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Abstract
Transformers, despite empowering current AI rev-
olution, are bottlenecked by suboptimal hardware
utilization and quadratic runtime complexity of
softmax attention w.r.t. input sequence length.
Many recent architectures aspire to bring the com-
plexity down to sub-quadratic level without com-
promising modeling quality. However, they are
either much slower on all but very long sequences
or rely on low-level code tailored to a narrow
subset of modern hardware. To simultaneously
achieve linear complexity, hardware efficiency,
and portability, we completely eliminate softmax
from self-attention; remove, modify, or rearrange
other transformations in the Transformer block;
and reduce number of attention heads. The re-
sulting architecture, DenseAttention Network, is
composed entirely of dense matrix multiplications
in the attention which allows for efficient train-
ing and inference in both quadratic and linear
modes. It performs similarly with standard Trans-
former in language modeling and surpasses previ-
ous Transformer-based SOTA by 5% on challeng-
ing Long Range Arena benchmarks. DenseAtten-
tion model written in plain PyTorch is up to 22%
faster even on small context sizes, and by orders
of magnitude on longer sequences, than Trans-
former with low-level FlashAttention kernel.

1. Introduction
Transformer architecture (Vaswani et al., 2017) is bot-
tlenecked by O(N2) time and space complexity of self-
attention w.r.t. context length N which substantially im-
pedes its ability to process long sequences by rendering its
computation slow and expensive. Partially, this limitation is
alleviated by FlashAttention series of low-level, hardware-
efficient kernels (Dao et al., 2022b; Dao, 2024; Shah et al.,
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2024) designed to optimize and streamline computation of
self-attention on a subset of modern GPUs. FlashAtten-
tion reduces memory consumption to O(N) but does not
circumvent the quadratic runtime complexity of attention.

Another major limitation inherent to Transformer is the com-
putational inefficiency of the constituents which make the
architecture work seamlessly. As reported by Ivanov et al.
(2021), matrix multiplications account for 99.8% of total
FLOPs during BERT pre-training and only 61% of runtime,
the discrepancy being caused by low arithmetic intensity of
memory bound operations, namely, LayerNorm, softmax
and other activations as well as elementwise operations (see
Appendix F for the underlying reasoning).

Numerous extensions and modifications to the standard
Transformer (Katharopoulos et al., 2020; Beltagy et al.,
2020; Choromanski et al., 2022; Hua et al., 2022; Kacham
et al., 2024) have been proposed in order to mitigate the
restrictive O(N2) complexity. However, as these architec-
tures in general rely on non-linear, memory-intensive and
sparse operations to a much greater degree than traditional
attention mechanism, their throughput in terms of tokens
per second and hardware utilization are subpar in compar-
ison with the latter on all but large sequence lengths (Tay
et al., 2022; Dao et al., 2022b). Besides, some report (Xiong
et al., 2022; Tay et al., 2023; Buckman and Gelada, 2024),
that their modeling capabilities may be limited in compar-
ison with full-rank exact attention while their conceptual
complexity and incompatibility with standard architectures
prevents their widespread adoption.

In this paper, we aim to overcome these limitations by
achieving three main goals: (i) To create hardware efficient
yet hardware-agnostic architecture, having the arithmetic
intensity ratio as high as possible and compatible with wide
range of devices. (ii) To create an algorithm which would
efficiently process long sequences, preferably with O(N)
time and space complexity. (iii) To make the resulting ar-
chitecture as simple as possible, and to closely resemble
original Transformer architecture as well, so it can serve as
a drop-in replacement for the latter and be easily adopted
by both research and practitioners communities.

We release the code and the weights at github.com/
andrewargatkiny/dense-attention.
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Figure 1. DANet architecture. Left: DenseAttention mechanism. Center: multi-head interpretation. Right: the entire DenseAttention
Network. DenseAttention, the core component of the arhitecture, is composed entirely of MatMuls.

2. Method
We accomplished all of the above goals with DenseAttention
and DenseAttention Network (DANet) blocks (Fig. 1). This
architecture is a straight-forward simplification of the tra-
ditional Transformer architecture which does not introduce
any additional elements and complexities to the module and
can be freely swapped with it. It runs on every PyTorch-
supported platform. We develop DenseAttention by remov-
ing all computationally inefficient elements of the original
architecture: biases in all linear layers, masks, dropout,
residual connection between attention and FFN. Most im-
portantly, we remove Softmax inside self-attention. It results
in the whole scaled dot-product attention mechanism becom-
ing just a composition of matrix multiplications, which can
be done in any order by associative property of matrix mul-
tiplication. This duality allows to calculate DenseAttention
using either O(N2d) or O(Nd2) FLOPs, and the second
option has linear time and space complexity w.r.t sequence
length.

We remove LayerNorms and instead use a new MaxNor-
mActivation, which scales token representations by their l∞
norm:

MaxNormActivation(Xi) =
Xi

maxj(|X|ij) + ϵ

where X ∈ RN×d – a sequence of token representations
and ϵ is a very small number put to prevent division by 0.
We place it at both ends of the DANet block. When applying
MaxNorm before the attention block, we additionally scale
outputs by 1

N
1
3

.

We also reduce number of heads by setting head dimension

dh = 1024, which is significantly higher than conventional
values in Transformer models, and remove all projection
matrices except WQ in the self-attention module as they
become redundant in the absence of non-linearities between
attention and FFN. Resulting DANet architecture for layer l
can be formulated as follows:

DenseAttn (X) = XWQX
⊤X ∈ RN×d

X′
l = DenseAttn(MaxNormActivation(Xl) ·N− 1

3 )

Xl+1 = Xl + MaxNormActivation(FFN(X′
l))

Furthermore, we propose a Local–ShiftedLocal–Global at-
tention layers scheme to boost interactions among nearby
tokens in extremely long sequences (Fig. 2).
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Figure 2. Local attention for DenseAttention scheme. Left: Chun-
ked attention pattern of an individual local attention layer. Right:
3 layer structure of Local – LocalShifted – global attentions.

We provide a more extended discussion of DenseAttention
and DANet architecture details in Appendix B.

DenseAttention is fundamentally different from Linear At-
tention (Katharopoulos et al., 2020) family of models as it
doesn’t employ non-negative transforms of queries and keys
and reweighing attention scores by their sum. It’s neither
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Table 1. The Long Range Arena performance. Accuracy is the metrics for all benchmarks. Best results are in bold. Full comparisons with
20+ other models are available in Table 12 (trends hold).

Models Listops Text Retrieval Image Pathfinder PathX Avg.

Transformers + Rotary 47.90 79.08 82.31 75.04 76.64 84.72 74.28
S4-v1 58.35 76.02 87.09 87.26 86.05 88.10 80.48

DenseAttention 50.50 81.19 87.51 72.55 87.40 88.82 77.99

a State-Space-Model (SSM) or a Linear RNN because it
has no decay or gating modules as in Gu and Dao (2024);
Yang et al. (2024) and natively supports bidirectional context
processing (see Appendix E for details).

3. Experiments
To prove the viability of DenseAttention architecture, we
conduct several sets of experiments: (i) long range sequence
modeling on Long Range Arena benchmark and PathFinder-
256 benchmark; (ii) language modeling pre-training of
BERT-like encoder and Llama-like decoder architectures on
sequences of different lengths and scaling laws on small to
moderate model sizes; (iii) speed benchmarking. We report
results for BERT-pretraining on 1k and 16K context sizes,
LM scaling laws of DenseAttention, and Pathfinder-256 in
Appendix C and additional training details in Appendix J.

3.1. Long Range Arena

Long Range Arena is a challenging suite of 6 classification
benchmarks dedicated to examining the abilities of efficient
and long-context models on large sequence lengths span-
ning from 1k to 16k tokens. We compare DenseAttention
Network to results of more than 25 Transformer-based ar-
chitectures, including a recent Transformer variant with
RoPE (Amos et al., 2024) which took a lead with a large
margin. We also use results of an older State-Space-Model
(SSM) architecture from original S4 paper (Gu et al., 2022a)
as another strong baseline, because generally SSMs (Gu
et al., 2022b; Ma et al., 2023), due to specific inductive
biases, demonstrate far superior performance compared to
Transformer-based architectures. We mostly follow spec-
ifications outlined in the original LRA paper, including
number of heads and model dimensions, adjusting, where
necessary, number of parameters to the value used by Amos
et al. (2024). We report the results in Table 1.

DANet establishes new SOTA score among the Transformer-
based models and even outperforms the SSM in 4 out of 6
benchmarks. Thus, we prove that DenseAttention architec-
ture is competitive with standard attention even despite the
simplifications, the absence of Softmax and the presence of
non-smooth functions in the DANet architecture (MaxNorm
and ReLU). Our results also indicate that Transformer-based

models can potentially match the performance of SSMs
without MLM-style pretraining as in Amos et al. (2024).

Table 2. Ablations on the Retrieval task of LRA. Integration of the
Local–ShiftedLocal–Global attention scheme results in the most
pronounced accuracy gain.

Model Accuracy

DANet + Sinusoidal Embedding (bf16 format) 82.69
DANet + Cosine RelPE 83.98
DANet + Cosine RelPE + local attention (w=10) 87.51

Table 3. Ablation on number of heads in DANet-BERT model.
Clearly, reducing number of heads in DenseAttention leads to
improved performance.

Model MLM loss Acc.

DANet-BERT, 1 head 1.564 67.1
DANet-BERT, 4 heads 1.627 66.3
DANet-BERT, 16 heads 1.691 65.1

We use computationally efficient alternative to RoPE (Su
et al., 2024) embeddings, Cosine RelPE (see Appendix I for
implementation details), and Local–ShiftedLocal–Global
attention scheme in all of LRA models. These extensions are
useful for improving results which is exemplified in Table
2. Local attention proves to be instrumental and, often, its
window size is the most important hyperparameter to tune.

