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Abstract

Machine learning can significantly improve performance for decision-making under uncertainty
in a wide range of domains. However, ensuring robustness guarantees requires well-calibrated
uncertainty estimates, which can be difficult to achieve with neural networks. Moreover,
in high-dimensional settings, there may be many valid uncertainty estimates, each with
their own performance profile—i.e., not all uncertainty is equally valuable for downstream
decision-making. To address this problem, this paper develops an end-to-end framework to
learn uncertainty sets for conditional robust optimization in a way that is informed by the
downstream decision-making loss, with robustness and calibration guarantees provided by
conformal prediction. In addition, we propose to represent general convex uncertainty sets
with partially input-convex neural networks, which are learned as part of our framework.
Our approach consistently improves upon two-stage estimate-then-optimize baselines on
concrete applications in energy storage arbitrage and portfolio optimization.

1 Introduction

Well-calibrated estimates of forecast uncertainty are vital for risk-aware decision-making in many real-
world systems. For instance, grid-scale battery operators forecast electricity prices to schedule battery
charging/discharging to maximize profit, while accounting for forecast uncertainty to mitigate financial or
operational risk. Similarly, financial investors use forecasts of asset returns with uncertainty estimates to
maximize portfolio returns while minimizing downside risk.

Traditional approaches to decision-making under uncertainty often follow an “estimate-then-optimize” (ETO)
paradigm (Chenreddy et al., 2022), in which the uncertainty estimation and decision-making stages are
decoupled. In the “estimation” stage, a predictive model is trained to forecast a target quantity along with
an uncertainty set. In the “optimization” stage, this uncertainty estimate informs a downstream decision.
Crucially, the cost or performance of the downstream decision is typically not fed back into the training of
the predictive model.

A recent line of work (Chenreddy et al., 2022; Patel et al., 2024; Wang et al., 2024; Chenreddy & Delage, 2024)
has made steps toward bridging the gap between uncertainty quantification and robust optimization-driven
decision-making, where optimization problems take a forecast uncertainty set as a parameter, as is common
in energy systems (Yan et al., 2020; Parvar & Nazaripouya, 2022) and financial applications (Gregory et al.,
2011; Quaranta & Zaffaroni, 2008). However, existing approaches are suboptimal for several reasons:

1. Lack of decision-aware training: The predictive model is typically not trained with feedback
from the downstream objective. Because the downstream objective is often asymmetric with respect
to the forecasting model’s errors, prediction models trained with decision-agnostic losses may achieve
high predictive accuracy but still perform poorly on the decision-making objective.

2. Restricted uncertainty set parameterizations: To preserve tractability of the robust opti-
mization problem, uncertainty sets are often constrained to simple parametric forms (e.g., boxes or
ellipsoids), limiting the expressivity of uncertainty estimates.

3. Calibration challenges: Because neural network models are often poor at estimating their own
uncertainty, the forecasts may not be well-calibrated. Recent approaches such as isotonic regression
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Figure 1: Whereas prior “estimate-then-optimize” (ETO, top) approaches separate the model training
from the optimization (decision-making) procedure, we propose a framework for end-to-end (E2E, bottom)
conformal calibration for optimization under uncertainty that directly trains the machine learning model
using gradients from the task loss.

(Kuleshov et al., 2018) and conformal prediction (Shafer & Vovk, 2008) have made progress in
providing calibrated uncertainty estimates from deep learning models, but such methods are typically
applied post-hoc to trained models and are therefore difficult to incorporate into an end-to-end
training procedure.

As such, there is as of yet no comprehensive methodology for training calibrated uncertainty-aware deep
learning models end-to-end with downstream decision-making objectives. In this work, we provide the first
such methodology. We make three specific contributions corresponding to the three issues identified above:

1. We develop a framework for training prediction models end-to-end with downstream
decision-making objectives and conformal-calibrated uncertainty sets in the context
of the conditional robust optimization problem. This framework is illustrated in Figure 1
(bottom). By including differentiable conformal calibration in our model during training, we close
the loop and ensure that feedback from the uncertainty’s impact on the downstream objective is
accounted for in the training process, since not all model errors nor uncertainty estimates will result
in the same downstream cost. This end-to-end training enables the model to focus its learning
capacity on minimizing error and uncertainty on outputs with the largest decision-making cost, with
more leeway for outputs that have lower costs.

