
On Margin-Based Cluster Recovery
with Oracle Queries

(Supplementary Material)

Marco Bressan
Dept. of CS, Univ. of Milan, Italy

marco.bressan@unimi.it

Nicolò Cesa-Bianchi
DSRC & Dept. of CS, Univ. of Milan, Italy

nicolo.cesa-bianchi@unimi.it

Silvio Lattanzi
Google

silviol@google.com

Andrea Paudice
Dept. of CS, Univ. of Milan, Italy &
Istituto Italiano di Tecnologia, Italy

andrea.paudice@unimi.it

1 Proof of Lemma 1

Lemma 1 (Convex hull expansion trick). Fix � > 0, and let s = ⇥
�
m5
�
1 + 1/�

�m
log
�
1 + 1/�

��

large enough. Let SC be a sample of s independent uniform random points from some cluster C, and
let K = conv(SC). Let X1, . . . , XN be independent random points sampled "-uniformly from K,
with " 2 ⇥(m�1) small enough and N 2 ⇥(m2) large enough, and let z = 1

N

PN
i=1 Xi. Finally,

let Q = (1 + �)K where the center of the scaling is z. Then P
�
|Q \ C| � |C|/2

�
� 1/2.

Preliminaries. Without loss of generality, we assume that K has full rank (as one can always work
in the subspace spanned by SC , which can be computed in time O(|SC |m)). For technical reasons,
we let # = 1

1+� 2 (0, 1) and prove the lemma for s = ⌦
�

m5

#(1�#)m ln 1
#(1�#)

�
large enough. To see

that any s 2 ⇥
�
m5
�
1 + 1/�

�m
ln
�
1 + 1/�

��
satisfies this assumption, first substitute # to get:

1

#(1� #)m
ln

1

#(1� #)
= (1 + �)

✓
1 + �

�

◆m

ln
(1 + �)2

�
(6)

which is in O
�
(1 + 1/�)m(1 + �) ln(1 + 1/�)

�
. Now note that (1 + �) ln

�
1 + 1/�

�
is bounded by

O
�
� · 1/�

�
= O(1) for � > 1, and by 2 ln

�
1 + 1/�

�
= O

�
ln 1/�

�
when �  1. Hence, in any case

the term (1 + �) ln(1 + 1/�) is in O(ln(1 + 1/�)). Therefore:
�
1 + 1/�

�m
ln
�
1 + 1/�

�
= ⌦

✓
1

#(1� #)m
ln

1

#(1� #)

◆
(7)

as claimed.

Before starting with the actual proof, we introduce some further definitions and notation.
Definition 7. A convex body K ⇢ Rm is in isotropic position4 if it has center of mass in the origin,R
K x dx = 0, and moment of inertia 1 in every direction,

R
K hx, ui2 dx = 1 for all u 2 Sm�1.

We define the norm k · kK = kf(·)k2 where f = fK is the unique affine transformation such that
f(K) is in isotropic position. We let R(K) = supx2K kxk2 denote the Euclidean radius of K, and
we let RK(K) = supx2K kxkK denote the isotropic radius of K. We also let dK(x, y) = kx� ykK
be the isotropic distance of K.

Now, the proof has two steps. First, we show that the point z = 1
N

PN
i=1 Xi is close to the centroid

µK of K, according to dK(·), with good probability. Second, we show that if this is the case, then
4Not to be confused with the definition of Giannopoulos [2003], where the assumption

R
K
hx, ui2 dx = 1 is

replaced by vol(K) = 1.

1



K
# , where the scaling is meant about z, contains a polytope P which contains K and thus SC , and

which belongs to a class with VC dimension O
�

m5

#(1�#)m

�
. By standard PAC bounds this implies that

|P \ C| � 1
2 |C|, with a probability that can be made arbitrarily close to 1 by adjusting the constants.

Step 1: z is close to the centroid of K

Let µK be the center of mass of K. We prove:

Lemma 4. Fix any ⌘, p � 0, and choose any "  ⌘
4(m+1) and N � 16(m+1)2

p2⌘2 . If X1, . . . , XN are
drawn independently and "-uniformly at random from K, and X = 1

NXi, then:

P
�
dK
�
X,µK

�
 ⌘

�
� 1� p (8)

For the proof of Lemma 4, we need two ancillary results.
Lemma 5. RK(K)  m+ 1.

