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1 FURTHER DISCUSSION ON THE SHADING
ADAPTIVE TRANSFORMATION T

In the section of methodology, we outline how the shading adaptive
transformation T functions within the SACA to reconcile the con-
tradiction between two training objectives and facilitate network’s
learning on the prior of global shading coherence. In support of
this argument, we offer an intuitive comparison in Figure 1. The
training hyperparameters are the same for both setups, saving for
the exclusion of T in the first one. As can be seen, not utilizing T
results in the decreased shading diversity for the object across the
various scenes. The object may seem dark even in the scene with
bright lighting. As a contrast, the object’s shading exhibits more
dynamic changes when T is employed.

We also include a brief analysis in the main text to confirm that
the utilized T can effectively handle the variations in the ambient
light color of the object. Figure 2 displays visual illustrations to
support this assertion. Take case 1-3 as the examples, when ob-
ject is in the scene with relatively uniform lighting, T can largely
eliminate the shading difference between and 𝑐 and 𝑥0. However,
since the current T does not take diffuse reflection and specular
highlight colors into account, the shading variances they initiated
are still hard to eliminate, especially in the samples as case 4. This is
also a topic that we plan to explore in the future research. Overall,
the current form of T is concise and theoretically rational. The
application of it has been shown to yield beneficial results for the
network’s learning.

2 VISUAL DEMONSTRATION OF THE FPTS’S
EFFECT

In the main text, the EoG indicator is employed to quantitatively
verify that FPTS can efficiently reduce the high-frequency signals
in the object area. Figure 3 further provides the visual evidences
to uphold this assertion. The top and bottom rows exhibit the se-
quences of predicted 𝑥0 during the denoising process, without or
with FPTS, respectively. In the absence of FPTS, the high-frequency
components in the object area will grow quickly. Though there is a
decline in the subsequently, they still be unreasonably high in the
end. The introduction of FPTS alleviates this problem. As depicted
in the figure, it softens the growth of high frequency components
in object area, regulating them to the reasonable extent eventually.

3 FURTHER INTRODUCTION TO THE
DATASET

The dataset used in this work is constructed based on 3D-FUTURE.
It consists of 20240 high-quality interior design rendering images
and the textured 3D models of included furniture. Condition images
are create based on Blender 3.6. We setup the object and camera
positions according to the annotation, place a daylight source above
them, and then execute the single-model rendering. Since a scene

image usually contains multiple furniture, it will correspond to
multiple condition images. The text prompt corresponding to each
scene image is obtained based on the annotation and LLaVA-1.5.
After leaving out the test objects and the scene images containing
them, there are 19127 different scene images and 49,963 condition-
text-output triples involved in training. The condition images can be
divided into five categories according to the furniture they contain:
bed (4148), sofa (12259), table (4129), chair (5195) and shelf (24232).
Figure 4 shows some examples of the training data.

4 IMPLEMENTATION DETAILS OF THE
COMPARISONS

Four alternative methods are selected for comparison in this paper.
This part provides the implementation details of them. All these
methods are diffusion-based. Unless otherwise specified, all meth-
ods use the same sampling setup as the proposed method, where
100-step DDIM sampler and the classifier-free guidance scale of 7
are used.

When performing BLIP-Diffusion, to achieve the control over
the pose of objects, the recommended paradigm 1 that integrating
with ControlNet is used. Concretely, we use the original condition
image as the input to subject encoder, and the canny map of it as
the input to ControlNet.

For SD-Inpainting, we use the implementation provided by
Stable Diffusion WebUI 2. Masked content is set to latent nothing,
inpaint area is set to whole picture, and denoising strength is 1.

For InstructPix2Pix, we use the online demo 3 provided by the
original authors. Text CFG and image CFG are set to 7.5 and 1.5
according to the recommendation. The editing instruction is given
as “Change the background to...”.

For ControlNet, we use our dataset to train it based on its
original codebase 4. The base network is Stable Diffusion V2.1.
Except for the utilization of L𝑠𝑎𝑐𝑎 , all the training hyperparameters
are same as the proposed method.

5 MORE VISUAL RESULTS
This part provides more visual illustrations about the experiments.
Figure 5,6 show more results about the application effect of scene
diffusion. Figure 7 shows more results about the comparison with
existing alternatives. Figure 8 shows the original images of the
results exhibited in the ablation study of main text. Figure 9,10
show more results about the expanded applications of the proposed
method.

1https://huggingface.co/docs/diffusers/main/en/api/pipelines/blip_diffusion
2https://github.com/AUTOMATIC1111/stable-diffusion-webui
3https://huggingface.co/spaces/timbrooks/instruct-pix2pix
4https://github.com/lllyasviel/ControlNet
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Figure 1: The comparison between the setups with or without the shading adaptive transformation T . Each group of images
are produced in the same mini-batch.

Figure 2: The effect of shading adaptive transformation T . Since T is solely conducted on the object areas, the background
areas in these images are omitted.
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Figure 3: The comparison between the sequences of predicted 𝑥0 with or without FPTS.

Figure 4: The examples of constructed condition-text-output data.
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Figure 5: More results about the application effect of Scene Diffusion in Single-object and Multi-object scenarios.
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Figure 6: More results about the application effect of Scene Diffusion in Variable Scene Description Text and Variable Position
& Poseture of Object scenarios.
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Figure 7: More results about the comparison with the existing alternatives.

Figure 8: The original images of the results exhibited in the ablation study of main text.
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Figure 9: More results about the expanded application of Scene Diffusion in Integrating with Existing ControlNet.
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Figure 10: More results about the expanded application of Scene Diffusion in Generalizing to Real Image Fragment.
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