
Supplementary Material for the Paper: Directed
Graph Contrastive Learning

Zekun Tong1 Yuxuan Liang1 Henghui Ding 2,3,∗

Yongxing Dai 4 Xinke Li1 Changhu Wang2

1National University of Singapore 2ByteDance 3ETH Zürich 4Peking University
{zekuntong,liangyuxuan,xinke.li}@u.nus.edu

henghui.ding@vision.ee.ethz.ch, yongxingdai@pku.edu.cn
changhu.wang@bytedance.com

A Proofs of Theorems

A.1 Proof of Theorems 1

THEOREM 1. Monotonicity of the perturbation error. The perturbation error ∆H̃VN increases
monotonically with the Laplacian perturbation term ∆α.

Proof. The perturbation error is defined in DEFINITION (3) of the main text as

∆H̃VN(α,α +∆α) =
1

2n2

⎧⎪⎪
⎨
⎪⎪⎩

∑
(u,v)∈E

(
πα+∆α

appr (u)

πα+∆α
appr (v)d

out2
u

−
παappr(u)

παappr(v)d
out2
u

)

⎫⎪⎪
⎬
⎪⎪⎭

. (1)

We start out the proof from Eq. (1) in the main text, leading to

(1 − α)παapprP̃ +
1

n

α

1 + α
11×n

= παappr, (2)

and the approximate eigenvector component for node u is

παappr(u) = (1 − α) ∑
i,(i,u)∈E

παappr(i)P̃(i, u) +
1

n

α

1 + α
. (3)

In the [19], they assume that the eigenvector component is proportional to the in-degree of the
corresponding node when the neighborhood of this node has similar out-degree and in-degree, i.e.,

∑i,(i,u)∈E π
α
appr(i)P̃(i, u)

∑i,(i,v)∈E π
α
appr(i)P̃(i, v)

≈
din
u

din
v

=
cdin
u

cdin
v

, (4)

where the constant c controls the din
u and παappr(i)P̃(i, u) at the same scale. Meanwhile, they

experimentally verify that even under this strong assumption, the calculated von Neumann entropy
does not show significant errors [19]. Thus, we adopt their assumption and simply Eq. (4) to

∑
i,(i,u)∈E

παappr(i)P̃(i, u) ≈ cd
in
u . (5)

∗Corresponding author

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



We further let 0 < α1 < α2 < 1 and take them into Eq. (1)

∆H̃VN(α1, α2) =
1

2n2

⎧⎪⎪
⎨
⎪⎪⎩

∑
(u,v)∈E

1

dout2
u

⎛

⎝

(1 − α2)cd
in
u +

1
n

α2
1+α2

(1 − α2)cdinv +
1
n

α2
1+α2

−
(1 − α1)cd

in
u +

1
n

α1
1+α1

(1 − α1)cdinv +
1
n

α1
1+α1

⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

=
1

2n2

⎧⎪⎪
⎨
⎪⎪⎩

∑
(u,v)∈E

1

dout2
u

(
n(1 − α2

2
)cdinu + α2

n(1 − α2
2)cdinv + α2

−
n(1 − α1

2
)cdinu + α1

n(1 − α1
2)cdinv + α1

)

⎫⎪⎪
⎬
⎪⎪⎭

=
1

2n2

⎧⎪⎪
⎨
⎪⎪⎩

∑
(u,v)∈E

1

dout2
u

(
(n(1 − α2

2
)α1c(d

in
u − d

in
v ) − n(1 − α1

2
)α2c(d

in
u − d

in
v )

(n(1 − α2
2)cdinv + α2)(n(1 − α1

2)cdinv + α1)
)

⎫⎪⎪
⎬
⎪⎪⎭

=
1

2n2

⎧⎪⎪
⎨
⎪⎪⎩

∑
(u,v)∈E

dinu − d
in
v

dout2
u

(
nc(1 − α2

2
)α1 − nc(1 − α1

2
)α2

(n(1 − α2
2)cdinv + α2)(n(1 − α1

2)cdinv + α1)
)

⎫⎪⎪
⎬
⎪⎪⎭

=
1

2n2

⎧⎪⎪
⎨
⎪⎪⎩

∑
(u,v)∈E

dinu − d
in
v

dout2
u

(
nc(1/α2 − α2) − nc(1/α1 − α1)

(n(1 − α2
2)cdinv + α2)(n(1 − α1

2)cdinv + α1)/(α1α2)
)

⎫⎪⎪
⎬
⎪⎪⎭

.