Proof. Consider K in isotropic position, and let K 0 = #K where # = vol(K)�1/m, so that
vol(K 0) = 1. Then, K 0 is in isotropic position according to the definition of Giannopoulos [2003].
In this case, [Giannopoulos, 2003, Theorem 1.2.4] implies R(K 0)  (m+ 1)LK , where LK is the
isotropic constant which, for all u 2 Sm�1, satisfies

R
K0 hx, ui2 dx = L2

K . Since K 0 = #K andR
K hx, ui2 dx = 1 by the isotropy of K, we have LK = #. Hence R(K 0)  (m + 1)#, that is,
R(K)  m+ 1.

Lemma 6. If X is drawn from an "-uniform distribution over K, then kEXkK  2"(m+ 1).

Proof. Since X is "-uniform over K, there exists a coupling (X,Y ) with P(X 6= Y )  " and Y
uniform over K. Since kEY kK = 0, we have:

kEXkK = kE[X � Y ]kK  P(X 6= Y ) sup
x,y2K

dK(x, y)  " 2RK(K)  2"(m+ 1) (9)

where the last inequality is given by Lemma 5.

Proof of Lemma 4. For the sake of the analysis we look at K from its isotropic position. Note that
the Xi are still "-uniform over K, since the affine map that places K in isotropic position preserves
volume ratios. The claim becomes:

P
�
kXk2  ⌘

�
� 1� p (10)

Now, kXk2  kEXk2 + kX � EXk2. Thus, we show that kEXk2  ⌘
2 , and that kX � EXk2  ⌘

2
with probability at least 1� p. For the first part, by Lemma 6, and since "  ⌘

4(m+1) , we obtain:

kEXk2 = kEXik2  2"(m+ 1)  ⌘

2
(11)

For the second part, by Lemma 5 we have kXik2  m+1 for all i. Therefore, if we let Yi = Xi�EXi

for all i, we have kYik2  2(m+ 1) and thus kYik22  4(m+ 1)2. Now let Y = 1
N

PN
i=1 Yi. Since

the Yi are independent and with EYi = 0, then E hYi, Yji = 0 whenever i 6= j and therefore:

EkY k22 = E
✓

1

N2

NX

i,j=1

hYi, Yji
◆

=
1

N2

NX

i=1

EkYik22  4(m+ 1)2

N
(12)

Plugging in our value N � 16(m+1)2

p2⌘2 , and using Jensen’s inequality, we obtain:

�
EkY k2

�2  EkY k22  p2⌘2

4
(13)

Therefore EkY k2  p⌘
2 , which by Markov’s inequality implies that P

�
kY k2 > ⌘

2

�
< p. By noting

that Y = X � EX , the proof is complete.

2



Step 2: showing a tight enclosing polytope

We prove:
Lemma 7. Let z 2 Rm such that dK(z, µK)  1

e � 1
3 . For any # 2 (0, 1) there exists a polytope P

on t = O
�

m2

#(1�#)m

�
vertices such that K ✓ P ✓ K

# , where the scaling is about z.

For the proof, we need some ancillary results.
Theorem 6 (Bertsimas and Vempala [2004], Theorem 3). Let K be a convex set in isotropic position
and z be a point at distance t from its centroid. Then any halfspace containing z contains at least
1
e � t of the volume of K.

Now we adapt a result by Naszódi [2018], recalled here for convenience. We say that a halfspace F
supports a convex body from outside if F intersects the boundary of the body, but not its interior.
Lemma 8 (Lemma 2.1, Naszódi [2018]). Let 0 < # < 1, and F be a halfspace that supports #K
from outside, where the scaling is about µK . Then:

vol(K \ F ) � vol(K) · (1� #)m
1

e
(14)

Our adaptation is:
Lemma 9. Let z 2 Rm, let 0 < # < 1, and let F be a half-space that supports #K from outside,
where the scaling is about z. Then:

vol(K \ F ) � vol(K) · (1� #)m
✓
1

e
� dK(µK , z)

◆
(15)

Proof. The proof is similar to the proof of the original lemma. See Figure 3 for reference. Let
F0 be a translate of F whose boundary contains z, and let K0 = K \ F0. Let F1 be a translate
of F that supports K from outside, and let p 2 F1 \ K. Now consider K 0

0 = #p + (1 � #)K0,
that is, the homothetic copy of K0 with center p and ratio 1 � #. The crucial observation is that
F = #p+(1�#)F0, which implies K 0

0 ⇢ K \F . Clearly vol(K 0
0) = (1�#)m vol(K0). Moreover,

by Theorem 6 we have vol(K0) � vol(K)(1/e � t) where t = dK(µK , z); this holds because
mapping K to its isotropic position preserves volume ratios. This concludes the proof.

#
1�# p

z

F0 F F1

K0

K 0
0

Figure 3: a visual proof of Lemma 9, with d(z, p) = 1 for simplicity.