3.2. Language Modeling

To validate DenseAttention capabilities in language model-
ing, we conduct experiments with both Masked and Causal
LM, with emphasis on the former. We set number of param-
eters to approx. 335M and 360M parameters respectively
for the two modalities, with model dimension d = 1024,
the same hyperparameters as in BERT-Large (Devlin et al.,
2019) and GPT-2 Medium (Radford et al., 2019). Further
details are provided in Appendix J.

Analysis. Major differences between our models and Trans-
former baselines lie in the number of layers and heads. Since
a Transformer layer has 4/3 times more parameters than
DANet layer for matching model dimension, we increase
number of layers from 24 to 32 to keep parity in number of
parameters. As proposed in B.1, we use a single head with
the dimension equal to full model dimension (d = 1024),
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Table 4. Comparison of DANet with Transformer (upper plane) and various sub-quadratic (bottom plane) architectures across GLUE
tasks. All scores are taken from their respective papers. CoLA is measured by Matthew’s correlation, STS-B by Spearman’s correlation,
and other tasks by accuracy. QQP and MRPC are measured by F1 score for some of the models.

Model MNLI QNLI QQP SST2 RTE CoLA STS-B MRPC Avg.
Acc. Acc. Acc. Acc. Acc. Matthew Spearman Acc.

BERT-Large (BookC+Wiki) (Liu et al., 2019) 86.6 92.3 91.3 93.2 70.4 60.6 90.0 88.0 84.1
BERT-Large (Portes et al., 2023) 86.3 92.8 90.9 93.3 83.8 56.2 90.6 87.8 85.2
MosaicBERT-L (Portes et al., 2023) 86.9 93.0 92.0 93.7 84.5 59.7 90.9 88.2 86.1
DANet-BERT-L (ours) 87.1 91.9 91.6 95.0 84.8 63.0 89.1 89.0 86.4

Acc. Acc. F1 Acc. Acc. Matthew Spearman F1
Linear Attention (Lee-Thorp et al., 2022) 35.0 84.0 84.0 79.0 60.0 67.0 24.0 73.0 59.8
FNet (Lee-Thorp et al., 2022) 79.0 89.0 87.0 92.0 70.0 81.0 88.0 86.0 83.6
Monarch Mixer (Fu et al., 2023a) 82.2 87.0 87.7 92.4 75.0 59.6 88.3 90.1 82.8
BiGS (Wang et al., 2023) 86.2 90.9 88.3 94.6 79.4 67.3 90.1 89.5 85.8
DANet-BERT-L (ours) 87.1 91.9 88.9 95.0 84.8 63.0 89.1 92.0 86.5

Table 5. Comparison of performance of DANet and Transformer
models in CLM settings after training on 11B tokens from The
Pile dataset (Gao et al., 2020) on full test set.

Model Ppl. Acc.

Llama 8.88 56.6
DANet-Llama 8.79 56.8

opposed to customary 16 small heads in 360M Transformers.
We justify empirically (Table 3) that this choice is optimal.

We conducted evaluation of downstream language modeling
capabilities on GLUE suite of benchmarks (Wang et al.,
2018). In all comparisons (Table 4), DANet architecture is
highly competitive, surpassing the performance of standard
Transformers and various efficient sub-quadratic sequence-
mixer architectures. Notably, it outperforms MosaicBERT
which has considerably more parameters (430M) and mod-
ern improvements of Transformer architecture (SwiGLU
FFN and ALiBi relative positional embeddings). The results
in raw causal language modeling (Table 5) also indicate that
DenseAttention architecture is indeed capable of achieving
similar or better performance as standard Transformer, de-
spite having nothing but dense MatMuls in attention. Based
on both language modeling and LRA results, we conclude
that MatMuls are enough for performant and efficient linear
time and space attention mechanism.

Speed and efficiency. We compare (Table 6) the inference
speed of DANet to standard softmax attention Transformer
as in Devlin et al. (2019) augmented with low-level FlashAt-
tention optimizations (Dao, 2024; Shah et al., 2024), and to
Linear Transformer with 1+elu kernel from Katharopoulos
et al. (2020). All models have approx. 340M parameters
(BERT-Large size) and are used with PyTorch 2.x compiled
mode. DANet and Linear Transformer use ’auto’ switch
to choose run-time complexity depending on the sequence
length (see Appendix C.1 for an extended exploration of
DANet’s advantageous computational efficiency even in
fixed O(N2) mode). Accelerators used in these experi-

Table 6. Inference throughput (thousands tokens per second) com-
parison across varying context sizes (in tokens) and hardware
types. Best results per row group are shown in bold. OOM = Out
of Memory at batch size 1. DANet is Pareto-optimal for all sizes
and accelerators.

Model (Hardware) 128 1024 4096 16384 65536 131072

Transformer (H100) 736.05 571.39 318.46 116.74 33.29 16.87
Linear Attention (H100) 563.37 568.19 568.07 566.95 566.62 565.84
DANet (H100) 772.03 699.60 701.93 700.73 697.89 690.36

Transformer (A100) 303.62 257.54 165.46 68.04 20.27 10.47
Linear Attention (A100) 243.72 241.66 242.81 241.65 243.39 242.73
DANet (A100) 313.25 277.52 277.71 277.92 273.71 272.96

Transformer (CPU) 7.99 2.21 0.62 0.16 OOM OOM
Linear Attention (CPU) 7.67 7.75 7.67 7.73 7.75 7.82
DANet (CPU) 14.97 13.60 13.21 12.94 13.46 12.83

ments are 1x NVIDIA H100 80GB HBM3, 1x NVIDIA
A100-SXM4-80GB, and 12 cores of Intel Xeon Platinum
8480+ CPU with 364 GB DDR5 RAM.

We find that DANet is invariably faster than both alternatives
on each of the accelerators for all context sizes, from very
short (128 tokens) to extremely long (131k tokens). Partic-
ularly, DANet consistently Pareto-improves on the Linear
Transformer for every sequence length and on every tested
device. This is especially noteworthy as Linear Transformer
is among the strongest counterparts to DenseAttention archi-
tecture in terms of computational efficiency because it has
one of the simplest algorithms and relatively few non-linear
and element-wise transformations among the large class of
linear-time algorithms, which makes it one of the fastest
O(N) models.

DANet’s advantage in speed is most notable on CPU, where
specialized kernels like FlashAttention are not available. In
this setting, DANet achieves a minimum speed-up of 2×
over Transformer, starting at the smallest context size. Yet
even on NVIDIA H100, DANet is faster than FlashAtten-
tion by 22.4% on small 1024-token context size and by
orders of magnitude on large sequences, indicating superior
computational efficiency of DenseAttention.
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Harleen Batra, Harsh Dhand, Ivan Nardini, Jacinda
Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha
Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi,
Jocelyn Becker, Joe Fernandez, Joost van Amersfoort,
Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji,
Kareem Mohamed, Kartikeya Badola, Kat Black, Katie
Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir
Sodhia, Kish Greene, Lars Lowe Sjoesund, Lauren
Usui, Laurent Sifre, Lena Heuermann, Leticia Lago,
Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick,
Lucas Dixon, Luciano Martins, Machel Reid, Manvinder
Singh, Mark Iverson, Martin Görner, Mat Velloso, Mateo
Wirth, Matt Davidow, Matt Miller, Matthew Rahtz,
Matthew Watson, Meg Risdal, Mehran Kazemi, Michael
Moynihan, Ming Zhang, Minsuk Kahng, Minwoo Park,
Mofi Rahman, Mohit Khatwani, Natalie Dao, Nenshad
Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay
Chauhan, Oscar Wahltinez, Pankil Botarda, Parker
Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko
Georgiev, Phil Culliton, Pradeep Kuppala, Ramona

Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir
Rokni, Rishabh Agarwal, Ryan Mullins, Samaneh Saadat,
Sara Mc Carthy, Sarah Perrin, Sébastien M. R. Arnold,
Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti
Sheth, Sue Ronstrom, Susan Chan, Timothy Jordan, Ting
Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee
Doshi, Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal
Dharmadhikari, Warren Barkley, Wei Wei, Wenming Ye,
Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen,
Zhitao Gong, Zichuan Wei, Victor Cotruta, Phoebe Kirk,
Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin,
Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia
Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav
Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray
Kavukcuoglu, Clement Farabet, Elena Buchatskaya, Se-
bastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen
Kenealy, Robert Dadashi, and Alek Andreev. Gemma 2:
Improving open language models at a practical size, 2024.
URL https://arxiv.org/abs/2408.00118.

Albert Gu and Tri Dao. Mamba: Linear-time sequence
modeling with selective state spaces. In First Con-
ference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=tEYskw1VY2.

Albert Gu, Karan Goel, and Christopher Re. Efficiently
modeling long sequences with structured state spaces. In
International Conference on Learning Representations,
2022a. URL https://openreview.net/forum?
id=uYLFoz1vlAC.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently mod-
eling long sequences with structured state spaces, 2022b.
URL https://arxiv.org/abs/2111.00396.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal
state spaces are as effective as structured state spaces.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho, editors, Advances in Neural In-
formation Processing Systems, 2022. URL https:
//openreview.net/forum?id=RjS0j6tsSrf.

Horace He. Making deep learning go brrrr from first prin-
ciples. 2022. URL https://horace.io/brrr_
intro.html.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le.
Transformer quality in linear time. In Kamalika Chaud-
huri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato, editors, Proceedings of
the 39th International Conference on Machine Learn-
ing, volume 162 of Proceedings of Machine Learn-
ing Research, pages 9099–9117. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/
v162/hua22a.html.