(6)

Since din
v ⩽ n and dout

u ⩽ n,

∆H̃VN(α1, α2) ⩾
1

2n2 ∑
(u,v)∈E

(dinu − d
in
v )(

c
n
(1/α2 − α2 − 1/α1 + α1)

(n2(1 − α2
2)c + α2)(n2(1 − α1

2)c + α1)/(α1α2)
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
constant C

⩾
C

2n2 ∑
(u,v)∈E

(dinu − d
in
v ).

(7)

As 0 < α1 < α2 < 1, the constant C < 0. And the edges point from node u to node v, thus the term
∑(u,v)∈E(d

in
u − d

in
v ) < 0. Therefore,

∆H̃VN(α1, α2) > 0. (8)

Clearly, the perturbation error ∆H̃VN increases monotonically with the Laplacian perturbation term
∆α. The proof is concluded.

A.2 Proof of Theorems 2

THEOREM 2. Bounds on the perturbation error. Given a directed graph G = (V,E) and the
teleport probability α, the inequality

0 < ∆H̃VN(α,α +∆α) <
1

2n2

⎧⎪⎪
⎨
⎪⎪⎩

∑
(u,v)∈E

(
1

dout2
u

−
παappr(u)

παappr(v)d
out2
u

)

⎫⎪⎪
⎬
⎪⎪⎭

(9)

holds. When the perturbation term ∆α = 0, ∆H̃VN = 0 and when ∆α → 1 − α, the perturbation
error ∆H̃VN towards the upper bound.

Proof. From THEOREM 1, ∆H̃VN increases monotonically with the Laplacian perturbation term ∆α.
Thus, when ∆α = 0, ∆H̃VN = 0. For the upper bound of the perturbation error, we start with Eq. (2)
that

(1 − α −∆α)πα+∆α
appr P̃ +

1

n

α +∆α

1 + α +∆α
11×n

= πα+∆α
appr . (10)

Since πappr is the stationary distribution and P̃ is transition matrix, ∣∣πapprP̃∣∣∞ ⩽ ∣∣πappr ∣∣∞∣∣P̃∣∣∞ ⩽

1. It is easy to observe that when α+∆α → 1, πα+∆α
appr →

1
2n

11×n, which means πα+∆α
appr (u), π

α+∆α
appr (v)

are equivalent as α +∆α → 1. Thus,

∆H̃VN(α,α +∆α)→
1

2n2

⎧⎪⎪
⎨
⎪⎪⎩

∑
(u,v)∈E

(
1

dout2
u

−
παappr(u)

παappr(v)d
out2
u

)

⎫⎪⎪
⎬
⎪⎪⎭

, (11)

when α +∆α → 1. The proof is concluded.

2



B Supplementary Experiments

We will show here the supplementary experiments which are not described in the main text.

B.1 Experiments on the pacing function

Here, we provide more experiments on the pacing function. The pacing function determines in which
order the contrastive views enter into the model. We want to know whether the information learned
by the model in the easy contrastive view can help subsequent learning in the more difficult view.

Accuracy with epoch for different pacing functions. First, we give the results of the val accuracy
changes with three different pacing functions in CORA-ML and AM-PHOTO in Figure 1(a) and
1(b) separately. We can find that different pacing functions perform differently at different training
stages. Linear performs evenly throughout the training process; Exp improves faster at the beginning
of training, but plateaus in the later stages; Log improves slowly at the beginning of training, but it
continues to improve and achieves the best results at the end of training. The main reason is the log
pacing function speeds up learning on easy tasks and stays on harder tasks for more epochs, helping
the model to grasp the more subtle differences between contrastive views. This is the cause of its
ability to consistently improve his performance in the later stages.

Figure 1: (a) performance of node classification task on CORA-ML with different pacing functions;
(b) performance of node classification task on AM-PHOTO with different pacing functions.

Sensitivity analysis for initial and ending difficulty. Recalling the analysis in Section 3.2 of
the main text, to obtain comprehensive contrastive information on the one hand, and to reduce
the need for hyperparameters on the other hand, we set the initial perturbation term ∆αa to 0.8
and the ending perturbation term ∆αb to 0. In this experiment, we will explore the effect of
different initial and ending difficulties on the accuracy of the model. We traverse the ∆αa,∆αb ∈
{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8} and make sure ∆αa ⩾ ∆αb (∆αa = ∆αb is equivalent to fixed
view contrastive learning). We use two datasets and three pacing functions in the experiment. The
results are shown in Figure 2. We can clearly find that setting the perturbation terms as the boundary
values allows the model to learn all views as much as possible, thus improving the performance. Also,
comparing the results of Log, Liner, and Exp, we can find that using log as the pacing function
can get more stable and accurate results. This is consistent with the conclusion we obtain from the
experiments in the main text.