Proof of Lemma 7. We adapt the construction behind [Naszódi, 2018, Theorem 1.2], by replacing
" = (1�#)m

e with " = (1�#)m

3 . The theorem then says that, if we set:

t =

⇠
C
(m+ 1)3

(1� #)m
ln

3

(1� #)m

⇡
(16)

3



and we let X1, . . . , Xt be t points chosen independently and uniformly at random from K, and let
P = conv(X1, . . . , Xt), then #K ✓ P ✓ K with probability at least 1� p, where

p = 4

 
11C2

✓
(1� #)m

3

◆C�2
!m+1

(17)

Now, we choose C = ⇥( 1# ln 1
# ) large enough. On the one hand, we obtain:

t =

⇠
C
(m+ 1)3

(1� #)m
ln

3

(1� #)m

⇡
= O

✓
m2

#(1� #)m
ln

1

#
ln

1

1� #

◆
(18)

Since # 2 (0, 1), we have ln 1
# ln 1

1�# = ln(1 + 1/x) ln(1 + x) where x = #
1�# > 0. However,

ln(1 + 1/x) ln(1 + x) < 1 for all x > 0. Therefore, t 2 O
�

m2

#(1�#)m

�
. On the other hand, by setting

C large enough we can make C2
� (1�#)m

3

�C�2 arbitrarily small, and therefore p < 1.

Since p < 1, we conclude that there exists a polytope P on t 2 O
�

m2

#(1�#)m

�
vertices such that

#K ✓ P ✓ K. To conclude, instead of P simply take P
# where the scaling is about z.

Wrap-up

First, by Lemma 4, by taking N 2 O(m2) large enough we can make dK(µK , z)  1
e � 1

3 with
probability arbitrarily close to 1. Now let Pt be the family of all polytopes in Rm on at most t
vertices. For t 2 O

�
m2

#(1�#)m

�
large enough, Lemma 7 implies that there exists some P 2 Pt such

that K ✓ P ✓ K
# .

Now we prove that, by choosing s large enough, with probability arbitrarily close to 1 we have
|K# \ C| � 1

2 |C|. First, by a recent result of Kupavskii [2020], we have vc-dim(Pt)  8m2t log2 t.
For our t this yields

vc-dim(Pt) = O
✓
m2 m2

#(1� #)m
ln

m2

#(1� #)m

◆
= O

✓
m5

#(1� #)m
ln

1

#(1� #)

◆
(19)

where in the last equality we used ln m2

#(1�#)m = ln m(2/m)m

#(1�#)m  m ln m2/m

#(1�#) = O
�
m ln 1

#(1�#)

�
.

Hence, by choosing |SC | = s = O
�

m5

#(1�#)m ln 1
#(1�#)

�
large enough, for any constant c, ", � we

can make:

|SC | � c
vc-dim(Pt) ln

1
" + ln 1

�

"
(20)

Since P is consistent with SC , that is, P � SC , then by standard PAC bounds we have |P \ C| �
(1 � ")|C| with probability at least 1 � �. But P ✓ K

# , and therefore |K# \ C| � (1 � ")|C| with
probability at least 1� �. By adjusting the constants this yields the thesis of Lemma 1.

2 Proof of Theorem 1

Theorem 1. Let (X,O) be an instance whose latent clustering C has convex hull margin � > 0.
Then CHEATREC(X,O, �) outputs C, runs in time poly(k, n,m), and with high probability makes a
number of label queries to O bounded by O

�
k2m5 (1 + 1/�)m log(1 + 1/�) log n

�
.

We give the pseudocode of the algorithm for reference. First, we prove the correctness and the query
bound. Then we show the running time bound. Note that, for readability, the pseudocode given here
is high-level; the actual implementation is more complex, see below.

Correctness and query bound. We prove that, at each round, for some i we recover at least half
of the points in Ci with probability 1 � �, where � can be made arbitrarily small by adjusting the
constants. Let Si be the subset of the sample S having label i. Since there are at most k clusters
and |S| = ks, for some i we will have |Si| � s. Now we apply Lemma 1 to K = conv(Si). Since
s satisfies the hypotheses, the lemma says that bCi = Q \X has size |cCi| � |Ci|

2 with probability

4



Algorithm 1 HULLTRICK(K, 1 + �)

let N = ⌦(m2) large enough
let " = O(m�1) small enough
draw N i.i.d. random points X1, . . . , XN from any "-uniform distribution over K
let z = 1

N

PN
i=1 Xi

return z + (1 + �)(K � z)

