
Under review as a conference paper at ICLR 2022

APPENDICES FOR “ACTION-SUFFICIENT STATE REPRESENTATION
LEARNING FOR CONTROL WITH STRUCTURAL CONSTRAINTS"

A PROOF OF PROPOSITION 1

We first give the definitions of the Markov condition and the faithfulness assumption, which will be
used in the proof.

Definition 1 (Global Markov Condition (Spirtes et al., 1993; Pearl, 2000)). The distribution p over V
satisfies the global Markov property on graph G if for any partition (A,B,C) such that B d-separates
A from C,

p(A,C|B) = p(A|B)p(C|B).

Definition 2 (Faithfulness Assumption (Spirtes et al., 1993; Pearl, 2000)). There are no independen-
cies between variables that are not entailed by the Markov Condition.

Below, we give the proof of Proposition 1.

Proof. We first show that if si,t 2 ~s
ASR
t , then it has a direct or indirect edge to rt+⌧ .

We prove it by contradiction. Suppose that si,t does not have a direct or indirect edge to rt+⌧ .
According to the Markov assumption, si,t is independent of at given R. Hence, si,t is not necessary
for decision making, and thus si,t is not a dimension in ~s

ASR
t , which contradicts to the assumption.

Since we have a contradiction, it must be that si,t has a direct or indirect edge to rt+⌧ .

We next show that if si,t has a direct or indirect edge to rt+⌧ , then si,t 2 ~s
ASR
t .

Similarly, by contradiction suppose that si,t is not a dimension in ~s
ASR
t . It means that si,t is

independent on at given R and some other variables. Then according to the faithfulness assumption,
si,t does not have a direct or indirect edge to rt+⌧ , which contradicts to the assumption.

B MINIMALITY OF THE REPRESENTATION

In this section, we give the detailed derivation of the minimality of the state representation given in
Section 2.1.

We achieve minimality of the representation by minimizing conditional mutual information between
observed high-dimensional signals yt, where yt = {o

T
t , r

T
t }, and the ASR ~̃s

ASR
t at time t given data

at previous time instances, and meanwhile minimizing the dimensionality of ASRs with sparsity
constraints:

�1

XT

t=2
I(yt; ~̃s

ASR
t |y1:t�1, a1:t�1, ~̃st�1) + �2kD̃

ASR
k1.

Note that in the above conditional mutual information, we need to conditional on the previous states
~̃st�1, instead of ~̃sASR

t�1 , which two give different conditional mutual information. It can be shown
by contradiction. Suppose I(yt; ~̃sASR

t |y1:t�1, a1:t�1, ~̃st�1) = I(yt; ~̃sASR
t |y1:t�1, a1:t�1, ~̃s

ASR
t�1 ), and

denote ~̃sC = ~̃s\~̃s
ASR. Then the equivalence implies that ~̃sC

t�1 is independent of ot (where ot 2 yt)
given {y1:t�1, a1:t�1, ~̃s

ASR
t�1 }. It is obviously violated for the example given in Figure 1, where

~̃s
C = s1 and ~̃s

ASR = {s2, s3}, and s1,t�1 is dependent on ot given {y1:t�1, a1:t�1, s2,t�1, s3,t�1}.
Hence, conditioning on ~̃st�1 and ~̃s

ASR
t�1 give different conditional mutual information. Therefore, in

the above conditional mutual information, we need to condition on the previous states ~̃st�1.

13



Under review as a conference paper at ICLR 2022

Moreover, the conditional mutual information I(yt; ~̃sASR
t |y1:t�1, a1:t�1, ~̃st�1) can be upper bound

by a KL-divergence:

I(yt; ~̃sASR
t |y1:t�1, a1:t�1, ~̃st�1)

= I(yt; ~̃sASR
t , {y1:t�1, a1:t�1, ~̃st�1})� I(yt; {y1:t�1, a1:t�1, ~̃st�1})

=
⇥
H(yt)�H(yt|~̃s

ASR
t ,y1:t�1, a1:t�1, ~̃st�1)

⇤
�
⇥
H(yt)�H(yt|y1:t�1, a1:t�1, ~̃st�1)