2. We propose using partially input-convex neural networks (PICNNs) as the nonconformity
score function for conformal prediction, enabling the approximate parametrization of
arbitrary compact, convex uncertainty sets in the conditional robust optimization
problem. To the best of our knowledge, no existing works use PICNNs to parametrize such arbitrary
convex uncertainty sets. Due to the universal convex function approximation property these networks
enjoy (Chen et al., 2019), this approach enables training much more general representations of
uncertainty than prior works have considered, which in turn yields substantial improvements on
downstream decision-making performance. Importantly, PICNNs are well-matched to our conditional
robust optimization problem: we show that the robust problem resulting from this parametrization
can be reformulated as a tractable convex optimization problem.

3. We propose an exact and computationally efficient method to differentiate through the
conformal prediction procedure during training. Unlike prior work (Stutz et al., 2022), our
method gives exact gradients, without using approximate ranking and sorting methods.

Finally, we extensively evaluate the performance of our approach on two applications: an energy storage
arbitrage task and a portfolio optimization problem. We demonstrate conclusively that the combination of
end-to-end training with the flexibility of the PICNN-based uncertainty sets consistently improves over ETO
baseline methods. The performance benefit of our end-to-end method is apparent even under distribution
shift.
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2 Problem Statement and Background

Our problem is defined formally as follows: suppose that data (x, y) ∈ Rm × Rn is sampled i.i.d. from an
unknown joint distribution P. Upon observing the input x (but not the label y), an agent makes a decision
z ∈ Rp. After the decision is made, the true label y is revealed, and the agent incurs a task loss f(x, y, z), for
some known task loss function f : Rm × Rn × Rp → R. In addition, the agent’s decision must satisfy a set of
joint constraints g(x, y, z) ≤ 0 coupling x, y, and z.

As an illustrative example, consider an agent who would like to minimize the costs of charging and discharging
a battery over 24 hours in a day. The agent may use weather forecasts and historical observations x to
predict future energy prices y. Based on the predicted prices, the agent decides on the amount z to charge or
discharge the battery. The task loss f is the cost incurred by the agent, and the constraints g include limits
on how fast the battery can charge as well as the maximum capacity of the battery. This example is explored
in more detail in Section 5.

Because the agent does not observe the label y prior to making its decision, ensuring good performance and
constraint satisfaction requires that the agent makes decisions z that are robust to the various outcomes of y.
A common objective is to choose z to robustly minimize the task loss and satisfy the constraints over all
realizations of y within a (1 − α)-confidence region Ω(x) ⊂ Rn of the true conditional distribution P(y | x),
where α ∈ (0, 1) is a fixed risk level based on operational requirements. In this case, the agent’s robust
decision can be expressed as the optimal solution to the following conditional robust optimization (CRO)
problem (Chenreddy et al., 2022):

z⋆(x) := arg min
z∈Rp

max
ŷ∈Ω(x)

f(x, ŷ, z) s.t. g(x, ŷ, z) ≤ 0. (1)

After the agent decides z⋆(x), the true label y is revealed, and the agent incurs the task loss f(x, y, z⋆(x)).
Thus, the agent seeks to minimize expected task loss

E(x,y)∼P [f(x, y, z⋆(x))] . (2)

While the joint distribution P is unknown, we assume that we have a dataset D = {(xi, yi)}N
i=1 of i.i.d. samples

from P . Then, our objective is to train a machine learning model to learn an approximate (1 − α)-confidence
set Ω(x) of possible y values for each input x. Formally, our learned Ω(x) should satisfy the following marginal
coverage guarantee.
Definition 2.1 (marginal coverage). An uncertainty set Ω(x) for the distribution P provides marginal
coverage at level (1 − α) if P(x,y)∼P (y ∈ Ω(x)) ≥ 1 − α.