Algorithm 2 CHEATREC(X,O, �)

while X 6= ; do
let s = O

�
m5
�
1 + 1/�

�m
ln
�
1 + 1/�

��
large enough

draw a uniform random sample S of size min(|X|, ks) from X , without repetition
learn the labels of S with ks queries to O
let Si be the points of S having label i
for i = 1, . . . , k do

K = conv(Si)
Q = HULLTRICK(K, 1 + �)
bCi = Q \X
label all points of bCi with label i
X = X \ bCi

arbitrarily close to 1 (that is, with probability 1 � � as above). It remains to show that cCi ✓ Ci.
Let d be any pseudometric that is homogeneous and invariant under translation. Then, any point
y 2 (1 + �)K \ X satisfies d(y,K)  � �d(K). But K = conv(Si) ✓ conv(Ci). Therefore
�d(K)  �d(Ci). Hence d(y, conv(Ci))  � �d(Ci). By the convex margin assumption, this
implies that y 2 Ci. This also proves the correctness of the algorithm. The total query bound follows
as in Lemma 3 of [Bressan et al., 2020], whose algorithm also recovers an expected fraction 1

4k of all
points in each round.

Running time bound. First, we analyze the running time of CHEATREC excluding the call to
HULLTRICK. Drawing and labeling the samples obviously cost O(n) time throughout the entire
execution. In the main loop, K is actually not computed explicitly — see below. Similarly, Q
is simply a set of points obtained by rescaling Si about some point in space. Thus, computing
bCi = Q \ X and labeling its points boils down to deciding, for all x 2 X , if x can be written
as
P

xj2Qj
�jxj for a set of coefficients �1, . . . ,�|Q| 2 [0, 1]. This can be done with polynomial

precision using any polynomial-time solver for linear programs (say, the ellipsoid method).

Let us now turn to HULLTRICK. The computationally expensive part is drawing N points from an
"-uniform distribution over K = conv(Si). This can be done with any method of choice. Here, we
consider the “hit-and-run from a corner” algorithm of Lovász and Vempala [2006], which implements
a fast mixing random walk whose stationary distribution is uniform over any convex body. We remark
that other methods for computing approximate centers exist, see for example [Basu and Oertel, 2017].

The implementation is as follows. First, we put K in near-isotropic position by computing the
minimum volume enclosing ellipsoid (MVEE) and then applying an affine transformation to make
the MVEE into the ball of unit radius. As shown in [Khachiyan, 1996], this operation takes time
|Si|m2

�
lnm+ ln ln |Si|

�
. After this transformation, let µ be the center of the unit ball that contains

K. Observe that µ is at distance at least 1
m from the boundary of K: this holds since, by John’s

theorem, the ball of radius 1
m centered at µ is entirely contained in K. Now we execute the hit-and-run

from a corner algorithm starting at µ. By the results of Lovász and Vempala [2006], we have the
following bound.
Lemma 10 (See Lovász and Vempala [2006], Corollary 1.2). Assume hit-and-run is started from µ.
For any " > 0, the distribution of the random walk after

t = ⇥
⇣
m5 ln

m

"

⌘

steps is "-uniform over K.

5



It remains to implement the hit-and-run algorithm over K. To this end we need to solve the following
problem: given a generic point x 2 K and a vector u 2 Sn�1, determine the intersection of the ray
{x+ ↵u}↵�0 with the boundary of K. This amounts to solving a linear program that searches for
the maximum value ↵ � 0 such that x+ ↵u can be written as

P
xj2Si

�jxj for a set of coefficients
�1, . . . ,�|Si| 2 [0, 1]. We can solve such an LP in time tK = poly(|Si|,m) with polynomial
precision using any polynomial-time solver for linear programs. The total time to draw the N samples
is therefore:

O
⇣
|Si|m2

�
lnm+ ln ln |Si|

�
+NtK m5 ln

m

"

⌘
(21)

As we set N = O(m2) and " = O(m�1), the total running time of HULLTRICK is:

O
�
|Si|m2

�
lnm+ ln ln |Si|

�
+ tK m7 lnm

�
(22)

which is in poly(|Si|,m) = poly(n,m).

3 Proof of Lemma 2

Lemma 2. For any u 2 R2 let du(x, y) = |hu, x� yi|. For any ⌘ > 0 there exists a clustering
C = (C1, C2) on a set X ⇢ R2 that has arbitrarily large one-versus-all margin with respect to
d(0,1), d(1,0), and yet du(C1, C2)  ⌘ �du(X) for all u 2 R2.

Let u1 = (1, 0) and u2 = (0, 1), and for some constant a independent of ⌘ and to be fixed later,
consider the set X consisting of the four points (see Figure 1):

p1 = ⌘ u1, q1 = a u1 (23)
p2 = ⌘ u2, q2 = a u2 (24)

Finally, let C = (C1, C2) where C1 = {p1, q1} and C2 = {p2, q2}.