7

https://proceedings.mlr.press/v202/fu23a.html
https://proceedings.mlr.press/v202/fu23a.html
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2408.00118
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://arxiv.org/abs/2111.00396
https://openreview.net/forum?id=RjS0j6tsSrf
https://openreview.net/forum?id=RjS0j6tsSrf
https://horace.io/brrr_intro.html
https://horace.io/brrr_intro.html
https://proceedings.mlr.press/v162/hua22a.html
https://proceedings.mlr.press/v162/hua22a.html


MatMuls are Enough for Efficient and Performant Linear-Time Attention

Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li,
and Torsten Hoefler. Data movement is all you need:
A case study on optimizing transformers. In A. Smola,
A. Dimakis, and I. Stoica, editors, Proceedings of Ma-
chine Learning and Systems, volume 3, pages 711–732,
2021. URL https://proceedings.mlsys.
org/paper_files/paper/2021/file/
bc86e95606a6392f51f95a8de106728d-Paper.
pdf.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch,
Chris Bamford, Devendra Singh Chaplot, Diego de las
Casas, Florian Bressand, Gianna Lengyel, Guillaume
Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-
Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El
Sayed. Mistral 7b, 2023.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux,
Arthur Mensch, Blanche Savary, Chris Bamford, Deven-
dra Singh Chaplot, Diego de las Casas, Emma Bou Hanna,
Florian Bressand, Gianna Lengyel, Guillaume Bour, Guil-
laume Lample, Lélio Renard Lavaud, Lucile Saulnier,
Marie-Anne Lachaux, Pierre Stock, Sandeep Subrama-
nian, Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. Mixtral of experts,
2024.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong.
Polysketchformer: Fast transformers via sketching poly-
nomial kernels. In Forty-first International Confer-
ence on Machine Learning, 2024. URL https://
openreview.net/forum?id=ghYrfdJfjK.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas,
and François Fleuret. Transformers are RNNs: Fast
autoregressive transformers with linear attention. In
Hal Daumé III and Aarti Singh, editors, Proceedings of
the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learn-
ing Research, pages 5156–5165. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/
v119/katharopoulos20a.html.

Junkyung Kim*, Drew Linsley*, Kalpit Thakkar, and
Thomas Serre. Disentangling neural mechanisms for
perceptual grouping. In International Conference on
Learning Representations, 2020. URL https://
openreview.net/forum?id=HJxrVA4FDS.

Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In International Conference on
Learning Representations (ICLR), San Diega, CA, USA,
2015.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and Anna
Rumshisky. Revealing the dark secrets of BERT. In Pro-
ceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pages 4365–4374, Hong Kong,
China, November 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1445. URL https:
//aclanthology.org/D19-1445.

Alex Krizhevsky and Geoffrey Hinton. Learning mul-
tiple layers of features from tiny images. Techni-
cal Report 0, University of Toronto, Toronto, Ontario,
2009. URL https://www.cs.toronto.edu/
~kriz/learning-features-2009-TR.pdf.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and San-
tiago Ontanon. FNet: Mixing tokens with Fourier trans-
forms. In Marine Carpuat, Marie-Catherine de Marn-
effe, and Ivan Vladimir Meza Ruiz, editors, Proceedings
of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 4296–4313, Seat-
tle, United States, July 2022. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2022.naacl-main.
319. URL https://aclanthology.org/2022.
naacl-main.319.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A ro-
bustly optimized bert pretraining approach, 2019. URL
https://arxiv.org/abs/1907.11692.

Xuezhe Ma, Xiang Kong, Sinong Wang, Chunting Zhou,
Jonathan May, Hao Ma, and Luke Zettlemoyer. Luna:
Linear unified nested attention. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, edi-
tors, Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?
id=GWRkOYr4jxQ.

Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He,
Liangke Gui, Graham Neubig, Jonathan May, and Luke
Zettlemoyer. Mega: Moving average equipped gated
attention, 2023. URL https://arxiv.org/abs/
2209.10655.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan
Huang, Andrew Y. Ng, and Christopher Potts. Learn-
ing word vectors for sentiment analysis. In Dekang
Lin, Yuji Matsumoto, and Rada Mihalcea, editors, Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies, Portland, Oregon, USA, June 2011. As-
sociation for Computational Linguistics. URL https:
//aclanthology.org/P11-1015.

8

https://proceedings.mlsys.org/paper_files/paper/2021/file/bc86e95606a6392f51f95a8de106728d-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/bc86e95606a6392f51f95a8de106728d-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/bc86e95606a6392f51f95a8de106728d-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/bc86e95606a6392f51f95a8de106728d-Paper.pdf
https://openreview.net/forum?id=ghYrfdJfjK
https://openreview.net/forum?id=ghYrfdJfjK
https://proceedings.mlr.press/v119/katharopoulos20a.html
https://proceedings.mlr.press/v119/katharopoulos20a.html
https://openreview.net/forum?id=HJxrVA4FDS
https://openreview.net/forum?id=HJxrVA4FDS
https://aclanthology.org/D19-1445
https://aclanthology.org/D19-1445
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://aclanthology.org/2022.naacl-main.319
https://aclanthology.org/2022.naacl-main.319
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=GWRkOYr4jxQ
https://openreview.net/forum?id=GWRkOYr4jxQ
https://arxiv.org/abs/2209.10655
https://arxiv.org/abs/2209.10655
https://aclanthology.org/P11-1015
https://aclanthology.org/P11-1015


MatMuls are Enough for Efficient and Performant Linear-Time Attention

Paul Michel, Omer Levy, and Graham Neubig. Are
sixteen heads really better than one? In Advances in
Neural Information Processing Systems, volume 32,
2019. URL https://proceedings.neurips.
cc/paper_files/paper/2019/file/
2c601ad9d2ff9bc8b282670cdd54f69f-Paper.
pdf.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory F. Diamos, Erich Elsen, David García, Boris
Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hao Wu. Mixed precision training. In 6th
International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net,
2018. URL https://openreview.net/forum?
id=r1gs9JgRZ.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam
Chenaghlu, Richard Socher, Xavier Amatriain, and Jian-
feng Gao. Large language models: A survey, 2024. URL
https://arxiv.org/abs/2402.06196.

Nikita Nangia and Samuel Bowman. ListOps: A diagnos-
tic dataset for latent tree learning. In Silvio Ricardo
Cordeiro, Shereen Oraby, Umashanthi Pavalanathan,
and Kyeongmin Rim, editors, Proceedings of the 2018
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Student Re-
search Workshop, pages 92–99, New Orleans, Louisiana,
USA, June 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/N18-4013. URL https:
//aclanthology.org/N18-4013.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, Amar Phanishayee, and Matei Za-
haria. Efficient large-scale language model training on
gpu clusters using megatron-lm. International Confer-
ence for High Performance Computing, Networking, Stor-
age and Analysis, SC, 4 2021. doi: 10.1145/3458817.
3476209. URL https://arxiv.org/abs/2104.
04473v5.

NVIDIA Docs. Matrix multiplication background
user’s guide, 2023a. URL https://docs.
nvidia.com/deeplearning/performance/
dl-performance-matrix-multiplication/
index.html#math-mem.

NVIDIA Docs. Gpu performance background
user’s guide, 2023b. URL https://docs.
nvidia.com/deeplearning/performance/
dl-performance-gpu-background/index.
html#understand-perf.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan
Fernando, Caglar Gulcehre, Razvan Pascanu, and So-
ham De. Resurrecting recurrent neural networks for
long sequences. In Andreas Krause, Emma Brun-
skill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett, editors, Proceedings of
the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learn-
ing Research, pages 26670–26698. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/orvieto23a.html.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On
the difficulty of training recurrent neural networks. In San-
joy Dasgupta and David McAllester, editors, Proceedings
of the 30th International Conference on Machine Learn-
ing, volume 28 of Proceedings of Machine Learning Re-
search, pages 1310–1318, Atlanta, Georgia, USA, 17–
19 Jun 2013. PMLR. URL https://proceedings.
mlr.press/v28/pascanu13.html.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library. In
Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc., 2019.
URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Suchita Pati, Shaizeen Aga, Nuwan Jayasena, and
Matthew D. Sinclair. Demystifying bert: System design
implications. In 2022 IEEE International Symposium
on Workload Characterization (IISWC), pages 296–309,
2022. doi: 10.1109/IISWC55918.2022.00033.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak,
Samuel Arcadinho, Stella Biderman, Huanqi Cao, Xin
Cheng, Michael Chung, Leon Derczynski, Xingjian
Du, Matteo Grella, Kranthi Gv, Xuzheng He, Haowen
Hou, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong,
Bartłomiej Koptyra, Hayden Lau, Jiaju Lin, Krishna
Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu
Song, Xiangru Tang, Johan Wind, Stanisław Woźniak,
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A. Background: Transformer Architecture
Here we give a brief exposition of essential elements of Transformer architecture and their variations.

Standard Transformer block consists of self-attention and feed-forward-network (FFN) sub-blocks (Vaswani et al., 2017).
Let X ∈ RN×d, where N is the sequence length and d is an embedding dimension of one token. Define Q = XWQ

as queries, K = XWK as keys, and V = XWV as values, where WQ,WK ,WV ∈ Rd×dh are learnable parameters.
Default implementations in some models (e.g. Devlin et al. (2019)) also add biases to Q,K, and V. Then the Scaled
Dot-Product Attention is formulated as:

Attention (X) = Attention(Q,K,V) = Softmax
(
QK⊤
√
dh

+M

)
V, (1)

with Softmax applied row-wise and mask M ∈ RN×N with values 0 or −∞ which effectively disables some positions from
calculation to account for causal sequence processing or to conceal ’PAD’ token used for batch processing of sequences
with different lengths.

Essentially, all transformer-based models use some form of Multi-Head Attention which has H heads. Attention (1) is
calculated for each head independently and the results are concatenated along the embedding dimension and projected back
to full block’s output dimension by a matrix WO ∈ Rd×dout :

MultiHeadAttn(Q,K,V) = Concat(head1, . . . , headH)WO (2)

Feed-Forward Network which follows self-attention is composed of two linear layers and an activation (usually ReLU or
GeLU) in between. Intermediate inner dimension between the two layers is usually chosen to be 4x larger than input/ output
dimension. Finally, a LayerNorm layer and a residual connection are applied around both blocks, their relative positions
dictated by PreNorm or PostNorm architectural choice (Xiong et al., 2020). The formulation of the whole Transformer layer
l with PreNorm is:

X′
l = Xl + Attention(LayerNorm(Xl))

Xl+1 = X′
l + FFN(LayerNorm(X′

l))

Thus, each full Transformer block has two LayerNorms and two residual connections.