⇤

= H(yt|y1:t�1, a1:t�1, ~̃st�1)�H(yt|~̃s
ASR
t ,y1:t�1, a1:t�1, ~̃st�1)

= �p(yt|y1:t�1, a1:t�1, ~̃st�1) log p(yt|y1:t�1, a1:t�1, ~̃st�1)
+ p(yt|~̃s

ASR
t ,y1:t�1, a1:t�1, ~̃st�1) log p(yt|~̃s

ASR
t ,y1:t�1, a1:t�1, ~̃st�1)

 �p(yt|~̃s
ASR
t ,y1:t�1, a1:t�1, ~̃st�1) log p(yt|y1:t�1, a1:t�1, ~̃st�1)

+ p(yt|~̃s
ASR
t ,y1:t�1, a1:t�1, ~̃st�1) log p(yt|~̃s

ASR
t ,y1:t�1, a1:t�1, ~̃st�1)

=
R
q�(~̃sASR

t |~̃st�1,y1:t, a1:t�1) log
q�(~̃s

ASR
t |~̃st�1,y1:t,a1:t�1)

p�(~̃s ASR
t |~̃st�1,at�1;D~s,Da)~s)

d~̃s
ASR
t

= KL
�
q�(~̃sASR

t |~̃st�1,y1:t, a1:t�1)kp�(~̃sASR
t |~̃st�1, at�1;D~s, Da)~s)

�
,

with p� being the transition dynamics of ~̃st with parameters �.

C ASSUMPTIONS OF PROPOSITION 2

To show the identifiability of the model in the linear case, we make the following assumptions:

A1. do + dr � ds, where |ot| = do, |rt| = dr, and |st| = ds.
A2. (D>

~s)o, D
>
~s)r)

> is full column rank and D~s is full rank.
A3. The control signal at is i.i.d. and the state ~st is stationary.
A4. The process noise has a unit variance, i.e., var(⌘t) = I .

D PROOF OF PROPOSITION 2

Proof. The proof of the linear case without control signals has been shown in Zhang & Hyvärinen
(2011). Below, we give the identifiability proof in the linear-Gaussian case with control signals:

(
ot = D~s)o~st + et,

rt+1 = D~s)r~st +Da)rat + ✏t+1,

~st = D~s~st�1 +Da)~sat�1 + ⌘t.

(5)

Let yt+1 = [o>t , r
>
t+1]

>, D̈~s)o = [D>
~s)o, D

>
~s)r]

>, D̈a)r = [~0>, D>
a)r]

>, and ët = [e>t , ✏
>
t+1]

>. Then
the above equation can be represented as:⇢

yt = D̈~s)o~st + D̈a)rat + ët,

~st = D~s~st�1 +Da)~sat�1 + ⌘t.
(6)

Because the dynamic system is linear and Gaussian, we make use of the second-order statistics of the
observed data to show the identifiability. We first consider the cross-covariance between yt+k and at:

⇢
Cov(yt+k, at) = D̈~s)oD

k�1
~s Da)~s · Var(at), if k > 0.

Cov(yt+k, at) = D̈a)r · Var(at), if k = 0.
(7)

Thus, from the cross-covariance between yt+k and at, we can identify D̈~s)oDa)~s, D̈a)r, and
D̈~s)oD

k
~sDa)~s for k > 0.

Next, we consider the auto-covariance function of ~s. Define the auto-covariance function of ~s at
lag k as R~s(k) = E[~st~s>t+k], and similarly for Ry(k). Clearly, R~s(�k) = R~s(k)> and Ry(�k) =
Ry(k)>. Then we have

⇢
R~s(k) = R~s(k � 1) ·D>

~s , if k > 0,
R~s(k) = R>

~s (1) ·D
>
~s +Da)~sVar(at�1)D>

a)~s + I, if k = 0.
(8)

Below, we first consider the case where do+dr = ds. Let ỹt = D̈~s)o~st, so yt = ỹt+ D̈a)rat�1+ ët

and Rỹ(k) = D̈~s)oR~st(k)D̈
>
~s)o. Rỹ(k) satisfies the recursive property:

⇢
Rỹ(k) = Rỹ(k � 1) · ⌦>

, if k > 0,
Rỹ(k) = R>

ỹ (1) · ⌦
> + D̈~s)o(Da)~sVar(at�1)D>

a)~s + I)D̈>
~s)o, if k = 0,

(9)

14



Under review as a conference paper at ICLR 2022

where ⌦ = D̈~s)oD~sD̈
�1
~s)o.