Consider the two pseudometrics d1 = d(0,1) and d2 = d(1,0). Then �d1(C1) = 0 and d1(C1, C2) = ⌘,
and vice versa, �d2(C2) = 0 and d2(C1, C2) = ⌘. Thus, the one-versus-all margin of C with respect
to d1, d2 is unbounded.

Now choose any u 2 R2 \ 0. Without loss of generality, by rescaling we can assume u to be a unit
vector. In this case, we have du(C1, C2)  du(p1, p2)  kp1 � p2k2 = ⌘

p
2. Yet, the convex hull

of X contains a ball of radius ⌦(1), and therefore �d(X) = ⌦(1), where the constants depend on a.
Hence, we can make d(C1, C2)  ⌘ �d(X) by choosing a appropriately.

4 Proof of Theorem 2

Theorem 2. If C satisfies ↵-center proximity, then it has one-versus-all margin � � (↵�1)2

2(↵+1) . Hence,

if C satisfies (1 + ")-perturbation stability, then it has one-versus-all margin � � "2

2("+2) .

Consider any cluster Ci with center ci. We must show that any y 2 Cj with j 6= i satisfies d(y, x) >
(↵�1)2

2(↵+1)�d(Ci) for all x 2 Ci. Let x0 = argmaxx2Ci d(x, ci). Clearly, if d(x0, ci) = 0 then all points
of Ci coincide and �d(Ci) = 0. If this is the case, then by the ↵-center proximity, for any x 2 Ci

and any y 2 Cj we have d(y, x) = d(y, ci) > ↵ d(y, cj) � 0. Therefore d(y, x) > a�d(Ci) for any
a > 0, which proves our claim.

Suppose instead that d(x0, ci) > 0. Choose any x 2 Ci and any y 2 Cj . Now, we have two cases.

6



Case 1: x = ci. In this case we proceed as follows. Bear in mind that d(x0, ci) = �d(Ci),
d(y, ci) = d(y, x), and d(y, cj) <

1
↵d(y, ci).

�d(Ci) = d(x0, ci) (25)

<
1

↵
d(x0, cj) (26)

 1

↵

⇣
d(x0, ci) + d(ci, y) + d(y, cj)

⌘
(27)

<
1

↵

✓
�d(Ci) + d(y, x) +

1

↵
d(y, ci)

◆
(28)

=
1

↵
�d(Ci) +

1

↵
d(y, x) +

1

↵2
d(y, x) (29)

from which we infer

d(y, x) >
↵(↵� 1)

↵+ 1
�d(Ci) >

(↵� 1)2

2(↵+ 1)
�d(Ci) (30)

Case 2: x 6= ci. In this case, d(x, ci) > 0, and we start by deriving:

d(y, x) � d(x, cj)� d(y, cj) (31)

> d(x, cj)�
1

↵
d(y, ci) (32)

� d(x, cj)�
1

↵

�
d(y, x) + d(x, ci)

�
(33)

= � 1

↵
d(y, x) + d(x, cj)�

1

↵
d(x, ci) (34)

and thus

d(y, x)

✓
↵+ 1

↵

◆
> d(x, cj)�

1

↵
d(x, ci) (35)

which yields

d(y, x) >
↵

↵+ 1
d(x, cj)�

1

↵+ 1
d(x, ci) (36)

Let � = d(x0,ci)
d(x,ci)

. Observe that �d(Ci)  2�d(x, ci) and therefore d(x, ci) � �d(Ci)
2� .

Now we consider two cases. First, suppose that �  ↵+1
↵�1 . In this case, we apply d(x, cj) > ↵d(x, ci)

to (36) to obtain:

d(y, x) >
↵2

↵+ 1
d(x, ci)�

1

↵+ 1
d(x, ci) (37)

= d(x, ci)(↵� 1) (38)

� �d(Ci)

2�
(↵� 1) (39)

� �d(Ci)
(↵� 1)2

2(↵+ 1)
(40)

Suppose instead that � > ↵+1
↵�1 . Since we chose x0 2 Ci such that d(x0, ci) = �d(x, ci), we obtain:

d(x, cj) > d(x0, cj)� d(x, x0) (41)
> ↵d(x0, ci)�

�
d(x, ci) + d(x0, ci)

�
(42)

= ↵�d(x, ci)�
�
d(x, ci) + �d(x, ci)

�
(43)

= d(x, ci)((↵� 1)� � 1) (44)

7



Combining this with (36), we obtain:

d(y, x) > d(x, ci)