B. Designing DenseAttention
In this section, we describe the DenseAttention architecture and motivations that led to specific changes as compared to
the Transformer. Then we outline an extension designed to efficiently adapt a component widely and successfully used in
contemporary models: LocalAttention layers.

B.1. DenseAttention

If there are no biases in FFN, Query and Output linear layers and FFN activation is ReLU, then for a row vec-
tor 0⊤

d = [0, 0, . . . , 0]1×d Attention(0⊤
d WQ,K,V) = 0⊤

d and MultiHeadAttn(0⊤
d WQ,K,V) = 0⊤

d ,FFN(0⊤
d ) =

0⊤
d , and LayerNorm(0⊤

d ) = 0⊤
d , i.e. zero vector stays intact when acted upon by all components of the Transformer

module. So we refrain from using biases throughout the new block, fix representation of the "PAD" token at the output of
embedding layer to 0⊤

d , and remove masking from the self-attention layer in case of masked language modeling. For causal
language modeling, we apply a well-known chunk-wise parellel algorithm (Sun et al., 2024; Gu and Dao, 2024) which
allows to compute attention efficiently in linear time despite masking.

However, removing Softmax proves to be a very challenging task: without it attention outputs become unbounded, which can
lead for them to either diverge to ∞ or shrink to 0. We formalize this statement with the following proposition considering
simplified version of the new mechanism, where W = WQW

⊤
K and WV = I:

Proposition 1. Let X ∈ RN×d and W ∈ Rd×d be matrices composed of i.i.d. random variables, respectively Xij with
E[Xij ] = 0, Var(Xij) = σ2

X , and Wkm with E[Wkm] = 0, Var(Wkm) = σ2
W . Let Xij and Wkm also be independent for all

i, j, k,m. Then each element of the matrix Y = XWX⊤X ∈ RN×d has zero expectation and variance σ2
Y ≥ Nd2σ6

Xσ2
W .

14



MatMuls are Enough for Efficient and Performant Linear-Time Attention

Essentially, it means that variance of an output grows at least as a cube of an input variance in the new architecture layer.
And since σ2

Y along with tail probability P(|Yij | ≥ t) are not bounded from above and depend on the form of an unknown
distribution, we can’t just fix σ2

X e.g. with the help of LayerNorm to ensure numerical stability. It becomes especially
important in case of low-precision formats with reduced dynamic range such as fp16. We confirm it empirically in our
ablation study (Table 11) as incorporation of LayerNorm leads to a prompt and unrecoverable numerical instability early on
during training.

Instead of using l2 norm, we enforce max(|Xij |) ≤ a for some positive a which is equivalent to setting fixed L∞ norm for
the inputs. Consequently, even in worst case scenario where

Xij = a for ∀ i, j (3)

it holds for Z = XX⊤X ∈ RN×d:
max(|Zij |) ≤ Nda3, (4)

i.e. L∞ norm of output values is bounded above. Furthermore, we make the following observation:

Proposition 2. If elements Wkm of W are i.i.d normal variables with mean 0 and variance σ2
W , independent with ∀ Xij ,

Var[(XW)pq] ≤ σ2
Wa2d

It follows from Prop. 2. that σW and a can be chosen such that P[|(XW )pq| ≥ ϵ] ≤ δ for some ϵ > 0, δ > 0 depending on
σW and a. Thus, we can assume that the matrix product Y = XWX⊤X ∈ RN×d will not explode with right selection of
priors.

Specifically, we set a = 1

N
1
3

, so that (4) becomes max(|Zij |) ≤ d. We choose not to downscale inputs by further degree,

e.g. by d
√
n because resulting small values may hurt modeling quality during training in low-precision formats (fp16 and

bf16).

We fix each embedding vector Xi to have constant l∞ norm of 1 by applying our novel MaxNormActivation function:

MaxNormActivation(Xi) =
Xi

maxj(|X|ij) + ϵ

where ϵ is a very small number put to prevent division by 0. Note that similarly to RMSNorm (Zhang and Sennrich, 2019),
MaxNormActivation doesn’t center its inputs. However, it uses l∞ norm instead of l2 and doesn’t have scale and bias
parameters as in Zhang and Sennrich (2019); Ba et al. (2016). When applying MaxNorm before the attention block, we
additionally scale outputs by 1

N
1
3

.

Consequently, it allows the removal of Softmax, which doesn’t only lift a major computational and memory bottleneck
which otherwise could be alleviated mainly with clever low-level algorithms as in Dao et al. (2022b); Rabe and Staats
(2021). Without Softmax and masking attention mechanism becomes a raw product of three matrices QK⊤V. Exploiting
associative property of matrix multiplication, we can compute the product as either (QK⊤)V which yields 2N2d FMA
operations, or Q(K⊤V) which yields 2Nd2 FMA operations and is linear w.r.t N both in time and memory complexity.

We can utilize both methods interchangeably depending on what’s more favorable given particular values of N and d. O(N)
complexity gives way to processing very large sequences in linear time with the same result as if done in traditional O(N2)
paradigm as it calculates exactly the same all N ×N pairwise interactions but just in another order.

Next, we consider reducing the number of heads in the multi-head attention as they are computationally inefficient. As
extensive research efforts have shown (Bhojanapalli et al., 2020; Voita et al., 2019; Kovaleva et al., 2019; Michel et al.,
2019), significant portion of heads in multi-head attention are redundant, output low-rank representations and can be pruned
without decrease in quality in downstream tasks, at least for BERT-sized models. Specifically, Bhojanapalli et al. (2020) find
that increasing number of heads past a certain threshold degrades performance in BERT. Motivated by this, we propose
increasing dh from conventional value 128 up to 1024. In case of BERT example from Appendix G it leads to a single-head
attention with arithm. int. 204.8 FLOPs/B which makes it computationally efficient even on NVIDIA A100. For LLMs with
larger model dimension dh = 1024 would still leave room for multiple heads. And asymptotic arithm. int. in O(N)-regime
is d

2 just like in an ordinary d× d dense layer.

We note that the matrix W = WQW
⊤
K in the expression QK⊤ = XWQW

⊤
KX⊤ is essentially low-rank as in standard

attention dh ≪ d. But in our implementation this rank is much higher, in the extreme case being equal to d. It results in
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multiplication of two high or full rank matrices. That is a redundant operation from DL perspective because composition of
linear maps is just another linear map which could be learned using half of the parameters. Thus, we decide to keep the WQ

and discard WK .

We also decide to remove LayerNorm and residual connection between attention and FFN sub-blocks as it improves
computational efficiency of the architecture and appears not to hinder model performance. This leads to yet another
simplification in the model design: WV and WO also become redundant by similar reasoning as in case of WQ because
there are no more non-linearities between attention outputs and FFN block.

Finally, the new attention mechanism in the case of a single head is formulated as:

DenseAttn (X) = XWQX
⊤X ∈ RN×d

And in the case of multiple heads H it slightly changes:

DenseAttnh (X) = XWQh
X⊤

hXh ∈ RN×dh

DenseAttn (X) = Concath[DenseAttnh (X)]

We call our attention algorithm "DenseAttention" and the entire block as "DenseAttention Network" or DANet (spelled
"dah-net") because it basically consists of dense matrix multiplications with little else. We notice that DenseAttention
in multi-head setting resembles popular multi-query attention design from (Shazeer, 2019) as it also calculates different
representations only for Queries.

To complete the DenseAttention Network, we apply MaxNormActivation and residual connection to outputs of FFN. Final
architecture to the layer l can be summarized as follows:

X′
l = DenseAttn(MaxNormActivation(Xl) ·N− 1

3 )

Xl+1 = Xl + MaxNormActivation(FFN(X′
l))

B.2. LocalAttention for DenseAttention

In the years following invention of Transformer, many variations of local attention, also known as sliding window attention,
patterns and implementations have been proposed (Zaheer et al., 2020; Beltagy et al., 2020; Child et al., 2019; Roy et al.,
2021; Dao et al., 2022b; Xiong et al., 2022). Recently, some of the open-weights Large Language Models (Jiang et al.,
2023; Gemma Team et al., 2024) started partially or fully adopting some forms of local attention with the primary goal of
alleviating quadratic cost of full attention for large contexts with the trade-off of not being able to fully process the entire
sequence at once.

We develop a form of local attention pattern for discretionary use with DenseAttention on very long contexts, however, with
the only goal of improving modeling quality, as opposed to reducing runtime of full softmax attention in case of standard
Transformers. The reason of this extension is outlined by Qin et al. (2022a): in linear Transformer family of models,
attention scores of a query are distributed along the sequence length more uniformly as compared to Softmax attention, so
the model is not fully able to focus at details in the vicinity of a query’s token.

We adopt the approach to partition the whole sequence into equal non-overlapping chunks of window size w, similar to Dao
et al. (2022b); Qin et al. (2022a). We choose this design because of its simplicity and straight-forward implementation with
minimal invocations of memory-intensive data layouts. However, this form of chunked attention leads to all of the tokens
not being able to interact with up to a half of the tokens constituting their neighbourhood. To mitigate this issue, we extend
our local attention framework beyond one layer and propose a 3-layer structure (Fig. 2). It consists of LocalAttention,
ShiftedLocalAttention, and global DenseAttention layers. The second, ShiftedLocalAttention layer is shifted by w/2 relative
to the first, which allows for all tokens to have symmetric neighbourhood after two consecutive layers. The full global
attention of the last layer in the scheme combines fine-grained local results to capture all context of a sequence. The triples
of layers then may be stacked together like ordinary Transformer layers to form a deep network.