Denote Sk = D̈~s)oD
k�1
~s Da)~s · Var(at). Then we can derive the recursive property for Ry(k):

8
>><

>>:

Ry(k) = Ry(k � 1) · ⌦>
� D̈a)rS

>
k�1⌦

> + D̈a)rS
>
k , if k > 1,

Ry(k) = Ry(k � 1) · ⌦>
� D̈a)rVar>(at)D̈>

a)r⌦
>
� ⌃e⌦> + D̈a)rS

>
k , if k = 1,

Ry(k) = R>
y (1) · ⌦

> +
�
D̈a)rVar(at)D̈>

a)r + ⌃e

�

+ D̈~s)o(Da)~sVar(at)D>
a)~s + I)D̈>

~s)o, if k = 0.

When k = 2, we have
Ry(2) = Ry(1) · ⌦

>
� D̈a)rS

>
1 ⌦> + D̈a)rS

>
2 .

The above equation can be re-organized as
�
Ry(2)� D̈a)r · S

>
2

�
=

�
Ry(1)� D̈a)r · S

>
1

�
· ⌦>

.

Because D̈a)r and Sk are identifiable, and suppose
�
Ry(1) � D̈a)r · S

>
1

�
is invertible, ⌦ =

D̈~s)oD~sD̈
�1
~s)o is identifiable.

We further consider Ry(0) and Ry(1) and write down the following form:

Ry(0)� D̈~s)o(Da)~sVar(at�1)D>

a)~s + I)D̈>
~s)o

Ry(1)

�

=


R>

y (1)
Ry(0)

�
· ⌦> +


D̈a)rVar(at)D̈>

a)r

�D̈a)rVar>(at)D̈>
a)r⌦

> + D̈a)rS
>
1

�
+ ⌃e


I

�⌦>

�
.

From the above two equations we can then identify ⌃e and D̈~s)o(Da)~sVar(at�1)D>
a)~s + I)D̈>

~s)o, and
because D̈~s)oDa)~s is identifiable, D̈~s)oD̈

>
~s)o is identifiable.

In summary, we have shown the identifiability of D̈a)r, D̈~s)oDa)~s, D̈~s)oD
k
~sDa)~s, D̈~s)oD̈

>
~s)o, and

⌃e. Furthermore, D̈~s)o, D~s, and Da)~s are identified up to some orthogonal transformations. That
is, suppose the model in Eq. (3) with parameters (D~s)o, D~s)r, Da)r, D~s, Da)~s,⌃e,⌃✏) and that with
(D̃~s)o, D̃~s)r, D̃a)r, D̃~s, D̃a)~s, ⌃̃ẽ, ⌃̃✏̃) are observationally equivalent, we then have ˜̈

D~s)o = D̈~s)oU ,
D̃a)r = Da)r, D̃~s = U

>
D~sU , D̃a)~s = Da)~sU , ⌃̃ẽ = ⌃e, and ⌃̃✏̃ = ⌃✏, where U is an orthogonal

matrix.

Next, we extend the above results to the case where do+dr > ds. Let D̈>
~s)o(i,·) be the i-th row of D̈~s)o.

Recall that D̈~s)o is of full column rank. Then for any i, one can show that there always exist ds�1 rows
of D̈~s)o, such that they, together with D̈

>
~s)o(i,·), form a ds ⇥ ds full-rank matrix, denoted by ¯̈

D~s)o(i,·).