✓
↵

↵+ 1
((↵� 1)� � 1)� 1

↵+ 1

◆
(45)

= d(x, ci)

✓
↵(↵� 1)�

↵+ 1
� 1

◆
(46)

� �d(Ci)

2�

✓
↵(↵� 1)�

↵+ 1
� 1

◆
(47)

= �d(Ci)

✓
↵(↵� 1)

2(↵+ 1)
� 1

2�

◆
(48)

> �d(Ci)

✓
↵(↵� 1)� (↵� 1)

2(↵+ 1)

◆
(49)

= �d(Ci)
(↵� 1)2

2(↵+ 1)
(50)

Hence, in all cases, we obtain d(y, x) > �d(Ci)
(↵�1)2

2(↵+1) . This concludes the proof.

5 Proof of Lemma 3

Lemma 3 (One-versus-all margin implies one-sided-error learnability). Let d be any pseudometric
over X . For any finite X ⇢ X and any � > 0, define the effective concept class over X:

H = {C ✓ X : d(X \ C,C) > � �d(C)} (2)

Then H = I(H), and vc-dim(H,X)  M⇤(�, d) where M⇤(�, d) = max(2,M(�, d)). Therefore,
H can be learned with one-sided error " and confidence � with O

�
"�2(M⇤(�, d) log 1/" + 1/�)

�

examples by choosing the smallest consistent hypothesis in H .

For the first claim, we start by showing that H = I(H). Let C1, C2 2 H . We show that C :=
C1 \ C2 2 H , too. Consider any y 2 X \ C, and without loss of generality assume that y /2 C1.
Since C ✓ C1, we have �d(C1) � �d(C) and d(y, C) � d(y, C1). Moreover, d(y, C1) > � �d(C1)
since C1 2 H . Therefore:

d(y, C) � d(y, C1) > � �d(C1) � � �d(C) (51)

proving that d(y, C) > � �d(C). Since this holds for all y 2 X \ C, we have C 2 H as well.
Therefore, H = I(H).

Since H = I(H), then vc-dim(H,X) = vc-dim(I(H), X). Now, we use the following results
of Kivinen [1995]:
Definition 8. [Kivinen [1995], Definition 5.11] Let X be any domain and H ✓ 2X be a concept
class. We say that H slices X ⇢ X if, for each x 2 X , there is h 2 H such that X \ h = X \ {x}.
The slicing dimension of (H,X ), denoted by sl(H,X ), is the maximum size of a set sliced by H. If H
slices arbitrarily large sets, then we let sl(H,X ) = 1.
Lemma 11 (Kivinen [1995], Lemma 5.19). If sl(H,X ) < 1, then vc-dim(I(H),X )  sl(H,X ).

We will now show that sl(H,X)  M⇤(�, d), where M⇤(�, d) is finite by assumption. By Lemma 11,
this will imply vc-dim(H,X)  sl(H,X).

Let S ✓ X be any set sliced by H . We show that |S|  M⇤(�, d). The case |S|  2 is trivial since
M⇤(�, d) � 2. Suppose then that |S| � 3. Choose a, b 2 S such that d(a, b) = �d(S). Since S is
sliced by H , for any x 2 S we have S \ x = S \ C for some C 2 H . Since S \ x ✓ C, we have
d
�
S \ x, x

�
� d(C, x) and �d(C) � �d(S \ x). Moreover, d(C, x) > � �d(C), since x 2 X \ C

and C 2 H . Therefore:

d
�
S \ x, x

�
� d(C, x) (52)
> � �d(C) (53)
� � �d(S \ x) (54)

8



Hence, d(S \ x, x) > � �d(S \ x) for all x 2 S.

Now, suppose first that � � 1. Since |S| � 3, any x 2 S \ {a, b} yields the absurd:

�d(S) � d(S \ x, x) (55)
> �d(S \ x) since � � 1 (56)
= d(a, b) since a, b 2 S \ x (57)
= �d(S) by the choice of a, b (58)

Hence we must have |S|  2, which implies |S|  M⇤(�, d). Suppose instead that � < 1. Then, for
any two distinct points x, y 2 S, we have d(x, y) > ��d(S). This is trivially true if x = a and y = b;
otherwise, assuming x /2 {a, b}, it follows by the fact that d(x, y) � d(S \ x, x) > ��d(S \ x) =
��d(S), as seen above. Moreover, S is contained in the closed ball B(x,�d(S)) for any x 2 S.
Therefore, M(B(x, r), �r, d) � |S| for r = �d(S) and some x 2 X . By definition of M(�, d) this
implies that |S|  M(�, d), and M(�, d)  M⇤(�, d). This concludes the proof.