Comparison to related work. The problem of constructing data-driven and machine-learned uncertainty
sets with probabilistic coverage guarantees for use in robust optimization has been widely explored in prior
literature (e.g., Bertsimas & Thiele (2006); Bertsimas et al. (2018); Alexeenko & Bitar (2020); Goerigk
& Kurtz (2023)). Chenreddy et al. (2022) first coined the phrase “conditional robust optimization” for
the problem (1) and considered learning context-dependent uncertainty sets Ω(x) in this setting. However,
their approach results in a mixed integer optimization that is intractable to solve for large-scale problems.
Moreover, they follow the “estimate then optimize” (ETO) paradigm (Elmachtoub et al., 2023). As shown
in Figure 1 (top), the ETO paradigm separates the machine learning model training from the decision
optimization. The lack of feedback from the downstream task loss during model training in ETO generally
leads to uncertainty sets Ω(x) which yield suboptimal results. Several other recent papers follow the ETO
paradigm using homoskedastic ellipsoidal uncertainty sets (Johnstone & Cox, 2021), heteroskedastic box and
ellipsoidal uncertainty sets (Sun et al., 2023), and a “union of balls” parametrization of uncertainty (Patel
et al., 2024). Kiyani et al. (2025) considers the ETO setting for classification problems, producing discrete
uncertainty sets. In our experiments (Section 5), we demonstrate consistent improvements over the methods
of Johnstone & Cox (2021) and Sun et al. (2023).

Closest to our work is an “end-to-end” formulation of the CRO problem posed by Chenreddy & Delage (2024),
which aims to learn conditional uncertainty sets Ω(x) using a weighted combination of the downstream task
loss along with a “conditional coverage loss” to promote calibrated uncertainty. However, they focus solely on
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ellipsoidal uncertainty sets, and their conditional coverage loss does not provably ensure coverage for their
learned uncertainty sets. In our experiments, we do not compare against Chenreddy & Delage (2024) because
we only consider other methods with a provable coverage guarantee.1

A concurrent related work by Wang et al. (2024) approaches the problem of learning unconditional uncertainty
sets for robust optimization, while achieving finite sample robust constraint satisfaction guarantees. While
their method also uses an end-to-end task loss, we find their use of the same uncertainty set Ω for every
problem instance (i.e., Ω is independent of x) to be highly restrictive and unrealistic. For example, in the
context of our battery control problem, this restriction would disallow the use of weather forecasts and
historical price data to estimate uncertainty in future energy prices. Moreover, they also use restrictive
uncertainty set parametrizations such as box, ellipsoidal, and polyhedral uncertainty.

In contrast, our work overcomes these limitations: we incorporate differentiable conformal calibration during
training to ensure that uncertainty is learned end-to-end in a manner that is both calibrated and minimizes
task loss. We apply split conformal post-hoc calibration during inference for provable guarantees on coverage.
Furthermore, we use partially input-convex neural networks (Amos et al., 2017) to directly parameterize
the nonconformity score function in conformal prediction, enabling a general and expressive representation
of arbitrary conditional convex uncertainty regions that can vary with x and be used efficiently in robust
optimization.

Beyond the above closely related work, this paper builds upon and contributes to several different areas in
machine learning and robust optimization; see Appendix B for a comprehensive discussion.

3 End-to-End Training of Conformally Calibrated Uncertainty Sets

In this section, we describe our proposed methodological framework for end-to-end task-aware training of
predictive models with conformally calibrated uncertainty for the conditional robust optimization problem
(1). Our overarching goal is to learn uncertainty sets Ω(x) which provide (1 − α) coverage for any choice of
α ∈ (0, 1), and which offer the lowest possible task loss (2). To this end, we must consider three primary
questions:

1. How should the family of uncertainty sets Ω(x) be parametrized?
2. How can we guarantee that the uncertainty set Ω(x) provides coverage at level 1 − α?
3. How can the uncertainty set Ω(x) be learned to minimize expected task loss?

Figure 1 (bottom) illustrates the key parts of our framework to answer these questions. First, we use a
machine learning model to parametrize a nonconformity score function sθ, and we define the uncertainty set
Ω(x) to be a q-sublevel set of sθ(x, ·). Second, we use conformal calibration to pick q to enforce marginal
coverage. Third, we backpropagate gradients through both the robust optimization and conformal calibration
steps to update the machine learning model, thereby enabling end-to-end learning. Sections 3.1 to 3.3 describe
each of these parts in detail, and Algorithm 1 shows pseudocode for both training and inference.

