
REAL: Efficient RLHF Training of Large Language Models with Parameter Reallocation

A EXPERIMENT DETAILS

Our base setting is adopted from Ouyang et al. (2022), which
utilizes a global batch size of 512, context length 2048, and
a maximum prompt length of 1024. The global batch is
divided into 8 mini-batches for PPO training.

We emphasize that the prompt and generation length may
vary for different models, datasets or tasks, algorithm im-
plementation, and even during RLHF training. To eliminate
this effect and perform a fair comparison, we synthesize ran-
dom data with the maximum prompt length and terminate
generation only after the maximum length is reached.

We create LLaMA models of four different sizes with their
detailed configurations shown in Table 1. For weak scaling
experiments, we increase the model size and batch size
proportionally to the number of devices. In particular, for
16, 32, 64, and 128 GPUs, the model sizes are 7B, 13B,
34B, and 70B, and batch sizes are 512, 1024, 2048, 4096,
respectively. For experiments with a longer context length,
we fix the number of tokens in the global batch. For instance,
when the context length increases from 2048 to 8192, the
global batch size decreases by a factor of 4. In experiments
for strong scaling and dditional RLHF algorithms, we adopt
the base setting with 70B actor/reference models and 7B
critic/reward models on 16 nodes.

We show the execution plans of wall time breakdown exam-
ples (Table 6) in Tables 2 to 5.

B THE API OF REAL
Figure 18 shows an example of the API for an REAL experi-
ment. Users define the dataflow graph of the algorithm (e.g.,
RLHF) using a list of ModelFunctionCallDef objects.
These objects encapsulate the model configuration and the
function call type, along with specifying input and output
data dependencies. Models sharing the same model name
must have identical architectures (e.g., llama7b). They
form parameter version dependencies, such that the infer-
ence and generation must wait for the training in the previ-
ous iteration. The experiment configuration is then wrapped
by the auto decorator, which initiates the search engine to
derive an efficient execution plan. This plan is transformed
into a scheduling configuration for launching workers, each
assigned to a specific GPU or CPU via SLURM (Yoo et al.,
2003). The search engine and launcher both run under the
hood. Users are free to provide distinct interface implemen-
tations to implement a diverse range of training workflows.

C SIMULATION ALGORITHM

The simulation algorithm in show in Algorithm 1.

1 # auto is a decorator that generates worker
2 # scheduling configs in the cluster.
3 @auto(nodelist="com[01-08]", batch_size=256)
4 @dataclasses.dataclass
5 class Experiment:
6 seed: int = 1
7 ppo: PPOHyperparameters
8
9 @property
10 def rpcs(self) -> List[ModelFunctionCallDef]:
11 return [
12 ModelFunctionCallDef(
13 model_name="actor",
14 model_type="llama7b",
15 interface_type=GENERATE,
16 input_data=["prompts"],
17 output_data=["seq", "logp"],
18),
19 ModelFunctionCallDef(
20 model_name="reward",
21 model_type="llama7b-critic",
22 interface_type=INFERENCE,
23 input_data=["seq"],
24 output_data=["r"],
25),
26 ModelFunctionCallDef(
27 model_name="actor",
28 interface_type=TRAIN_STEP,
29 input_data=["seq", "r", ...],
30),
31 # ref inference, critic inference,
32 # and critic training
33 ...,
34]

Figure 18: An example of the user interface of REAL.
Given the dataflow graph (represented by a list of
ModelFunctionCallDef objects), the training batch
size, and cluster specifications, REAL will automatically derive an
execution plan via the auto decorator.

D BASELINES

In Figure 7, we show the performance comparison be-
tween REAL and 4 baseline RLHF systems: DeepSpeed-
Chat (Yao et al., 2023b), OpenRLHF (Hu et al., 2024),
NeMoAligner (Shen et al., 2024) and veRL (Hybrid-
Flow (Sheng et al., 2024)). The first three baselines are
previous works of REAL, and veRL is concurrent to REAL.
In this section, we will briefly introduce the implementa-
tion of these baseline systems. We also list the version and
backend of baseline systems used in our experiments.