We find local attention to be very effective in our experiments (as discussed in detail in 3.1).
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Table 7. Inference throughput (thousands tokens per second), Model FLOPs Utilization (MFU) ratio (%) of the fastest model in a group,
for DenseAttention model in O(N) and O(N2) regimes in comparison to BERT with and without FlashAttention-2. For all sequence
lengths, DANet is faster than both FlashAttn and PyTorch BERT, as shown by speedups w.r.t respective BERT implementations. All
measurements were conducted on a single NVIDIA A100 40Gb GPU.

Seq. Len. BS DenseAttention BERT Speedup, %

O(N) O(N2) MFU FlashAttn-2 PyTorch MFU FA-2 (PT)

128 512 179.58 220.29 48.4 202.75 185.60 44.3 8.65 (18.7)
512 256 204.85 221.08 52.7 194.30 156.11 44.8 13.8 (41.6)
1024 128 213.91 213.81 55.0 185.96 120.73 45.8 15.0 (77.2)
2048 64 197.47 174.08 50.8 167.30 OOM 46.6 18.0
4096 32 196.98 136.72 50.7 138.98 OOM 47.7 41.7
8192 16 198.08 96.75 51.0 102.56 OOM 48.5 93.1
16384 8 220.69 67.17 56.8 67.50 OOM 49.3 226.9
32768 4 197.26 32.28 50.8 40.11 OOM 50.0 391.8
65536 2 198.57 24.77 51.1 22.15 OOM 50.5 796.4
131072 1 210.24 11.40 54.1 11.67 OOM 50.7 1702

C. Additional Experiments
C.1. MFU & Speed Comparisons

We thoroughly evaluate (Table 7) DANet-BERT model inference speed, as measured by throughput, and computational
efficiency by means of MFU – Model FLOPS Utilization, which shows the ratio between actual FLOPs used by the model
and theoretical hardware upper limit. We compare the model with standard BERT-Large model and with highly-optimized,
low-level FlashAttention-2 implementation (Dao, 2024) which is the fastest available kernel for attention computation as of
early 2025. We test on sequences with lengths of all powers of 2 between 128 and 131K on a single NVIDIA A100 with
40Gb. BERT with plain PyTorch attention could not fit into GPU memory with selected batch sizes for sequences greater
than 1024 tokens, as opposed to DANet in both O(N2) and O(N) regimes.

All evaluations were performed using torch.compile() directive. As expected, DenseAttention model vastly outperforms both
PyTorch (up to 77.2% on seq.len 1024) and even FlashAttention algorithm with either quadratic or linear regime, depending
on the sequence length. For small sequences, quadratic mode of DenseAttention is preferable, and for long contexts, linear
mode is indispensable in obtaining orders-of-magnitude speedups. Our architecture is also more hardware-efficient as it
outperforms Transformer in terms of MFU for all context sizes. For each size, we record MFU for the fastest regime which
leads to smaller values of the metrics for long sequences. Yet, surprisingly, we also observe that with the increase of the
sequence length the performance of the DenseAttention in the O(N2) regime is roughly similar to FlashAttention despite
being written in high-level language and having up to 32/24 = 1.33 times more FLOPs per iteration in the limit. It implies
that DANet is up to 1.33 times more computationally efficient than Transformer.

C.2. Pathfinder-256

Pathfinder-256 is an extremely challenging version of the Pathfinder task with sequence length 65k which is on par with
input context size of recent generations of proprietary Large Language Models.

Table 8. Accuracy on Pathfinder-256 task

Algorithm Acc. on val. set, %

FlashAttention (Dao et al., 2022b) 63.1
S4 (Amos et al., 2024) 67.8
DenseAttention 72.6
DenseAttention after additional 550 epochs 77.1

DenseAttention model outperforms (Table 8) existing results from the literature of standard Transformer augmented with
FlashAttention (Dao et al., 2022b) and S4-v2 model (Gu et al., 2022b) as reported in Amos et al. (2024). The result holds
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even when the training procedure is carried out for only 200 training epochs as in Dao et al. (2022b), and further improves
when it is prolonged for 550 additional epochs.

This experiment lets us make several observations:

• DenseAttention Network architecture performs well even on very long input sequences which is promising given
current trend of increasing context size in modern Large Language and Multimodal Models;

• DenseAttention shows favorable scaling properties with respect to the amount of training iterations, even with the fixed
dataset size. The validation accuracy for the task kept improving throughout the whole training and would likely have
continued if the experiment had not been stopped;

• Truly linear scaling in sequence length is crucial for improvements in quality for large contexts. It took approximately
3 days on 4 H100 GPUs to train our model for 750 epochs in linear mode, while the projected runtime of quadratic
FlashAttention-2 (Dao, 2024) and log-linear (S4) algorithms in the same setting would be at best 3 and 0.5 months,
respectively, which renders them impractical for prolonged training.

C.3. DANet-BERT for Long Contexts

Table 9. Comparison of DANet-BERT-Large pretrained on long context sizes with and without local attention. The models with context
size 1k and 16k were evaluated on the corresponding length texts from C4 and Bookcorpus (held-out split) datasets respectively. "Samples"
denotes the number of sequences of corresponding length seen by a model during continual pretraining.

Metrics 1k 16k

Samples MLM Loss MLM Acc. Samples MLM Loss MLM Acc.

DANet-BERT 80M 2.255 0.591 27M 2.843 0.452
DANet-BERT + local attention 80M 1.705 0.647 7.8M 1.689 0.637

We conducted additional experiments by taking DANet-BERT model after it had finished pre-training on sequence length
512 and continued pre-training on sequence lengths 1024 and then 16384 tokens both with and without local attention
scheme. The results (Table 9) show that introduction of local-global attention pattern helps to quickly recover the modeling
performance even on extremely long sequences. It brings the performance to the same level we observed when pre-training
on small sequences and significantly outperforms the models which were pre-trained without the local attention.

Moreover, we observe that quality evaluation metrics stay the same for a fixed lengths validation context if the regime gets
switched from O(N) to O(N2) or vice versa regardless of the mode and sequence length with which a DenseAttention
model has been trained. This invariance property holds even for the model trained on 16k context and applied to sequence
length 128. Thus, we can train the models with DenseAttention on very large contexts in O(N) time and then use it for both
short and long sequences with optimal speed and equal quality.

C.4. Scaling Effects Study

Table 10. Scaling study on DenseAttention-BERT architecture

Model Parameters Configuration MLM loss MLM accuracy

DANet-BERT-small 31M L=6, D=512 2.74 49.5
DANet-BERT-base 110M L=16, D=768 2.02 60.0
DANet-BERT-large 336M L=32, D=1024 1.70 64.9

The Table 10 details three single-head DenseAttention Network models of different sizes pre-trained on Wiki+BookCorpus
dataset with MLM objective for 100B tokens. MLM loss and accuracy are reported for out-of-sample data from C4 dataset
(Raffel et al., 2019). L and D parameters denote number of layers and hidden dimension of FFN input, respectively.
DenseAttention architecture exhibits favorable scaling properties similar to standard Transformer.
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C.5. Ablation on MaxNormActivation

Table 11. Comparison of LayerNorm and MaxNormActivation under different half-precision formats.

LN Type Precision Accuracy (%)

LayerNorm fp16 FAIL
MaxNorm fp16 61.3

LayerNorm bf16 61.6
MaxNorm bf16 61.9

We conducted an ablation study by pretraining DANet-BERT on 10B tokens of C4 dataset and evaluating on held-out data
with either standard LayerNorm (Ba et al., 2016) or MaxNormActivation in fp16 and bf16 half-precision formats. We report
the results in Table 11. We confirm that DenseAttention is not compatible with LayerNorm in older fp16 format, since the
training becomes unstable and diverges early after launch, as previously noted in section B.1. We observe that MaxNorm is
also optimal for bf16 training.

D. Conclusion
In this paper, we propose DenseAttention Network – a general architecture which simplifies the Transformer block and
can serve as a drop-in replacement in every model architecture using it. We conduct experiments on the diverse modalities
spanning from language modeling and NLP tasks to logic and image classification, and from short to extremely long
sequence lengths using the LRA and GLUE suites of benchmarks, and MLM and CLM style language model pre-training
on text data. The results show that DenseAttention is capable of generalizing to many different tasks and context sizes and
achieving favorable performance in comparison with standard Transformer and its augmented variants while being faster and
more computationally efficient even with no specialized, low-level computation algorithms such as in (Dao et al., 2022b).

E. Sub-quadratic Algorithms for Sequence Processing
Given entries Qi,Kj , Vj ∈ R1×d of matrices Q,K and V, standard softmax attention for input i can be reformulated as

Ai =

∑N
j=1 Sim(Qi,Kj)Vj∑N
j=1 Sim(Qi,Kj)

∈ R1×d,

where Sim(Qi,Kj) = exp(QiK
⊤
j ). Conceptually, linear attention class of algorithms, described in Katharopoulos et al.

(2020) and built upon in numerous subsequent works, approximates or replaces this similarity function with separable kernel
Sim(Qi,Kj) = K(Qi,Kj) = ϕ(Qi)ϕ(K

⊤
j ), where ϕ : Rd → Rr

+ maps query and key vectors to non-negative vectors
with possibly different dimension r.

Hence, the attention mechanism becomes:

Ai =

∑N
j=1 ϕ(Qi)ϕ(K

⊤
j )Vj∑N

j=1 ϕ(Qi)ϕ(K⊤
j )

=
ϕ(Qi)

∑N
j=1 ϕ(K

⊤
j )Vj

ϕ(Qi)
∑N

j=1 ϕ(K
⊤
j )

,

(5)

which can be computed in linear time.

The function ϕ(·) can take various forms, such as 1 + ELU (Katharopoulos et al., 2020), ReLU (Qin et al., 2022b), squared
ReLU (Hua et al., 2022), Taylor (Duman Keles et al., 2023; Arora et al., 2024; Aksenov et al., 2024; Zhang et al., 2024)
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or Random Feature (Choromanski et al., 2022; Peng et al., 2021) expansions, and even MLPs trained to mimic softmax
attention (Zhang et al., 2024). They aim to approximate softmax without its explicit calculation when being applied jointly
to queries and keys, or to retain its properties, most importantly, non-negativity of resulting dot products ϕ(Qi)ϕ(K

⊤
j ).