6 Proof of Theorem 3

Theorem 3. Let (X,O) be any instance whose latent clustering C has one-versus-all margin � > 0
with respect to d1, . . . , dk. Then MREC(X,O, �, d1, . . . , dk) outputs C while making, with high
probability, at most O(M⇤(�)k log k log n) label queries to O, where M⇤(�) = max(2,M(�)).
Moreover, for any algorithm A and for any � > 0, there are instances with one-versus-all margin �
on which A makes ⌦(M(2�)) label queries in expectation.

For the lower bounds, let �0 = 2�. By definition of M(�0), there exists a set X of M(�0) points that,
according to some d 2 {d1, . . . , dk}, lies within a ball of radius r > 0, and thus has diameter at most
2r, and such that d(x, y) > �0r = 2�r for all distinct x, y 2 X . Now choose x 2 X uniformly at
random, and define C = (x,X \ x). The argument above shows that d(x,X \ x) > ��d(X), which
implies that C has one-versus-all margin �. Clearly, in expectation over the distribution of C, any
exact cluster recovery algorithm must make ⌦(|X|) = ⌦(M(2�)) queries. By Yao’s principle for
Monte Carlo algorithms, then, any such algorithm makes ⌦(M(2�)) queries on some instance.

Let us turn to the upper bounds. The pseudocode of MREC is given below. As in the proof sketch, for
each i 2 [k] the class Hi is defined as:

Hi = {C ✓ X : di(X \ C,C) > � �di(C)} (59)

By Lemma 3 and by definition of learning with one-sided error (Definition 1), we have bCi ✓ Ci and
therefore MREC never misclassifies any point, and moreover:

P
⇣��Ci \ bCi

��  "|X|
⌘
� 1� � (60)

In our case, that is, with " = 1/2k and � = 1/2, and since |Ci \ bCi| = |Ci|� | bCi|, this yields:

P
✓�� bCi

�� � |Ci|�
|X|
2k

◆
� 1

2
(61)

which, since
�� bCi

�� � 0, implies:

E
�� bCi

�� � 1

2
·
✓
|Ci|�

|X|
2k

◆
=

|Ci|
2

� |X|
4k

(62)

By summing over all i 2 [k], at each round MREC correctly labels, and removes from X , an expected
number of points equal to:

E
��� bC1 [ . . . [ bCk

��� =
kX

i=1

E
�� bCi

�� �
kX

i=1

✓
|Ci|
2

� |X|
4k

◆
=

|X|
2

� |X|
4

=
|X|
4

(63)

Thus, at each round MREC gets rid of an expected fraction 1/4 of all points still in X . By a standard
probabilistic argument this implies that, with high probability, all points are correctly labeled within
O(log n) rounds, see Lemma 3 of [Bressan et al., 2020]. Therefore, the total number of queries is
bounded by O(M⇤(�)k log k) with high probability. This concludes the proof.

9



Algorithm 3 MREC(X,O, �, d1, . . . , dk)

if X = ; then return
for each i 2 [k] let Hi as in Equation 59
draw a sample S of |S| = ⇥

�
M⇤(�)k ln k

�
points u.a.r. from X

use O to learn the labels of S
for i 2 [k] do

let Si be the subset of S having label i
let bCi be the smallest set in Hi consistent with Si

give label i to every x 2 bCi

let X 0 = X \ [i2[k]
bCi

MREC(X 0, O, �, d1, . . . , dk)

7 Proof of Theorem 4

As said in the sketch, the proof follows the same ideas of the proof of Theorem 3.

For the lower bounds, suppose that cosl(H) < 1, and let X be a set cosliced by H with |X| =
cosl(H). We draw a random uniform element x 2 X , and we consider the clustering C = (x,X \ x).
By definition of sliced set, C is realised by H, and therefore it satisfies the assumptions. Now the same
arguments of the lower bounds of Theorem 3 imply that any algorithm needs ⌦(|X|) = ⌦(cosl(H))
queries on some instance to return C. Clearly, if cosl(H) = 1 this means that we can take |X| = n
arbitrarily large, whence the second lower bound.