Then from the observed data corresponding to ¯̈
D~s)o(i,·),

¯̈
D~s)o(i,·) is determined up to orthogonal

transformations. Thus, D̈~s)o is identified up to orthogonal transformations. Similarly, Da)r, D~s,
and Da)~s are identified up to orthogonal transformations. Furthermore, Cov(D̈~s)o~st +Da)rat) is
determined by D̈~s)o, D̈a)r, D~s, and Da)~s. Because Cov(yt) = Cov(D̈~s)o~st +Da)rat) + ⌃ë, ⌃ë is
identifiable.

One may further add sparsity constraints on D~s)o, D~s)r, D~s, and Da)~s, to select more sparse structures
among the equivalent ones. For example, one may add sparsity constraints on the columns of D~s)o.
Note this corresponds to the mask on the elements of ~st in Eq. 2; if the full column is 0, then the
corresponding dimension of ~st is not selected.

E MORE ESTIMATION DETAILS FOR GENERAL NONLINEAR MODELS

The generative model p✓ can be further factorized as follows:

log p✓(y1:T |~̃s1:T , a1:T�1;D~s)o, D~s)r, Da)r)
= log p✓(o1:T |~̃s1:T ;D~s)o) + log p✓(r1:T |~̃s1:T , a1:T�1;D~s)r, Da)r)
=

PT
t=1 log p✓(ot|~̃st;D~s)o) + log p✓(rt|~̃st�1, at�1;D~s)r, Da)r),

(10)

15



Under review as a conference paper at ICLR 2022

where both p✓(ot|~̃st;D~s)o) and p✓(rt|~̃st�1, at�1;D~s)r, Da)r) are modelled by mixture of Gaussians,
with D~s)o indicating the existence of edges from ~̃st to ot and D~s)r indicating the existence of edges
from ~̃st�1 to rt.

The inference model q�(~̃s1:T |y1:T , a1:T�1) is factorized as

log q�(~̃s1:T |y1:T , a1:T�1)

= log q�(~̃s1|y1, a0) +
TP

t=2
log q�(~̃st|~̃st�1,y1:t, a1:t�1),

where both q�(~̃s1|y1, a0) and q�(~̃st|~̃st�1,y1:t, a1:t�1) are modelled with mixture of Gaussians.

The transition dynamics p� is factorized as

log p�(~̃s1:T |a1:T�1;D~s(·,i), Da)~s(·,i)) =
TP

t=1
log p�(~̃st|~̃st�1, at�1;D~s(·,i), Da)~s(·,i)), (11)

with ~̃st|~̃st�1 modelled with mixture of Gaussians.

Thus, the KL divergence can be represented as follows:

KL
�
q�(~̃s1:T |y1:T , a1:T�1)kp�(~̃s1:T )

�

= KL
�
q�(~̃s1|y1, a0)kp�(~̃s1)

�
+

TP
t=2

Eq�

⇥
KL

�
q�(~̃st|~̃st�1,y1:t, a1:t�1)kp�(~̃st|~̃st�1)

�⇤
.

(12)

In practice, KL divergence with mixture of Gaussians is hard to implement, so instead, we used the
following objective function:

KL
�
q�(~̃s1|y1, a0)kp�0(~̃s1)

�
+

TP
t=2

Eq�

⇥
KL

�
q�(~̃st|~̃st�1,y1:t, a1:t�1)kp�0(~̃st|~̃st�1)

�⇤

+�

TP
t=1

log p�(~̃st|~̃st�1, at�1;D~s(·,i), Da)~s(·,i))
(13)

where p�0 is a standard multivariate Gaussian N (~0, Id).

F MORE DETAILS FOR POLICY LEARNING WITH ASRS

Algorithm 1 gives the procedure of model-free policy learning with ASRs in partially observable
environments. Specifically, it starts from model initialization (line 1) and data collection with a random
policy (line 2). Then it updates the environment model and identifies the set of ASRs with the collected
data (line 3), after which, the main procedure of policy optimization follows. In particular, because
we do not directly observe the states ~st, on lines 8 and 12, we infer q�(~sASR

t+1 |ot+1, rt+1, at)
and sample ~s

ASR
t+1 from the posterior. The sampled ASRs are then stored in the buffer (line 13).

