, σ2) be a normal random901

variable and p ∈ Z+, then902

E[(X − µ)p] =

{
0 if p is odd
σp(p− 1)!! if p is even

.
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F.1 Some technical results903

Next, we will state some technical results that were obtained purely using algebraic manipulations904

and are not central to the main proof ideas. The first result states upper and lower bounds on the905

Gaussian complementary error function using an asymptotic expansion.906

Lemma 12 (Erfc bound). For all x > 0,907

Erfc(x) ≤ 1√
π

(
exp(−x2)

x
− exp(−x2)

2x3
+

3 exp(−x2)

4x5

)
(45)

Erfc(x) ≥ 1√
π

(
exp(−x2)

x
− exp(−x2)

2x3

)
(46)

Proof. By integration by parts:908

√
π

2
Erfc(x) =

∫ ∞

x

exp
(
−t2

)
dt =

(
−exp

(
−t2

)

2t

)∣∣∣∣∣

∞

x

−
∫ ∞

x

exp(−t2)
2t2

dt

=
exp(−x2)

2x
−
((
−exp(−t2)

4t3

)∣∣∣∣
∞

x

−
∫ ∞

x

3 exp(−t2)
4t4

dt

)

=
exp(−x2)

2x
− exp(−x2)

4x3
+

∫ ∞

x

3 exp(−t2)
4t4

dt

︸ ︷︷ ︸
≥0

(47)

=
exp(−x2)

2x
− exp(−x2)

4x3
+

(
−3 exp(−t2)

8t5

)∣∣∣∣
∞

x

−
∫ ∞

x

15 exp(−t2)
8t6

dt

=
exp(−x2)

2x
− exp(−x2)

4x3
+

3 exp(−x2)

8x5
−
∫ ∞

x

15 exp(−t2)
8t6

dt

︸ ︷︷ ︸
≤0

(48)

The results follow by (47) and (48).909

Our next result, which is obtained using Mathematica, states an expression for the function p(ni) and910

its derivative as defined in (23).911

Lemma 13 (Value and derivative of penalty function at s⋆). Let p(ni) = pi(MC3D, ((ni, f
⋆
i , h

⋆
i ), s

⋆
−i))912

(see (23)) and s⋆i , f
⋆
i , h

⋆
i be as specified in (8). The penalty of agent i in Algorithm 1 satisfies:913

p(n⋆
i ) =

√
α2

mn⋆
i
σ2


2m

√
2π
√

α2

mn⋆
i
− exp

(
mn⋆

i

8α2

)
(m− 2)πErfc


 1

2
√
2

√
α2

mn⋆
i






4
√
2πα2

+ cn⋆
i (49)

p′(n⋆
i ) =−

σ2

64 α2

m−2
α√
mn⋆

i

mn⋆
i

(
4α√
mn⋆

i

(
4α2m

(m− 2)n⋆
i

− 1

)

− exp

(
mn⋆

i

8α2

)(
4α2

mn⋆
i

(m+ 1)− 1

)√
2πErfc


 1

2
√
2
√

α2

mn⋆
i



)

+ c. (50)

Proof. We derived these expressions using Mathematica and have given our source code in thm1pf_914

penalty.nb and thm1pf_penalty.pdf. But, we will also outline how these results can be derived915

manually.916

First, after rearranging the denominator inside the expectation in (23), we can write the RHS as917

a+ bE[ 1
d+x2 ], where the expectation is with respect to a standard normalN (0, 1) variable, a, b, d are918

quantities that depend on ni,m, c, σ2, α2, and importantly, d is strictly larger than 0. Using properties919

of the chi-squared distribution, we have920

E
[

1

d+ x2

]
=

√
π

2d
ed/2 Erfc

(
d

2

)
.
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By plugging in these expressions and then substituting ni = n⋆
i , we obtain (49). Then (50) is obtained921

by taking the derivative of (49) (with n⋆
i replaced with ni) with respect to ni.922
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