The latter property, together with reweighting attention scores (denominator in the formula (5)) are defining for Linear
Transformer algorithms. Absence of scaling by 1

ϕ(Qi)
∑n

j=1 ϕ(K⊤
j )

leads to numerical instabilities, and the scaling factor

itself is not guaranteed to be bounded without non-negative ϕ(·). However, both mappings ϕ(·) , and memory intensive
non-MatMul operations for reweighting contribute to subpar speed and computational efficiency in comparison with ordinary
and fast self-attention algorithms on all but large context sizes.

DenseAttention is substantially different from LinearTransformers. We forgo both transforming Q,K by ϕ(·) and reweight-
ing in DenseAttention as we believe the main factor of success of Transformer is the ability of all N × N interactions
between tokens. It results in improved computational efficiency and simpler design which can be expressed entirely by
matrix multiplications:

A = QK⊤V

Another promising line of work focuses on applying deep State Space Models (SSMs) (Gu et al., 2022a; Gupta et al., 2022;
Ma et al., 2023; Sun et al., 2024; Gu and Dao, 2024) and Linear RNNs (Beck et al., 2024; Orvieto et al., 2023; Peng et al.,
2023) to long-range sequence and language modeling. Fundamentally, these architectures model interactions in sequence
dimension by a linear recurrence:

xt = Axt−1 +But

yt = Cxt +Dut,

where recurrence matrix A and other parameters are data-independent matrices which form and initialization are defining
properties for a particular SSM/ RNN architecture. The linear recurrence is advantageous during inference as it runs in
O(N) time. For training, it also can be unrolled into a convolutional kernel

K =
[
CB, CAB, . . . , CA

N−1
B
]

to compute
y = K ∗ u

via Fast Fourier Transform (FFT) in O(N logN) time. Here, we set D = 0 for ease of exposition, but in practice it’s usually
set to identity to act as a skip-connection ubiquitous in modern deep NN architectures.

Among other novel algorithms which rely on FFT or its generalizations such as Monarch matrices (Dao et al., 2022a), are
Long Convolutions (Fu et al., 2023b), Hyena (Poli et al., 2023), Monarch Mixer (Fu et al., 2023a), and FNet (Lee-Thorp
et al., 2022) with the latter using sub-quadratic primitives both for computations along the sequence length and the model
dimension.

While being sub-quadratic, these algorithms are still slower than linear time as in DenseAttention. However, recently (Gu
and Dao, 2024; Yang et al., 2024) introduced data-dependent gating for SSM parameters and low-level, hardware efficient
CUDA implementations for parallel-scan operation which allow for fast linear-time processing both during training and
inference. However, it admits no training and inference without resorting to low-level implementations. This architecture
type is also inherently applicable only for auto-regressive decoder-only models and is not capable of bidirectional context
processing without significant modifications, such as second pass over the input sequence.

F. Hardware Efficiency
All calculations performed by a hardware accelerator such as a NVIDIA GPU are either compute-bound or memory-bound
(Williams et al., 2009). It depends on whether the operation in question spends the majority of time directly on computation
or on data movements between High-Bandwidth Memory (HBM) and processing units. Customary unit of measurement
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for computational performance is TeraFLOPs (TFLOPs) per second and for memory it’s bandwidth (throughput) in TB/s.
Arithmetic intensity unifies both and is calculated as number of FLOPs/number of bytes accessed. It can be attributed both to hardware
accelerator (usually referred to as ops:byte ratio in this case) and to a computational kernel, e.g. layer of neural network,
and it’s necessary but not sufficient for the kernel to maintain the arithmetic intensity higher than the accelerator in order to
be computationally intensive (NVIDIA Docs, 2023a). Otherwise, processing units stay idle part of the time waiting for the
data to be brought from or written to HBM.

In latest generations of GPUs, FLOPs count rapidly grows but memory bandwidth progression falls behind, which results in
latest generations of GPUs having much higher arithmetic intensity. Thus, it’s increasingly hard for existing Deep Learning
(DL) primitives to achieve hardware efficiency. Most operations besides matrix-matrix multiplications are inherently
memory limited even on older GPUs. For example, the arithm. intensity of ReLU is 0.25 FLOPS/B, and for LayerNorm it’s
< 10 FLOPS/B on NVIDIA V100 as stated in NVIDIA Docs (2023b). Moreover, GPUs feature fast Tensor Cores (312
TFLOPs for half-precision formats in NVIDIA A100) specialized for matrix multiplications, and general purpose cores with
significantly lower throughput (19.5 TFLOPS in NVIDIA A100) which in turn process non-MatMul operations even slower
as reported in He (2022).

Therefore, from the view of computational efficiency, all activations, elementwise operations and reductions are detrimental
to high ratios of hardware utilization, and it’s beneficial to eliminate most, if not all of them. An ideal algorithm should
contain merely matrix multiplications with no activations, normalizations and residual connections. However, while possible
in principle, it remains a challenging task due to numerical instabilities occurring both in forward and backward pass and
lagging performance of such architectures (Balduzzi et al., 2017; Santurkar et al., 2018; Pascanu et al., 2013)

G. Dissecting Inefficiencies in Transformer
Non-linearities, namely Softmax, LayerNorms, activation in FFN, dropouts, and skip-connections, which are present in
Transformer architecture, indeed contribute majorly to its computational inefficiency, as documented in (Ivanov et al., 2021;
Pati et al., 2022; Portes et al., 2023). But other affine or linear transformations might also require further exploration.
Consider two matrices A ∈ RM×Nand B ∈ RN×K stored in half-precision floating point format which is common for
DL apllications. Each element in the matrices has a size of 2 bytes, and each fused multiply-add (FMA) operation takes 2
FLOPs to compute (NVIDIA Docs, 2023a). Then the arithmetic intensity of matrix multiplication in such setting is:

M ·N ·K
M ·N +N ·K +M ·K

FLOPs/B, (6)

as factors of 2 in the numerator and denominator both cancel out.

If there are no biases, then the two linear transformations in Transformer’s FFN with model dimension d and standard inner
dimension 4d have arithm. int. of 4Nd

5N+4d which equals 4d
5 as N → ∞. N dimension can accumulate both batch size b and

sequence length s dimensions, and for BERT-large size model with d = 1024, s = 512, and b = 128 arithm. int. is approx.
809 FLOPs/B. For largest LLaMA 2 70B model with d = 8192, s = 4096, and b = 1 theoretical arithm. int. without using
tensor parallelism (Narayanan et al., 2021) would be 2520 FLOPs/B. It’s far greater than even NVIDIA H100 ops:byte ratio
in both cases. Therefore, linear layers in the FFN are the most computationally efficient component of the Transformer and
should be preserved in any hardware-aware architecture.

Similar argument may be applied to K,Q, V projection layers in the self-attention, whose matrices can be concatenated
together to yield 3d

4 asymptotic arithm. intensity, and to the output projection by WO matrix in (2) (d2 asymptotic arithm.
int.). However, it follows from (6) that both products S = QK⊤ ∈ RN×N , and O = PV ∈ RN×d, where P =
Softmax(S /

√
dh + M) have arithmetic intensity N ·dh

N+2dh
with limit dh when N → ∞. Also, batch and sequence

dimensions cannot be fused for these operations because they are performed on per sequence level as opposed to per
embedding level in FFN and KQV projections.

Large number of attention heads also contributes to inefficiency. Projection dimension of a head i Qi,Ki, and Vi is d
h and

typically equals 64 for smaller NLP language models like BERT, 256 for Google’s PaLM (Chowdhery et al., 2022), and 128
for most others in the billions-parameters range, including LLAMA model family (Touvron et al., 2023a;b), Mistral (Jiang
et al., 2023) and Mixtral 8x7B (Jiang et al., 2024), and GPT-3 (Brown et al., 2020).

Since the most common choice for dh is 128, the upper bound of arithm. int. of matrix multiplications inside attention
mechanism is lower than even ops:byte ratio of an older V100 generation GPU. In the case of real-life configurations
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of BERT and LLaMA 2 from above the values are 32 and 120.5 FLOPs/B correspondingly. Thus, these operations are
memory-bound and inefficient.

As extensive research efforts have shown (Bhojanapalli et al., 2020; Voita et al., 2019; Kovaleva et al., 2019; Michel et al.,
2019), significant portion of heads in multi-head attention are redundant, output low-rank representations and can be pruned
without decrease in quality in downstream tasks, at least for BERT-sized models. Specifically, Bhojanapalli et al. (2020) find
that increasing number of heads past a certain threshold degrades performance in BERT.

So, from the computational and qualitative perspectives, it is beneficial to change the number of heads in the attention to
fewer or even a single head with larger dimension dh. Furthermore, it keeps the total number of flops constant because
it equals h · N2 d

h = N2d for all heads in total. For example, increasing dh from conventional value 128 up to 1024, in
case of BERT from Appendix G would lead to a single-head attention with arithm. int. 204.8 FLOPs/B which makes it
computationally efficient even on NVIDIA A100. For LLMs with larger model dimension dh = 1024 would still leave
room for multiple heads. And asymptotic arithm. int. in O(N)-regime is d

2 just like in an ordinary d× d dense layer.

H. The LRA Benchmark

Table 12. Long Range Arena performance. Accuracy is the metrics for all benchmarks. Best results are in bold and second best are
underscored. To ensure consistent comparisons, the averages for the models which report the result on Path-X task are computed without
it.

Model Listops Text Retrieval Image Pathfinder PathX Avg.