Furthermore, we randomly sample a minibatch of N transitions to optimize the policy (lines 14 and
15). One may perform various RL algorithms on the ASRs, such as deep deterministic policy gradient
(DDPG (Lillicrap et al., 2015)) or Q-learning (Mnih et al., 2015).

Algorithm 2 presents the procedure of the classic Dyna algorithm with ASRs. Lines 17-22 make
use of the learned environment model to predict the next step, including ~s

ASR
t+1 and rt+1, and update

the Q function n times. Specifically, in our implementation, the hyper-parameter n is 20. Based on
the learned model, the agent learns behaviors from imagined outcomes in the compact latent space,
which helps to increase sample efficiency.

G ADDITIONAL EXPERIMENTS AND DETAILS

G.1 CARRACING EXPERIMENT

CarRacing (with an illustration in Figure 8) is a continuous control task with three continuous actions:
steering left/right, acceleration, and brake. Reward is �0.1 every frame and +1000/N for every track
tile visited, where N is the total number of tiles in track. It is obvious that the CarRacing environment

16



Under review as a conference paper at ICLR 2022

Algorithm 1 Model-Free Policy Learning with ASRs in Partially Observable Environments
1: Randomly initialize neural networks and initialize replay buffer B.
2: Apply random control signals and record multiple rollouts.
3: Estimate the model given in (2) with the recorded data (according to Section 3).
4: Identify indices of ASRs according to the learned graph structure and the criteria in Prop. 1.
5: for episode = 1, . . . , M do
6: Initialize a random process N for action exploration.
7: Receive initial observations o1 and r1.
8: Infer the posterior q�(~sASR

1 |o1, r1) and sample ~sASR
1 .

9: for t = 1, . . . , T do
10: Select action at = ⇡(~sASR

t ) +Nt according to the current policy and exploration noise.
11: Execute action at and receive reward rt+1 and observation ot+1.
12: Infer the posterior q�(~sASR

t+1 |ot+1, rt+1, at) and sample ~sASR
t+1 .

13: Store transition (~sASR
t , at, rt+1,~s

ASR
t+1 ) in B.

14: Sample a random minibatch of N transitions (~sASR
i , ai, ri+1,~s

ASR
i+1 ) from B.

15: Update network parameters using a specified RL algorithm (e.g., DQN or DDPG).
16: end for
17: end for

Algorithm 2 Model-Based Policy Learning with ASRs in Partially Observable Environments
1: Randomly initialize neural networks and initialize replay buffer B.
2: Apply random control signals and record multiple rollouts.
3: Estimate the model given in (2) with the recorded data (according to Section 3).
4: Identify indices of ASRs according to the learned graph structure and the criteria in Prop. 1.
5: for episode = 1, . . . , M do
6: Initialize a random process N for action exploration.
7: Receive initial observations o1 and r1.
8: Infer the posterior q�(~sASR

1 |o1, r1) and sample ~sASR
1 .

9: for t = 1, . . . , T do
10: Select action at = ⇡(~sASR

t ) +Nt according to the current policy and exploration noise.
11: Execute action at and receive reward rt+1 and observation ot+1.
12: Infer the posterior q�(~sASR

t+1 |ot+1, rt+1, at) and sample ~sASR
t+1 .

13: Store transition (~sASR
t ,~st, at, rt+1,~s

ASR
t+1 ,~st+1, ot+1) in B.

14: Sample a random minibatch of N transitions (~sASR
i , ai, ri+1,~s

ASR
i+1 ) from B.

15: Update network parameters using a specified RL algorithm (e.g., DQN or DDPG).
16: Update the model given in (2) with the recorded data from B (according to Section 3).
17: for p = 1, . . . , n do
18: Sample a random minibatch of pairs of (~st, at) from B.
19: Predict (~sASR

t+1 , rt+1) according to the model given in (2).
20: Update network parameters using a specified RL algorithm (e.g., DQN or DDPG).
21: end for
22: end for
23: end for

Figure 8: An illustration of Car Racing environment.

17



Under review as a conference paper at ICLR 2022

is partially observable: by just looking at the current frame, although we can tell the position of the
car, we know neither its direction nor velocity that are essential for controlling the car.