For the rest of the paper, we make the following assumptions on the functions f and g to ensure tractability
of the resulting optimization problem.
Assumption 3.1. We assume the task loss has the form f(x, y, z) = y⊤F (x, z) + f̃(x, z), where F (x, z) is
an affine function of z and f̃(x, z) is convex in z. Furthermore, we assume that g(x, y, z) = g(x, z) does not
depend on y and that g is convex in z.

3.1 Representations of the uncertainty set

We consider convex uncertainty sets of the form

Ωθ(x) = {ŷ ∈ Rn | sθ(x, ŷ) ≤ q} , (3)

1As of the time of writing, the approach of Chenreddy & Delage (2024) also suffers from substantial inconsistencies between
their code implementation and the equations from their paper. In particular, the conditional coverage loss proposed in their
paper is not implementable, as it will (almost surely) yield zero gradients.
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where sθ : Rm × Rn → R is an arbitrary nonconformity score function that is convex in ŷ, q is a scalar,
and θ collects the parameters of a model that we will seek to learn. Note that this representation loses no
generality; any family of convex sets Ω(x) can be represented as such a collection of sublevel sets of a partially
input-convex function s(x, ŷ). This particular representation is chosen due to the ease of calibrating sets of
this form via conformal prediction to ensure marginal coverage, as we will describe in Section 3.2.

In choosing a particular score function sθ, one must balance two considerations: first, the generality of the
sets Ωθ(x) that sθ can represent, and second, the tractability of the resulting robust optimization problem
(1). We will now show that our representation (3) generalizes commonly-used box and ellipsoidal uncertainty
sets, which are known to have tractable robust problems; later, in Section 4, we will propose to approximate
more general convex uncertainty sets using partially input-convex neural networks.

Box uncertainty sets. A simple uncertainty representation is box uncertainty where Ω(x) = [y(x), y(x)]
is an n-dimensional box whose lower and upper bounds depend on x. Let hθ : Rm → Rn × Rn be a neural
network that estimates lower and upper bounds: hθ(x) = (hlo

θ (x), hhi
θ (x)). To represent a box uncertainty

set in the form (3), we define a nonconformity score function that generalizes scalar conformalized quantile
regression (Romano et al., 2019):

sθ(x, y) = max(
∥∥hlo

θ (x) − y
∥∥

∞ ,
∥∥y − hhi

θ (x)
∥∥

∞).

Then, the uncertainty set (3) becomes

Ωθ(x) =
[
hlo

θ (x) − q1, hhi
θ (x) + q1

]
=:

[
y(x), y(x)

]
.

Given a box uncertainty set Ωθ(x), we can take the dual of the inner maximization problem (see Appendix C.1)
to transform the robust optimization problem (1) into an equivalent form that is convex, and hence tractable,
under Assumption 3.1:

z⋆
θ (x) = arg min

z∈Rp

min
ν∈Rn

(y(x) − y(x))⊤ν + y(x)⊤F (x, z) + f̃(x, z)

s.t. ν ≥ 0, ν − F (x, z) ≥ 0, g(x, z) ≤ 0.
(4)

Ellipsoidal uncertainty sets. Another common form of uncertainty set is ellipsoidal uncertainty. Suppose
a neural network model hθ : Rm → Rn ×Sn

+ predicts mean and covariance parameters hθ(x) = (µθ(x), Σθ(x)),
so that P̂(y | x; θ) = N (y | µθ(x), Σθ(x)) denotes a predicted conditional density, where N (· | µ, Σ) is the
multivariate normal density function. In this case, we define the nonconformity score function based on the
squared Mahalanobis distance (Johnstone & Cox, 2021; Sun et al., 2023)

sθ(x, y) = (y − µθ(x))⊤(Σθ(x))−1(y − µθ(x)),

which yields uncertainty sets (3) that are ellipsoidal:

Ωθ(x) = {ŷ | (ŷ − µθ(x))⊤(Σθ(x))−1(ŷ − µθ(x)) ≤ q}.