Transformer (Tay et al., 2021; Dao et al., 2022b) 36.37 64.27 57.46 42.44 71.40 61.40 54.39
Local Attention (Tay et al., 2021) 15.82 52.98 53.39 41.46 66.63 - 46.06
Sparse Trans. (Tay et al., 2021) 17.07 63.58 59.59 44.24 71.71 - 51.24
Longformer (Tay et al., 2021) 35.63 62.85 56.89 42.22 69.71 - 53.46
Linformer (Tay et al., 2021) 35.70 53.94 52.27 38.56 76.34 - 51.36
Reformer (Tay et al., 2021) 37.27 56.10 53.40 38.07 68.50 - 50.67
Sinkhorn Trans. (Tay et al., 2021) 33.67 61.20 53.83 41.23 67.45 - 51.29
Synthesizer (Tay et al., 2021) 36.99 61.68 54.67 41.61 69.45 - 52.88
BigBird (Tay et al., 2021) 36.05 64.02 59.29 40.83 74.87 - 55.01
Linear Transformer (Tay et al., 2021) 16.13 65.90 53.09 42.34 75.30 - 50.55
Performer (Tay et al., 2021) 18.01 65.40 53.82 42.77 77.05 - 51.41
RFA (Peng et al., 2021) 36.80 66.00 56.10 - - - -
Luna-256 (Ma et al., 2021) 37.98 65.78 79.56 47.86 78.55 - 61.95
Nyströmformer (Xiong et al., 2021) 37.15 65.52 79.56 41.58 70.94 - 58.95
Kernelized Attention (Chen et al., 2021) 38.78 60.22 81.77 41.29 70.73 - 58.56
Informer (Chen et al., 2021) 32.53 62.64 77.57 38.10 57.83 - 53.73
Skyformer (Chen et al., 2021) 38.69 64.70 82.06 40.77 70.73 - 59.39
cosFormer (Qin et al., 2022b) 37.90 63.41 61.36 43.17 70.33 - 55.23
FNet (Lee-Thorp et al., 2022) 35.33 65.11 59.61 38.67 77.80 - 55.30
FLASH-quad (Qin et al., 2022a) 42.20 64.10 83.00 48.30 63.28 - 60.18
FLASH (Qin et al., 2022a) 38.70 64.10 86.10 47.40 70.25 - 61.31
TransNormer T1 (Qin et al., 2022a) 41.03 66.90 83.11 51.60 75.92 - 63.71
TransNormer T2 (Qin et al., 2022a) 41.60 72.20 83.82 49.60 76.80 - 64.80
KDEformer (Zandieh et al., 2023) 36.64 62.00 73.52 45.45 68.13 - 57.15
Hedgehog (Zhang et al., 2024) 37.15 64.60 82.24 40.15 74.16 - 59.66

Transformers + Rotary (Amos et al., 2024) 47.90 79.08 82.31 75.04 76.64 84.72 72.89

DenseAttention (ours) 50.50 81.19 87.51 72.55 87.40 88.82 75.83

H.1. Discussion of the LRA Tasks

The Long Range Arena is a suite of 6 challenging and diverse tasks designed to test modeling capabilities across different
domains. Below is a brief description of each task.
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ListOps (Nangia and Bowman, 2018). This is a purely logical synthetic task which is dedicated to modeling evaluation
results of long hierarchically structured sequences. Each sequence has length up to 2000 symbols and consists of whole
numbers from 0 to 9, mathematical operators, such as MAX, MIN, MEDIAN and SUM_MOD, and parentheses.

Text Classification (IMDB) (Maas et al., 2011). This task tests Natural Language Understanding (NLU) abilities of models
by letting them classify the sentiment of movie reviews in the IMDB dataset. To make the task more challenging, the texts of
the reviews are split into tokens not on a word level, but on a character (or byte) level. This leads to much longer sequences
of 4K max length.

Document Retrieval (AAN) (Radev et al., 2013). This task tests the abilities of producing encoded representations of the
textual information and further matching/ retrieving them. Namely, given a pair of the documents from ACL Anthology
Network (AAN; Radev et al., 2013) dataset, a model should independently process them and, based on their final embeddings,
classify if the two documents have a citation link. As in the IMDB tasks, individual input texts are tokenized on a character
(byte) level with maximum sequence length of 4K.

Image Classification (CIFAR-10) (Krizhevsky and Hinton, 2009). This is an image classification task with 10 classes on a
classical CIFAR-10 benchmark with one specific condition: images should be ingested into models as 1-d sequences, thus
setting the input length to 1024 tokens (pixels) and making the task more challenging.

Pathfinder (Kim* et al., 2020) . This is a binary classification task of 32x32 pixels grayscale images with corresponding
sequence length 1024 tokens, which, formally, makes it similar to CIFAR-10 task. However, it’s different on a conceptual
level, as the task measures a model’s ability to discern spatial dependencies. Given a multitude of intertwined, dashed line
paths, a model should correctly determine if two rounded dots are connected by a dashed line.

Pathfinder-X (Pathfinder-128). It’s a version of Pathfinder task with 16K (128x128) pixels images which makes it
significantly more challenging. At the time of publication of the original LRA paper Tay et al. (2021), none of the tested
models managed to achieve a score above chance on this benchmark.

Therefore, the Long Range Arena arguably represents a wide range of tasks, spanning from logic and reasoning to language
modeling and image classification. To perform well on all of the 6 benchmarks, a model’s architecture should be powerful
and versatile enough to generalize to different modalities.

H.2. Extended Comparisons with Transformer-Based Models

Full comparisons with an exhaustive list of Transformer-based models which, to the best of our knowledge, have been tested
on the LRA up to late 2024, including the most recent ones are presented in Table 12. The results show that DenseAttention
outperforms all of the tested models.

I. Cosine RelPE
Many modern Language Models use (Minaee et al., 2024) Rotary Positional Embeddings (RoPE) (Su et al., 2024) which
evidently perform better than learned or sinusoidal positional embeddings and don’t increase parameters count. The former
two types of embeddings are applied once before the first layer and rely on skip-connections for propagating positional
information to other layers in the stack. While it may be suitable for shallow networks, in deeper ones the signal gets
decayed as more layers add their outputs to the residual branch. On the contrary, RoPE inject positional information into
each of the Transformer layers by directly applying a transformation to the matrices Q and K which can be summarized as
follows:

f(xi,m) =

[
cosmθi − sinmθi
sinmθi cosmθi

] [
xi1

xi2

]
,

where xi = [xi1 xi2]
T is a chunk i, i ∈ {0, . . . , d

2}, of a vector x with d dimensions which can be either a query qm or key
km with position m out of N in the sequence. Essentially, the transformation rotates the 2 two-dimensional vectors q′ and
k′ with the intention to maximize their dot product when they share the same position in sequence, and decay it to zero
when the positions largely differ. However, direct calculation shows that it’s not always true, as the result for some fixed i:

f⊤(q′,m)f(k′, n) = (q1k1 + q2k2) cos(m− n)θ

+ (q2k1 − q1k2) sin(m− n)θ
(7)
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is only guaranteed to follow the pattern in case q′ and k′ are collinear. The total dot product of q and k is even less benign,
for in each position i of the model dimension, corresponding two-dimensional vector chunk has a possibly distinctive prior
angle from the origin, and θi is also unique by construction:

θi = 10000−2i/d, (8)

But Su et al. (2024) show that this parameterization leads to long-term decay in norm of attention scores with the increase of
relative distance m− n.

Besides, RoPE are computationally inefficient as their calculation induces memory-expensive changes of tensor layout
and several element-wise operations with low arithmetic intensity, separately for Q and K. We notice that there exist two
other transformations with more favorable efficiency properties which can be applied to scalars at individual positions i ∈
{0, . . . , d} of vectors q and k rather than paired numbers: g1(xi,m) = xi cosmθi and g2(xi,m) = xi(cosmθi − sinmθi).
These produce similar expansions to (7):

g1(qi,m)g1(ki, n) = qiki cosmθi cosnθi

= qiki[cos(m− n)θi − sinmθi sinnθi]

g2(qi,m)g1(ki, n)

= qiki[cos(m− n)θi − sin(m+ n)θi]

We tested all three functions f , g1 and g2 on LRA tasks with DenseAttention and found out that all of them impact the
performance very similarly. However, when we set a constant θ for all positions in an embedding dimension, the quality
dropped, adding evidence to the leading role of parameterization (8) in the RoPE potential.

We choose the simpler function g1 as the new computationally efficient alternative to RoPE and name it Cosine RelPE. We
use it extensively in conjunction with DenseAttention, however it can be readily applied to standard Transformer in place of
RoPE.

We find that application of Cosine RelPE to X before DenseAttention layer, while affecting even matrix X = V inside
it, doesn’t degrade the performance. Thus, we proceed with this architectural choice, which allows for one instead of two
element-wise multiplications and can be further optimized by fusing with scaling factor N−1/3.

I.1. Ablation Study on RelPE

Table 13. Ablation on RelPE. Comparison of training and inference speeds (in sequences per seconds) on the LRA’s Pathfinder task.

Model variant Training Speed, (speed-up) Inference Speed (speed-up)

Rotary Embeddings 7025 (1.00x) 16908 (1.00x)
Cosine Embeddings q,k 10276 (1.46x) 28467 (1.68x)
Cosine Embeddings 10438 (1.49x) 29630 (1.75x)

We performed an ablation study on the speed of Cosine RelPE and RoPE, and present the results in the Table 13. Cosine
RelPE are significantly faster in both scenarios. “q, k” in the second row denotes that Cosine RelPE were applied separately
to Q and K matrices like in regular RoPE.

J. Additional Training Details
In this section, we discuss training procedures and hyperparameters for the experiments and ablations conducted in this
work. Additionally, comprehensive configurations for all experiments, and recipes to reproduce them are available at
github.com/andrewargatkiny/dense-attention

We code DenseAttention models in plain PyTorch (Paszke et al., 2019). We train all models using DeepSpeed (Rasley et al.,
2020), with LM and Pathfinder-128 and 256 experiments in multi-node mode. We train in fp16 (LRA experiments) and
bf16 (Language Modeling) precision, using the framework’s native implementation which is similar to NVIDIA’s AMP
(Micikevicius et al., 2018). For all experiments, we use ADAM optimizer (Kingma and Ba, 2015) with decoupled weight
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decay modification (?) using parameters β1 = β2 = 0.9, if not stated otherwise. Most pre-training and finetuning workloads
were conducted on machines with 2 or 4 NVIDIA H100 or A100 GPUs.