For a fair comparison, we followed the same setting as in Ha & Schmidhuber (2018). Specifically,
we collected a dataset of 10k random rollouts of the environment, each consisting of 1000 time steps,
for model estimation. The dimensionality of latent states ~̃st was set to d̃ = 32, and regularization
parameters was set to �1=1, �2=1, �3=1, �4=1, �5=1, �6=6, �7=10, �8=0.1, which are
determined by hyperparameter turning.

Analysis of ASRs. To demonstrate the structures over observed frames, latent states, actions, and
rewards, we visualized the learned D~s)o, D~s)r, D~s, and Da)~s, as shown in Figure 9. Intuitively, we
can see that D~s)r and Da)~s have many values close to zero, meaning that the reward is only influenced
by a small number of state dimensions, and not many state dimensions are influenced by the action.
Furthermore, from D~s, we found that there are influences from ~̃si,t to ~̃si,t+1 (diagonal values) for
most state dimensions, which is reasonable because we want to learn an MDP over the underlying
states, while the connections across states (off-diagonal values) are much sparser. Compared to the
original 32-dim latent states, ASRs have only 21 dimensions. Below, we empirically showed that
the low-dimensional ASRs significantly improve the policy learning performance in terms of both
efficiency and efficacy.

Figure 9: Visualization of estimated structural matrices D~s)o, D~s)r, Da)~s, and D~s in Car Racing.

Ablation Study. We further performed ablation studies on latent dynamics prediction; that is, we
compared with the case when the transition dynamics in (4) are not explicitly involved. Figure 10
shows that by explicitly modelling the transition dynamics (denoted by with LDP), the cumulative
reward has an obvious improvement over the one without modelling the transition dynamics (denoted
by without LDP).

Difference between our SS-VAE and Planet, Dreamer. Both our method and Planet (Hafner
et al., 2018) and Dreamer (Hafner et al., 2019) are world model-based methods. The differences are
mainly in two aspects: (1) our method explicitly considers the structural relationships among variables
in the RL system, and (2) it guarantees minimal sufficient state representations for policy learning.
Previous approaches usually fail to take into account whether the extracted state representations are
sufficient and necessary for downstream policy learning. Moreover, as for the component of recurrent
networks, SS-VAE uses LSTM that only contains the stochastic part, while PlaNet and Dreamer use
RSSM that contains both deterministic and stochastic components.

G.2 VIZDOOM EXPERIMENT

We also applied the proposed method to VizDoom (Kempka et al., 2016). VizDoom provides many
scenarios and we chose the take cover scenario (Figure 11). Unlike CarRacing, take cover is a discrete
control problem with two actions: move left and move right. Reward is +1 at each time step while
alive, and the cumulative reward is defined to be the number of time steps the agent manages to stay
alive during a episode. Therefore, in order to survive as long as possible, the agent has to learn how
to avoid fireballs shot by monsters from the other side of the room. In this task, solving is defined as
attaining the average survival time of greater than 750 time steps over 100 consecutive episodes, each
running for a maximum of 2100 time steps.

Following the same setting as in Ha & Schmidhuber (2018), we collected a dataset of 10k random
rollouts of the environment, each consisting of 500 time steps. The dimensionality of latent state ~̃st

18



Under review as a conference paper at ICLR 2022

Figure 10: Ablation study of latent dynamics
prediction (LDP) evaluated on Car Racing
with model-free ASR.

Figure 11: An illustration of VizDoom
take cover scenario.

is set to d̃ = 32. We also set �1=1, �2=1, �3=1, �4=1, �5=1, �6=6, �7=10, �8=0.1. By
tuning thresholds, we finally reported all the results on the 21-dim ASRs, which achieved the best
results in all the experiments.