From these experiments, we can draw a few empirical conclusions as follows.

• Log-based pacing function performs the best of the three pacing functions, but not too far
from the other two pacing functions.

• The best results are obtained by setting the start and end points to be the boundary points of
the Laplacian perturbation parameter space.

• The order in which the views are learned is crucial, with contrastive views working best
from easy to difficult (Concluded from Table 1 in the main text).

3



Figure 2: Validation accuracy of node classification task with different perturbation terms. The shade
of the color represents the accuracy, with lighter shades indicating higher accuracy.

For the starting and ending difficulty scores, in accordance with the second conclusion, we consider
that it is better to take the boundary values, which are effective and do not require parameter selection.
For the type of pacing functions, according to the first and third conclusions, the different pacing
functions have an impact on the results of the model but are not as important as the learning order.
We believe that any pacing functions that satisfy the order of easy to difficult can be chosen.

C Reproducibility Details

To support the reproducibility of the results, in this paper, we detail the task, datasets, the baseline
setting, and pseudocodes. We implement the DiGCL and all baseline models using the python library
of PyTorch 2, Pytorch-Geometric [2] and DGL [17]. All the experiments are conducted on a server
with one 12GB GPU (NVIDIA TITAN V), two CPUs (Intel Xeon E5 × 2) and Ubuntu 18.04 System.

C.1 Node Classification Task in Directed graphs

First, we define our task used in the main task as follow.

DEFINITION 1. Directed Graph Node Classification. Given a directed graph G = (V,E) with
adjacency matrix A, and node feature matrix X ∈ Rn×c, where n = ∣V ∣ is the number of nodes and c
is the feature dimension. Given a subset of nodes Vl ⊂ V , where nodes in Vl have observed labels
and generally ∣Vl∣ << ∣V ∣. For semi-supervised (or supervised) methods, the task is using the labeled
subset Vl, node feature matrix X and adjacency matrix A predict the unknown label in Vul = V ∖ Vl.
For self-supervised methods, the task requires to use the adjacency matrix A and the node feature
matrix X to learn node representation without labels.

Specifically, after the model has unsupervisedly learned the node feature representation, simple
classical classification algorithms, such as logistic regression, SVM, and etc., can be used to categorize
the nodes from the node representation, which is a semi-supervised step. In this paper, all experiments
in semi-supervised learning are set up the same, including the division of the datasets and the number
of trial repetitions.

2https://pytorch.org

4



C.2 Datasets Details

We use five open access datasets in the task of node classification. Label rate is the fraction of nodes
in the training set per class. We use 20 labeled nodes per class to calculate the label rate.

Table 1: Datasets Details for Node Classification

Datasets Graph type Nodes Edges Classes Features Label rate

CORA-ML [1] Directed Graphs 2995 8416 7 2879 4.67%
CITESEER [12] Directed Graphs 3312 4715 6 3703 3.62%

AM-PHOTO [13] Directed Graphs 7650 143663 8 745 2.10%
PUBMED [9] Undirected Graphs 18230 79612 3 500 0.33%
DBLP [10] Undirected Graphs 17716 105734 4 1639 0.45%

Besides, to verify the generalizability of our approach, we also perform the graph classification task
on three undirected graph datasets in the experiments. We use the following: MUTAG [8] containing
mutagenic compounds, PTC [8] containing compounds tested for carcinogenicity, and IMDB-BIN
[18] connecting actors/actresses (nodes) based on movie appearances (edges).

Table 2: Datasets Details for Graph Classification

Datasets Graphs Average nodes per graph Average edges per graph Classes

MUTAG 188 17.93 19.79 2
PTC 344 14.29 14.69 2

IMDB-BIN 1000 19.77 193.06 2

C.3 Baselines Details and Settings

The baseline methods are given below:

Table 3: The hyperparameters of the baselines on node classification task.

Model Training Type Implementation

GCN [6] Supervised
https://github.com/rusty1s/pytorch_geometricGAT [15] Supervised

APPNP [7] Supervised
MagNet [21] Supervised https://github.com/matthew-hirn/magnet
DiGCN [14] Supervised https://github.com/flyingtango/DiGCN

DGI [16] Self-supervised https://github.com/PetarV-/DGI
GMI [11] Self-supervised https://github.com/zpeng27/GMI
MVGRL [4] Self-supervised https://github.com/kavehhassani/mvgrl
GraphCL [20] Self-supervised https://github.com/Shen-Lab/GraphCL
GRACE [22] Self-supervised https://github.com/CRIPAC-DIG/GRACE
GCA [23] Self-supervised https://github.com/CRIPAC-DIG/GCA

For all baseline models, we use their model structure in the original papers, including layer number,
activation function selection, normalization and regularization selection, etc. We implement GCN,
GAT, and APPNP using PyG [2]. Note that for DiGCN, we do not use its inception module but only
use the directed graph convolution. Detailed hyper-parameter settings are shown in Table 4.