We report a median value of nine runs for GLUE and five runs for most of the LRA tasks, except for Pathfinder-128, where
it’s median of three runs due to computational burden. For similar reasons, all experiments and ablations in language
modeling, along with Pathfinder 256 experiment, were performed exactly once. Depending on the implementation, dropout
(Srivastava et al., 2014) is often used in various parts of the block, specifically after FFN and attention sub-blocks as in
original Transformer, and in attention matrix before softmax as in BERT. But we don’t use dropouts during the pre-training
as we believe it won’t slow down the convergence with a large corpora dataset typical for LLM pre-training. Besides, as
noted by (Clark et al., 2019), dropout in attention probabilities might be the reason of redundancies among attention heads.
However, we use dropout extensively in LRA tasks, and in this setting, it’s actually helpful to prevent overfitting early in the
training run.

MLM & CLM. For Masked Language Modeling (MLM) and Causal Language Modeling (CLM), we closely follow
Transformer architectures and training recipes from Devlin et al. (2019); Portes et al. (2023) and Arora et al. (2024),
respectively, including tokenizers and datasets (Wikipedia and BookCorpus (Zhu et al., 2015), C4 (Raffel et al., 2019) for
MLM, and The Pile (Gao et al., 2020) for CLM). Since Arora et al. (2024) use improved architecture, introduced in Llama
paper (Touvron et al., 2023a), which incorporates SwiGLU activation (Shazeer, 2020) and RoPE, we also include them in
DANet-Llama. To get comparable DenseAttention models, we drop-in replace Transformer layers in baselines with DANet
ones. We also reproduce the baselines and compare our DANet-BERT (encoder, MLM model) and DANet-LLama (decoder,
CLM model) with them. In language modeling experiments, we pre-train on sequences with lengths 128, 512, 1024, and
16K for MLM objective, and 2048 for CLM.

Language modeling ablations. Initial experiments with DANet-BERT architecture, including ablations on the number
of heads and use of local attention, and scaling effect study were performed using architecture with learned positional
embeddings and without local attention or SWiGLU FFN, as in the original BERT paper (Devlin et al., 2019). For these
experiments, we also utilized Wiki+Books. All models have approx 335M parameters if not stated otherwise. For the
ablation on the effect of local attention for long range performance (C.3), we used early variations of the DANet model,
pre-trained with weight scaling (detailed below) and other minor architectural differences on 850M sequences of size 128
and 150M sequences of size 512 before resuming pre-training on longer sequences. For the ablation on the number of heads
(Table 3), the models were pre-trained on approx. 40B tokens with sequence length 128 and evaluated on out-of-sample data
from the same data mix.

Weight scaling. During early experiments on pre-training BERT-size models in fp16 format on long contexts without using
local attention, we observed that, in order to further ensure numerical stability, it is beneficial to scale weight matrices of
FFN layers so that they have a constant l∞ norm after each optimizer step during pre-training. After pre-training, each
weight can be merged with its final scaling factor so there is no additional overhead at the inference time. The choice of the
norm type is motivated largely by the bounds it provides for the layer outputs as in the case with the DenseAttention layer.
The scaling factor of a layer is a standalone non-trainable scalar decoupled from its corresponding weight tensor at the train
time. This means that the weight itself doesn’t get re-scaled constantly which would otherwise induce tug-of-war dynamics
with the direction of gradient. This way, the weight also has natural proportions compared to ADAM optimizer’s ((Kingma
and Ba, 2015)) weight update as it would have in the absence of scaling. By employing this technique, we eliminate the
need for weight decay and warmup. We also used constant learning rate 2× 10−4 in all such training runs.

We observed that scaling the Queries weight in the DenseAttention hinders loss convergence speed to a certain degree so we
proceeded with scaling just FFN layers.

However, we found that using bf16 format without weights rescaling leads to faster convergence and proceeded with this
setup for all subsequent language modeling experiments.

LRA & Pathfinder-256. We report main hyperparameters for these benchmarks in Table 14. Models for all tasks are trained
with a linear warm-up for 5-10% of training steps, followed by a constant learning rate. The number of training epochs is
200 for the three Pathfinder tasks and 400 for Image with all of them continuously improving in accuracy till the end of
training, while other tasks saturate after 40-60 epochs. For Pathfinder-128 and 256 tasks, we followed the approach of (Dao
et al., 2022b), except that the first training stage used the simple task version with the same sequence length instead of
hard version of a smaller sequence length task.

GLUE. In all comparisons from Table 4, the size of the models approximately corresponds to BERT-Large (330M-350M
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Table 14. Hyperparameters for LRA tasks. These include inner dimension of the model, number of layers, number of heads, size of
expansion layer in the FFN relative to model dimension, window size, dropout in FFN, learning rate, batch size, and weight decay.

Task Hid. Size Layers Heads FFN size Window DP LR BS WD

Listops 512 9 8 2 20 0.1 1e-3 128 0.1
Text 512 9 8 2 10 0.1 2e-3 100 0.1
Retrieval 128 6 4 4 10 0.05 1e-3 100 0
Image 256 9 4 2 64 0.05 1e-2 100 0.1
Pathfinder 128 6 8 1 256 0.05 1e-3 100 0.1
PathX 128 6 8 1 1024 0.05 1e-2 4000 0.1
Pathfinder-256 128 6 8 1 1024 0.10 1e-2 4000 0.1

parameters), except for MosaicBERT-L (Portes et al., 2023) which has 430M parameters. All models, including DANet-
BERT, were pre-trained on C4 dataset (Raffel et al., 2019), except for BERT-Large from Liu et al. (2019) which was trained
on BookCorpus and Wikipedia. Similarly to MosaicBERT, we used SwiGLU FFN and relative positional embeddings
(but RoPE instead of ALiBI as in Portes et al. (2023)), pre-training on batches of 4096 fixed-size 128 token sequences,
with documents crossing sequence boundaries and no Next Sentence Prediction (NSP) task. We also utilize the Local–
ShiftedLocal–Global scheme with window size w = 32 for this experiment, as we find that it improves modeling quality
even for such small contexts. We pre-trained the base model on 485B tokens for approximately 15 days on 2 H100 GPUs.
Learning rate schedule included 4 stages: 1) linear warmup from 5e-5 to 5e-4 for 11200 steps, 2) linear decay to 1e-4 for
470400 steps, 3) constant learning rate 1e-4 for 308700 steps (we increased Adam β2 to 0.99 and gradually decreased weight
decay from 0.1 to 0.05 and then to 0.02 during this stage), 4) linear decay to 0 for 120800 steps.

The results reported in Table 4 are for the validation set of GLUE. Following previous work (Fu et al., 2023a; Portes et al.,
2023), after the end of stage 4, we fine-tune the original model initially on MNLI dataset for 3 epochs and then use the
obtained checkpoint for further fine-tuning QNLI, QQP, RTE, STS-B, and MRPC tasks. Likewise, after 90100 steps of stage
4, we fine-tune the original model on SST2 for 4 epochs and then use the result for COLA task. We fine-tuned the model
with the identical batch size 32 and no weight decay for all of GLUE tasks up to a maximum of 20 epochs, choosing best
results. The fine-tuning learning rates are constant with no warm-up and decay but different for each task (see Table 15). We
set dropout to 0.05 for all tasks except CoLA and STS-B.

Table 15. DANet-BERT fine-tuning hyperparameters for GLUE tasks

Task CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B

Learning Rate 4e-5 1e-5 5e-5 1e-5 1e-5 2e-5 1e-5 4e-5
AdamW β2 0.99 0.9 0.98 0.9 0.98 0.98 0.9 0.98

K. Proofs
Proof of Proposition 1:

Yij =

N∑
n=1

d∑
m=1

d∑
k=1

XikWkmX⊤
mnXnj

Denote S(i; k;m;n; j) = XikWkmX⊤
mnXnj . Since E[Wkm] = 0 and Wkm is independent from X , E[S(i; k;m;n; j)] = 0

and E[Yij ] =
∑

k,m,n E[S(i; k;m;n; j)] = 0. Hence, Var[S(i; k;m;n; j)] = E[X2
ikW

2
km(X⊤

mn)
2X2

nj ]− 0.

As some of the indices i, k,m, n, j can be the same number, there are three possible options for Var[S(i; k;m;n; j)]:

1. E[x2
1x

2
2x

2
3]E[w2] = σ6

Xσ2
W by independence of all x and w.
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2. E[x4
1x

2
2]E[w2] = E[x4

1]E[x2
2]σ

2
W ≥ σ6

Xσ2
W , because by Jensen’s inequality E[g(x2)] ≥ g(E[x2]) and we let g(f) =

f2.

3. E[x6]E[w2] ≥ σ6
Xσ2

W by similar reasoning (g(f) = f3 is convex on (0,∞)).

Finally, Cov(Sp, Sq) = 0 if the set of indices p is not identically equal to set q because even one distinct index between p
and q leads to independent factors inside the covariance operator. Therefore, Var[Yij ] ≥ Nd2σ6

Xσ2
W . □

Proof of Proposition 2: If we let Xij = a be a degenerate R.V. as in worst case (3), then Var[(XW)pq] = σ2
Wa2d by

C.L.T and properties of variance. In all other cases, from Xij ∈ [−a, a] follows that σ2
Xij

≤ a2 by Popoviciu’s inequality

(Popoviciu, 1935). Then Var[XpjWjq] = σ2
Xpj

σ2
Wjq

≤ a2σ2
W , and Var[(XW)pq] =

∑d
j=1 Var[XpjWjq] ≤ σ2

Wa2d even
if some Xpj is dependent with some Xpj′ , because Cov[σ2

Xpj
σ2
Wjq

;σ2
Xpj′

σ2
Wj′q

] = 0 for j ̸= j′. □
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