DeepSpeedChat is developed using modules from a pop-
ular training backend DeepSpeed (Rasley et al., 2020). It
supports sequential execution of model function calls, and
uses TP for the generation task, ZeRO-3 DP for the training
and inference task. It also implements HybridEngine, a
technique that reshards parameters between actor training
and generation.

OpenRLHF exploits vLLM (Kwon et al., 2023) as their
generation backend and DeepSpeed ZeRO-3 DP as their
training backend. It divides GPUs into three groups, hold-
ing the actor/reference model, the critic/reward model and

REAL: Efficient RLHF Training of Large Language Models with Parameter Reallocation

Identifier 7B 13B 34B 70B

HiddenSize 4096 5120 8192 8192
IntermediateSize 14336 13824 22016 28672
NumLayers 32 40 48 80
NumAttentionHeads 32 40 64 64
NumKVHeads 8 40 8 8
VocabSize 128256 128256 128256 128256
MaxPositionEmbeddings 8192 8192 8192 8192
TotalParamCount 8030261248 14001525760 35321028608 70553706496
ParamCount w./o. Output Embedding 7504924672 13344855040 34270355456 69503033344

Table 1: The LLaMA-3 model configurations used in experiments. Because critic models have a smaller output embedding
layer than the actor (i.e., the output dimension is 1 for the critic), we use the embedding-less parameter count as the identifier.

DeviceMesh TP PP DP #Micro-Batches Time

ActorGen trainer[01-16] 2 4 16 4 185.1
RewInf trainer[01-16] 1 8 16 4 5.6
RefInf trainer[01-16] 1 8 16 16 35.6
CriticInf trainer[01-16] 1 8 16 16 5.6
CriticTrain trainer[01-16] 8 4 4 2 20.8
ActorTrain trainer[01-16] 2 16 4 2 108.0

Table 2: Device allocations and parallelization strategies for the 70B Actor and 7B critic searched case in Table 6.

DeviceMesh TP PP DP #Micro-Batches Time

ActorGen trainer[01-16] 8 4 4 8 241.8
RewInf trainer[01-16] 8 4 4 8 12.6
RefInf trainer[01-16] 8 4 4 8 63.5
CriticInf trainer[01-16] 8 4 4 8 12.5
CriticTrain trainer[01-16] 8 4 4 8 35.7
ActorTrain trainer[01-16] 8 4 4 8 163.4

Table 3: Device allocations and parallelization strategies for the 70B Actor and 7B critic heuristic case in Table 6.

DeviceMesh TP PP DP #Micro-Batches Time

ActorGen trainer[01-02] 2 2 4 1 16.3
RewInf trainer01 2 1 4 16 6.0
RefInf trainer02 1 2 4 16 8.0
CriticInf trainer[01-02] 1 2 8 8 4.7
CriticTrain trainer02 4 2 1 2 28.1
ActorTrain trainer01 2 4 1 2 26.6

Table 4: Device allocations and parallelization strategies for the 7B Actor and 7B critic searched case in Table 6.

DeviceMesh TP PP DP #Micro-Batches Time

ActorGen trainer[01-02] 8 1 2 4 44.2
RewInf trainer[01-02] 8 1 2 4 7.3
RefInf trainer[01-02] 8 1 2 4 7.6
CriticInf trainer[01-02] 8 1 2 4 6.8
CriticTrain trainer[01-02] 8 1 2 4 24.3
ActorTrain trainer[01-02] 8 1 2 4 24.7

Table 5: Device allocations and parallelization strategies for the 7B Actor and 7B critic heuristic case in Table 6.