Let Lθ(x) denote the unique lower-triangular Cholesky factor of Σθ(x) (i.e., Σθ(x) = Lθ(x)Lθ(x)⊤). Taking
the dual of the inner maximization problem and invoking strong duality (see Appendix C.2), we transform
the robust optimization problem (1) into an equivalent form that is convex, and hence tractable, under
Assumption 3.1:

z⋆
θ (x) = arg min

z∈Rp

√
q∥Lθ(x)⊤F (x, z)∥2 + µθ(x)⊤F (x, z) + f̃(x, z)

s.t. g(x, z) ≤ 0,
(5)

3.2 Conformal uncertainty set calibration

As long as the uncertainty set Ωθ(x) can be expressed in the form (3), we can use the split conformal
prediction procedure at inference time to choose a value q that ensures Ωθ(x) provides marginal coverage
(Definition 2.1) at any confidence level 1 − α. The split conformal procedure assumes access to a calibration
dataset Dcal = {(xi, yi)}M

i=1 drawn exchangeably from P. We refer readers to Angelopoulos et al. (2023) for
details on this procedure.
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Algorithm 1 End-to-end conformal calibration for robust decisions under uncertainty
function Train(training data D = {(xi, yi)}N

i=1, uncertainty level α, initial model parameters θ)
for mini-batch B ⊂ {1, . . . , N} do

Randomly split batch: B = (Bcal, Bpred)
Compute q = Quantile({sθ(xi, yi)}i∈Bcal , 1 − α)
for i ∈ Bpred do

Solve for robust decision z⋆
θ (xi) using (4), (5), or (7)

Compute gradient of task loss: dθi = ∂f(xi, yi, z⋆
θ (xi))/∂θ

Update θ using gradients
∑

i∈Bpred
dθi

function Inference(model parameters θ, calibration data Dcal = {(xi, yi)}M
i=1, uncertainty level α, input x)

Compute q = Quantile({sθ(x̃, ỹ)}(x̃,ỹ)∈Dcal , 1 − α)
return robust decision z⋆

θ (x) using (4), (5), or (7)
function Quantile(scores S = {si}M

i=1, level β)
s(1), . . . , s(M+1) = SortAscending(S ∪ {+∞})
return s(⌈(M+1)β⌉)

Lemma 3.2 (from Angelopoulos et al. (2023), Appendix D). Let Dcal = {(xi, yi)}M
i=1 be a calibration dataset

drawn exchangeably (e.g., i.i.d.) from P, and let si = sθ(xi, yi). If q = Quantile({si}M
i=1, 1 − α) (see

Algorithm 1) is the empirical ⌈(M+1)(1−α)⌉
M -quantile of the set {si}M

i=1 and (x, y) is drawn exchangeably with
Dcal, then Ωθ(x) has the marginal coverage guarantee

1 − α ≤ Px,y,Dcal(y ∈ Ωθ(x)) ≤ 1 − α + 1
M + 1 .

We use split conformal prediction, rather than full conformal prediction, both for computational tractability
and to avoid the problem of nonconvex uncertainty sets that can arise from the full conformal approach,
as noted in Johnstone & Cox (2021). For the rest of this paper, we assume α ∈ [ 1

M+1 , 1) so that q =
Quantile({si}M

i=1, 1 − α) < ∞ is finite. Thus, for appropriate choices of the score function sθ, the
uncertainty set Ωθ(x) is not unbounded.

While the split conformal prediction procedure in Lemma 3.2 ensures that the uncertainty set Ωθ(x) satisfies
(1 − α) coverage at inference time, this process does not address the question of training the uncertainty
set Ωθ(x) (via the score function sθ) to ensure optimal task performance while maintaining coverage. In
Section 3.3, we propose applying a separate differentiable conformal prediction procedure during training to
address this challenge.

3.3 End-to-end training and calibration

Thus far, we have discussed how to calibrate an uncertainty set Ωθ(x) of the form (3) to ensure coverage, and
we described two choices of score function sθ parametrizing common box and ellipsoidal uncertainty sets.
However, to ensure that the uncertainty sets Ωθ(x) both guarantee coverage and ensure optimal downstream
task performance, it is necessary to design an end-to-end training methodology that can incorporate both
desiderata in a fully differentiable manner. We propose such a methodology in Algorithm 1.