To ensure the generality of the model, we have minimized the variation of hyperparameters. Our
implementation is based on the GRACE code, with improvements to the topological data augmentation
and the model training scheme. For the feature-level perturbation part, we also apply the dropping
feature method used in GCA, GRACE and MVGRL, with the same parameters as in GRACE. We
initialize our model with Glorot initialization [3] and use Adam optimizer [5] in all datasets. The

5

https://github.com/rusty1s/pytorch_geometric
https://github.com/matthew-hirn/magnet
https://github.com/flyingtango/DiGCN
https://github.com/PetarV-/DGI
https://github.com/zpeng27/GMI
https://github.com/kavehhassani/mvgrl
https://github.com/Shen-Lab/GraphCL
https://github.com/CRIPAC-DIG/GRACE
https://github.com/CRIPAC-DIG/GCA


Table 4: The hyperparameters of baselines for node classification task.

Model layer lr weight-decay hidden dimension Others

GCN 2 0.01 5e-4 64 -

GAT 2 0.005 5e-4
CORA-ML & CITESEER:8

others:32
heads=16

APPNP 2 0.01 5e-4 64 α = 0.1

MagNet 2 5e-3 5e-4 64 K = 1, q = 0.1

DiGCN 2 0.01 5e-4 64 α = 0.1

DGI 1 0.001 0 512 max-LR-iter=150
GMI 1 0.001 0 512 α = 0.8, β = 1, γ = 1

MVGRL 1 0.001 0 512 α = 0.2, t = 5

GraphCL 1 0.001 0 512 drop rate=0.2

GRACE 2 0.001 1e-5
CORA-ML & CITESEER:128

others:256
augmentation parameters are

consistent with the paper

GCA 2 0.001 1e-5
CORA-ML & CITESEER:128

others:256
augmentation parameters are

consistent with the paper

initial learning rate is set to 0.001 and the weight decay factor is set to 1e-5 on all datasets. We set
the number of layers used in the GCN encoder as 2. As stated in Section 3.2 of the main text, we
fixed the initial and ending difficulty as 0.8 and 0 to obtain the complete contrastive information. The
detailed parameter settings are shown in Table 5.

Table 5: The hyperparameters of our models.

Our models layers lr weight-decay hidden dimension init ∆α end ∆α epochs
CORA-ML 2 0.001 1e-5 128 0.8 0 600
CITESEER 2 0.001 1e-5 128 0.8 0 300
AM-PHOTO 2 0.001 1e-5 512 0.8 0 2000
PUBMED 2 0.001 1e-5 256 0.8 0 600
DBLP 2 0.001 1e-5 256 0.8 0 600

For the graph classification task in the main text, we follow the setting in the [4] and only change the
data augmentation and the pacing function. The hyperparameters are as follow.

Table 6: The hyperparameters on graph classification task.

Method Hyperparameters MUTAG PTC IMDB-BIN

MVGRL

layer 4 4 2
batches 256 128 256
epochs 20 20 20
α = 0.2 0.1 0.1 0.1

MVGRL+DiGCN

layer 4 4 2
batches 256 128 256
epochs 20 20 20

∆α 0.8→ 0 0.8→ 0 0.8→ 0

C.4 Pseudocode

Here, we provide the pseudocode for two key algorithms, one for Laplacian perturbation proposed in
Section 2 of the main text and the second for directed graph contrastive learning (DiGCL) introduced
in Section 3 of the main text.

6



Algorithm 1: Laplacian Perturbation Φ(⋅) Procedure
Input: Directed graph adjacency matrix: A, teleport probability α, perturbation term ∆α

Output: Perturbed Laplacian L̂appr

1 Ã←A + In×n ;
2 P̃← D̃−1Ã ;
3 α̂ = α +∆α ;
4 π̂appr ← (1 − α̂)π̂apprP̃ +

1
n

α̂
1+α̂11×n;

5 Π̂appr ←
1

∣∣π̂appr∣∣1
Diag(π̂appr);

6 L̂appr ← I − 1
2
(Π̂

1
2
apprP̃Π̂

− 1
2

appr + Π̂
− 1

2
apprP̃

T Π̂
1
2
appr);