REAL: Efficient RLHF Training of Large Language Models with Parameter Reallocation

Time (s) 7B + 7B 70B + 7B
REAL Heuristic REAL Heuristic

ActorGen
(with CUDAGraph) 16.3 44.2 185.1 241.8

ActorGen
(w.o. CUDAGraph) 34.5 104.6 185.1 241.8

RewInf 6.0 7.3 5.6 12.6
RefInf 8.0 7.6 35.6 63.5

CriticInf 4.7 6.8 5.6 12.5
CriticTrain 28.1 24.3 20.8 35.7
ActorTrain 26.6 24.7 108.0 163.4

End2End
(with CUDAGraph) 64.0 122.6 383.1 546.8

End2End
(w.o CUDAGraph) 82.2 183.0 547.4 912.3

Table 6: The RLHF wall time breakdown of two most common and representative cases. REAL reduces the end-to-end time
by accelerating individual model function calls as well as concurrently executing independent computations.

the vLLM generation engine separately. It allows the con-
current execution of actor and critic training. However, the
generation and training phase can not be executed concur-
rently due to data and parameter dependencies. This results
in a significant GPU idle time.

Similarly, NeMoAligner divides GPUs into 2 disjoint GPU
groups. Unlike OpenRLHF, it locates actor training and gen-
eration on the same GPU group. It splits the computations
into micro batches and pipeline them to reduce the GPU
idle time. It exploits TRT-LLM (Nvidia, 2024) (supports
TP and resharding) as generation backend and Megatron-
LM (Shoeybi et al., 2019) as training backend (supports 3D
parallelization).

veRL supports colocating models on GPUs and split place-
ment of models on different GPU groups, including the
strategies adopted by three previous systems. It provides
different choices for the generation (SGLang (Zheng et al.,
2024) and vLLM (Kwon et al., 2023)) and training back-
end (Megatron-LM (Shoeybi et al., 2019) and Pytorch
FSDP (Zhao et al., 2023b)) to support different paralleliza-
tion strategies.

We list the version and backend of baseline systems used
in our experiments in Table 7. We remark that in this ex-
periment, REAL uses its own generation backend, model
and pipeline parallelization, and adopts tensor paralleliza-
tion and optimizer implementation from Megatron-LM. In
a more recent version of REAL, we also support vLLM and
SGLang as generation backend, which is not included in the
experiments in this paper.

Algorithm 1 Calculate TimeCost(Gp)
Require: The augmented dataflow graph Gp = (Vp, Ep), device

meshes D ∈ D where D contains all valid device meshes in the
cluster.
ready queue = PriorityQueue()// Sorted by v.ReadyTime
completed set = Set() // Contains completed nodes
for v ∈ Vp do

if v.parents=∅ then
ready queue.push(v)

end if
end for
while !ready queue.empty() do

Node v = ready queue.pop()
DeviceMesh D = v.device mesh
// D.last record the last completed node from all devices
within D
v.StartTime = max{v.ReadyTime, D.last.EndTime}
v.EndTime = v.StartTime + TimeCost(v)
completed set.add(v)
for D′ ∈ D do

if overlap(D, D′) and D′.last.EndTime ≤D.last.EndTime
then

D′.last = v
end if

end for
for u ∈ v.children do

u.ReadyTime = max{u.ReadyTime, v.EndTime}
if w ∈ completed set for all w ∈ u.parents then

ready queue.push(u)
end if

end for
end while
return max{v.EndTime |v ∈ Vp}

REAL: Efficient RLHF Training of Large Language Models with Parameter Reallocation

System Version Generation Backend Training Backend

DeepSpeedChat commit f73a6ed DeepSpeed v0.15.1 DeepSpeed v0.15.1
OpenRLHF v0.4.2 vLLM v0.4.2 DeepSpeed v0.15.0

NeMoAligner v0.4.0 TRT-LLM v0.10.0 Megatron-LM v0.8.0
veRL 0.2.0.post2 vLLM v0.6.3 Pytorch FSDP v2.4.0

Table 7: The version, generation backend and training backend used in our baseline experiments.