H DETAILED MODEL ARCHITECTURES

In the car racing experiment, the original screen images were resized to 64 ⇥ 64 ⇥ 3 pixels. The
encoder consists of three components: a preprocessor, an LSTM, and an MDN. The preprocessor
architecture is presented in Figure 12, which takes as input the images, actions and rewards, and its
output acts as the input to LSTM. We used 256 hidden units in the LSTM and used a five-component
Gaussian mixture in the MDN. The decoder also consists of three components: a current observation
reconstructor (Figure 13), a next observation predictor (Figure 14), and a reward predictor (Figure
15). The architecture of the transition/dynamics is shown in Figure 16, and its output is also modelled
by an MDN with a five-component Gaussian mixture. The architecture of the action prediction is
given in Figure 17, which is a two-layer MLP taking states and rewards as input and predicted action
as output. In the VizDoom experiment, we used the same image size and the same architectures
except that the LSTM has 512 hidden units and the action has one dimension. It is worth emphasising
that we applied weight normalization to all the parameters of the architectures above except for the
structural matrices D(·).

In DDPG, both actor network and critic network are modelled by two fully connected layers of size
300 with ReLU and batch normalisation. Similarly, in DQN (Mnih et al., 2013) on both ASRs and
SSSs, the Q network is also modelled by two fully connected layers of size 300 with ReLU and batch
normalisation. However, in DQN on observations, it is modelled by three convolutional layers (i.e.,
relu conv 32⇥ 8⇥ 8 �! relu conv 64⇥ 4⇥ 4 �! relu conv 64⇥ 3⇥ 3) followed by two additional
fully connected layers of size 64. In DRQN (Hausknecht & Stone, 2015) on observations, we used
the same architecture as in DQN on observations but padded an extra LSTM layer with 256 hidden
units as the final layer.

I PLATFORM AND LICENSE

We run all the experiments on the servers with 4 NVidia V100 GPUs. We used the Car Racing in
OpenAI gym and VizDoom environments and we have cited the creators. In our code, we have used
the following libraries: Tensorflow (Apache License 2.0), OpenAI Gym (MIT License), VizDoom
(MIT License), OpenCV (Apache 2 License), Numpy (BSD 3-Clause "New" or "Revised" License)
and NVIDIA-DALI libraries (Apache 2 License).

19



Under review as a conference paper at ICLR 2022

Input Image 64 x 64 x 3

Relu Conv 32x4x4 with Stride 2 

Relu Conv 64x4x4 with Stride 2 

Relu Conv 128x4x4 with Stride 2 

Relu Conv 256x4x4 with Stride 2 

Action 3 reward 1

Relu Fully-Connected 512 Relu Fully-Connected 256 

Concatenate

Output (Input of LSTM)

Figure 12: Network architecture of preprocessor.

s: 32

Element-wise Multiplication with A 

Relu Fully-Connected 1024

Relu Deconv 128x5x5 with Stride 2 

Relu Deconv 64x5x5 with Stride 2 

Relu Deconv 32x6x6 with Stride 2 

sigmoid Deconv 3x6x6 with Stride 2 

Output Image (Reconstruction)

Figure 13: Network architecture of observation
reconstruction.

s: 32

Concatenate

Relu Fully-Connected 1024

Relu Deconv 128x5x5 with Stride 2 

Relu Deconv 64x5x5 with Stride 2 

Relu Deconv 32x6x6 with Stride 2 

sigmoid Deconv 3x6x6 with Stride 2 

Output Image (Prediction)

action: 3

Figure 14: Network architecture of observation
prediction.

Concatenate

Relu Fully-Connected 1024

Relu Fully-Connected 256

Fully-Connected 1

Reward prediction

action: 3s: 32

Element-wise Multiplication with B Element-wise Multiplication with C 

Figure 15: Network architecture of reward.

Concatenate

Relu Fully-Connected 1024

Relu Fully-Connected 1024

Relu Fully-Connected 256

Fully-Connected 480 

action: 3s: 32

Element-wise Multiplication with D Element-wise Multiplication with E

MDN

Figure 16: Network architecture of transi-
tion/dynamics.

20



Under review as a conference paper at ICLR 2022

Figure 17: Network architecture of action prediction.

Figure 18: Visualization of estimated structural matrices D~s)o, D~s)r, Da)~s, and D~s in Car Racing,
without the explicit sparsity constraints.

Figure 19: Visualization of estimated structural matrices D~s)o, D~s)r, Da)~s, and D~s in VizDoom.

21