7 return L̂appr

Algorithm 2: DiGCL Training Procedure
Input: Directed graph: G, teleport probability α, scoring function: D, pacing function: P ,

encoder: f∗(⋅), projection head: g(⋅), data augmentation function: Φ(⋅), loss function:
`(⋅), number of iterations: L, initial difficulty da, ending difficulty db

Output: Trained Encoder f∗(⋅)
1 Initialize f∗(⋅), g(⋅);
2 for l ← 0 to L do
3 dm = P(da,db)(l) ;
4 ∆α ← D−1(dm) ;
5 U ← Lappr(G, α) ;
6 V ← Φ∆α(G, α) ;
7 HU ← f(U) ;
8 HV ← f(V ) ;
9 ZU ← g(HU) ;

10 ZV ← g(HV ) ;
11 loss← `(ZU ,ZV ) ;
12 SGD(loss) ;
13 end
14 return f∗(⋅)

References

[1] A. Bojchevski and S. Günnemann, “Deep gaussian embedding of attributed graphs: Unsuper-
vised inductive learning via ranking,” arXiv preprint arXiv:1707.03815, 2017.

[2] M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch Geometric,” in
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[3] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural
networks,” in Proceedings of the thirteenth international conference on artificial intelligence
and statistics, 2010, pp. 249–256.

[4] K. Hassani and A. H. Khasahmadi, “Contrastive multi-view representation learning on graphs,”
arXiv preprint arXiv:2006.05582, 2020.

[5] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” Third ICLR, 2015.

[6] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,”
arXiv preprint arXiv:1609.02907, 2016.

[7] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate: Graph neural networks
meet personalized pagerank,” arXiv preprint arXiv:1810.05997, 2018.

[8] N. Kriege and P. Mutzel, “Subgraph matching kernels for attributed graphs,” arXiv preprint
arXiv:1206.6483, 2012.

7



[9] G. Namata, B. London, L. Getoor, B. Huang, and U. EDU, “Query-driven active surveying for
collective classification,” in 10th International Workshop on Mining and Learning with Graphs,
vol. 8, 2012.

[10] S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, “Tri-party deep network representation,” Network,
vol. 11, no. 9, p. 12, 2016.

[11] Z. Peng, W. Huang, M. Luo, Q. Zheng, Y. Rong, T. Xu, and J. Huang, “Graph representation
learning via graphical mutual information maximization,” in Proceedings of The Web Conference
2020, 2020, pp. 259–270.

[12] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad, “Collective classifica-
tion in network data,” AI magazine, vol. 29, no. 3, pp. 93–93, 2008.

[13] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls of graph neural network
evaluation,” arXiv preprint arXiv:1811.05868, 2018.

[14] Z. Tong, Y. Liang, C. Sun, X. Li, D. Rosenblum, and A. Lim, “Digraph inception convolutional
networks,” Advances in Neural Information Processing Systems, vol. 33, 2020.

[15] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention
networks,” arXiv preprint arXiv:1710.10903, 2017.

[16] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm, “Deep graph
infomax,” arXiv preprint arXiv:1809.10341, 2018.

[17] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou, Q. Huang, C. Ma, Z. Huang,
Q. Guo, H. Zhang, H. Lin, J. Zhao, J. Li, A. J. Smola, and Z. Zhang, “Deep graph library:
Towards efficient and scalable deep learning on graphs,” ICLR Workshop on Representation
Learning on Graphs and Manifolds, 2019. [Online]. Available: https://arxiv.org/abs/1909.01315

[18] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, 2015, pp. 1365–
1374.

[19] C. Ye, R. C. Wilson, C. H. Comin, L. d. F. Costa, and E. R. Hancock, “Approximate von
neumann entropy for directed graphs,” Physical Review E, vol. 89, no. 5, p. 052804, 2014.

[20] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph contrastive learning with
augmentations,” Advances in Neural Information Processing Systems, vol. 33, 2020.

[21] X. Zhang, N. Brugnone, M. Perlmutter, and M. Hirn, “Magnet: A magnetic neural network for
directed graphs,” arXiv preprint arXiv:2102.11391, 2021.

[22] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Deep graph contrastive representation
learning,” arXiv preprint arXiv:2006.04131, 2020.

[23] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Graph contrastive learning with adaptive
augmentation,” arXiv preprint arXiv:2010.14945, 2020.

8

https://arxiv.org/abs/1909.01315

	Proofs of Theorems
	Proof of Theorems 1
	Proof of Theorems 2

	Supplementary Experiments
	Experiments on the pacing function

	Reproducibility Details
	Node Classification Task in Directed graphs
	Datasets Details
	Baselines Details and Settings
	Pseudocode