Our end-to-end training approach minimizes the empirical task loss ℓ(θ) = 1
N

∑N
i=1 ℓi(θ) using minibatch

gradient descent, where ℓi(θ) = f(xi, yi, z⋆
θ (xi)). This requires differentiating through both the robust

optimization problem as well as the conformal prediction step. The gradient of the task loss on a single
instance is dℓi

dθ = ∂f
∂z (xi, yi, z⋆

θ (xi)) · ∂z⋆
θ

∂θ (xi), where ∂z⋆
θ

∂θ (xi) is computed by differentiating through the
Karush–Kuhn–Tucker (KKT) conditions of the convex reformulation of the optimization problem (1) (i.e.,
the problems (4), (5)) following the approach of Amos & Kolter (2017), under mild assumptions on the
differentiability of f and g. Note that the gradient of any convex optimization problem can be computed
with respect to its parameters as such (Agrawal et al., 2019, Appendix B).

To include calibration during training, we assume that for every (x, y) in our training set, sθ(x, y) is
differentiable w.r.t. θ almost everywhere; this assumption holds for common nonconformity score functions,
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Figure 2: Consider a robust portfolio optimization problem with 2 assets, where y ∈ R2 is a random vector of
asset returns, and the decision z ∈ R2 represents portfolio weights: maxz minŷ∈Ω −z⊤ŷ s.t. z ≥ 0, 1⊤z ≤ 1.
Let the distribution of asset returns y be uniform over 3 discrete points (black). The optimal box (blue),
ellipse (orange), and PICNN (green) uncertainty sets are shown with their robust decision vectors z⋆. The
flexibility of the PICNN uncertainty representation allows it to achieve the lowest expected task loss.

including those used in this paper. We then adopt the conformal training approach (Stutz et al., 2022)
in which a separate q is chosen in each minibatch, as shown in Algorithm 1. The chosen q depends on
θ (through sθ), and z⋆

θ (xi) depends on the chosen q. Therefore ∂z⋆
θ

∂θ involves calculating ∂z⋆
θ

∂q
∂q
∂θ , where ∂q

∂θ

requires differentiating through the empirical quantile function. Whereas Stutz et al. (2022) uses a smoothed
approximate quantile function for calculating q, we find the smoothing unnecessary, as the gradient of the
empirical quantile function is unique and well-defined almost everywhere. Importantly, our exact gradient
is both more computationally efficient and simpler to implement than the smoothed approximate quantile
approach. See Appendix D for more details.

After training has concluded and we have performed the final conformal calibration step, the resulting model
enjoys the following theoretical guarantee on performance (cf. Sun et al. (2023, Proposition 1)).
Proposition 3.3. Under the same assumptions as Lemma 3.2, the task loss satisfies the following bound
with probability at least 1 − α (over x, y, and the calibration set Dcal):

f(x, y, z⋆
θ (x)) ≤

(
min
z∈Rp

max
ŷ∈Ωθ(x)

f(x, ŷ, z) s.t. g(x, ŷ, z) ≤ 0
)

.

Proof. This result is an immediate consequence of the split conformal coverage guarantee of Lemma 3.2,
which ensures that for the true (x, y) ∼ P , Px,y,Dcal(y ∈ Ωθ(x)) ≥ 1 − α, despite the fact that the distribution
P(y | x) is unknown. The realized task loss will thus, with probability at least 1 − α, improve on the optimal
value of the robust problem (1).

4 Representing General Convex Uncertainty Sets via PICNNs

The previous section discussed how to train calibrated box and ellipsoidal uncertainty sets end-to-end to
optimize the downstream task loss. However, both box and ellipsoidal uncertainty sets have restrictive shapes
which may yield suboptimal task performance. If Ωθ(x) could represent any arbitrary convex uncertainty set,
this more expressive class would enable obtaining better task loss. Figure 2 illustrates an example where a
general convex uncertainty set representation provides a clear advantage over box and ellipsoid uncertainty.