For the upper bounds, let Pk(X) be the set of all k-clusterings of X that are realised by H. Then, for
each i 2 [k] we define:

Hi = {C 0 : C 0 = C 0
i ^ (C 0

1, . . . , C
0
k) 2 Pk(X)} (64)

As in MREC, we learn each class Hi with one-sided error by choosing the smallest hypothesis
in I(Hi) that is consistent with Si, for a labeled sample S of size ⇥(vc-dim(I(Hi), X) k ln k).
As shown in the proof of Lemma 3, a result of Kivinen [1995] implies that if sl(Hi, X) < 1
then vc-dim(I(Hi), X)  sl(Hi, X). Therefore, to prove the theorem we only need to show that
sl(Hi, X)  cosl(H). To this end, suppose that U = {x1, . . . , x`} ✓ X is sliced by Hi. By
construction of Hi, this means that there are ` clusterings C1, . . . , C`, each one realised by H, such
that Ci = ({xi}, U \{xi}) for all i 2 [k]. This implies that U is cosliced by H. Hence, |U |  cosl(H)
and so sl(Hi, X)  cosl(H), as claimed. The rest of the proof is similar to the proof of Theorem 3,
and shows that at each round we recover an expected constant fraction of all points, and that therefore
all points will be recovered with high probability after O(log n) rounds. This shows that we can
recover C by making with high probability at most O(cosl(H)k log k log n) queries.

8 Proof of Theorem 5

Theorem 5. Let H be a concept class in Rm that is non-fractal and closed under affine transforma-
tions. There is an algorithm that, given any instance whose latent clustering C has one-versus-all
margin � and is realized by H, returns C while making O(Mk log k log n) label queries with high
probability, where M = max

�
2, (1 + 4/�)m

�
. Moreover, for any algorithm A, there exist arbitrarily

large n-point instances, whose latent clustering C has arbitrarily small one-versus-all margin and is
realized by H, where A makes ⌦(n) label queries in expectation to recover C.

The upper bound follows from Theorem 3, by using the standard fact that in the Euclidean metric the
unit ball has covering number N (B(x, 1), ")  (1 + 2/")m for all " > 0. As it is well-known, we
have M(B(x, 1), ")  N (B(x, 1), "/2), which for " = � yields M(�)  (1 + 4/�)m.

We now prove the lower bound. Having instances with “arbitrarily small one-versus-all margin”
means that � = 0, see Definition 3. Take any h 2 H such that both h and its complement h contain a
ball of positive radius. Note that this implies that, for any ⇢ > 0, there exists a closed ball B with

10



radius r > 0 such that:

B ✓ h (65)

9x 2 h : d(B, x)  ⇢ (66)

Let c be the center of B. Consider a sphere S of radius r0 that contains x and whose center c0 lies on
the affine subspace x+ ↵(c� x). Let ⌘ = supy2S\B d(x, y) and let X be an ⌘-packing of S. Note
that, since � = 0, we can choose ⇢ and r0 arbitrarily small, and in particular we can make the ratio ⌘

r0

arbitrarily small. This implies that we can make X arbitrarily large, see Figure 4.

c

B

c0x

X

Figure 4: An ⌘-packing X such that X \ h = X \ {x} and X \ h = {x}. The ball B is by
construction entirely in h, whereas x is by construction in h.

Now, consider x0 2 X \ {x}. As by construction d(x0, x) > ⌘, and as r0 < r, we must have
x0 2 B. Therefore, x0 2 h. Hence the concept hx = h is such that X \ hx = X \ {x}. Now,
for any x0 2 X \ {x}, there is a rotation R with fixed point c0 and such that R(x0) = x. Hence,
hx0 = R�1hx is such that X \ hx0 = X \ {x0}. Since R�1 is an affine transformation, hx0 2 H as
well. Hence, for every x 2 X there exists some concept hx 2 H such that X \ hx = X \ {x}.

Now consider the complement h of h. Note that h 2 co(H). The first part of the argument above
can be applied to h as well, showing that for every x 2 X there exists hx 2 co(H) such that
X \ hx = X \ {x}. Now consider the complement hx of hx. Clearly hx 2 H, and moreover,
X \ hx = {x}.

Hence, for any x 2 X there are two concepts h�
x , h

+
x 2 H such that X \ h�

x = X \ {x} and
X \ h+

x = {x}. Hence, every 2-clustering C of X in the form C1 = {x}, C2 = X \ {x} is realized
by H. Note that this holds with X fixed; we just need to transform the concetps appropriately. It is
they immediate to see that any algorithm must perform ⌦(|X|) queries on some instance (X,O). As
we can make X arbitrarily large, this completes the proof.

11


	Introduction
	Preliminaries and notation
	Margin-based exact recovery of clusters in Rm
	CheatRec and the convex hull expansion trick

	The one-versus-all margin
	The one-versus-all-margin captures the stability of center-based clusterings
	Cluster recovery with one-versus-all margin

	One-versus-all clusterings
	The coslicing dimension
	The one-versus-all margin, again!

	Future Work
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Lemma 2
	Proof of Theorem 2
	Proof of Lemma 3
	Proof of Theorem 3
	Proof of Theorem 4

	Proof of Theorem 5