To this end, we propose to directly learn a partially-convex nonconformity score function sθ : Rm × Rn → R
that is convex only in the second input vector. Fixing x, any q-sublevel set {ŷ ∈ Rn | sθ(x, ŷ) ≤ q} of sθ

is a convex set, and likewise every family of convex sets can be expressed as the q-sublevel sets of some
partially-convex function. To implement this approach, we are faced with two questions.

1. How should we parametrize the score function sθ so Ωθ(x) can approximate arbitrary convex sets? A
natural answer is to parametrize sθ with a partially input-convex neural network (PICNN) (Amos et al.,
2017), which can efficiently approximate any partially-convex function (Chen et al., 2019). We consider a
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PICNN defined as sθ(x, y) = WLσL + VLy + bL, where

σ0 = 0, u0 = x, Wl = W̄l diag([Ŵlul + wl]+)
ul+1 = ReLU (Rlul + rl) , Vl = V̄l diag(V̂lul + vl)
σl+1 = ReLU (Wlσl + Vly + bl) , bl = B̄lul + b̄l,

(6)

with weights θ = (Rl, rl, W̄l, Ŵl, wl, V̄l, V̂l, vl, B̄l, b̄l)L
l=0. The matrices W̄l are constrained to be entrywise

nonnegative to ensure convexity of sθ with respect to y. For ease of notation, we assume all hidden layers
σ1, . . . , σL have the same dimension d.

2. Does the chosen parametrization of Ωθ(x) (via PICNNs) yield a tractable reformulation of the CRO
problem (1)? Fortunately, we show in the following theorem that the answer is yes.
Theorem 4.1. Let Ωθ(x) = {ŷ ∈ Rn | sθ(x, ŷ) ≤ q}, where sθ is a PICNN as defined in (6). Then, under
Assumption 3.1, the CRO problem (1) with uncertainty set Ωθ(x) is equivalent to the following convex (and
hence tractable) minimization problem:

z⋆
θ (x) = arg min

z∈Rp

min
ν∈R2Ld+1

b(θ, q)⊤ν + f̃(x, z)

s.t. A(θ)⊤ν =
[
F (x, z)

0

]
, ν ≥ 0, g(x, z) ≤ 0

(7)

where A(θ) ∈ R(2Ld+1)×(n+Ld) and b(θ, q) ∈ R2Ld+1 are constructed from the weights θ of the PICNN (6),
and b also depends on q.

We prove Theorem 4.1 in Appendix C.3; the main idea is that when Ωθ(x) is a sublevel set of a PICNN, we
can equivalently reformulate the inner maximization problem in (1) as a linear program and take the dual to
yield a tractable minimization problem.

Since the PICNN uncertainty sets are of the same form as (3) and yield a tractable convex reformulation (7)
of the CRO problem (1), we can apply the split conformal procedure detailed in Section 3.2 to choose q ∈ R
and obtain coverage guarantees on Ωθ(x), and we can employ the same end-to-end training methodology
from Section 3.3 to train calibrated uncertainties end-to-end using the downstream task loss. In some cases
during training, the inner maximization problem of (1) with PICNN-parametrized uncertainty set may be
unbounded (if Ωθ(x) is not compact) or infeasible (if the chosen q is too small causing Ωθ(x) to be empty).
This will lead, respectively, to an infeasible or unbounded equivalent problem (7). We can avoid this concern
by adjusting the PICNN architecture to ensure its sublevel sets are compact and by suitably increasing q
when needed to ensure Ωθ(x) is never empty. Such modifications do not change the general form of the
problem (7) and preserve the marginal coverage guarantee for the uncertainty set Ωθ(x); see Appendix C.4
for details.

5 Experiments

In this section, we present experimental results for our E2E method against several ETO baselines. Code to
reproduce our results are provided in the supplementary materials.

5.1 Problem descriptions

We consider two tasks: price forecasting for battery storage operation and portfolio optimization. Their task
loss functions and constraints satisfy Assumption 3.1.

Price forecasting for battery storage. This problem comes from Donti et al. (2017), where a grid-scale
battery operator predicts electricity prices y ∈ RT over a T -step horizon and uses the predicted prices to
decide a battery charge/discharge schedule for price arbitrage. The input features x include the past day’s
prices and temperature, the next day’s energy load forecast and temperature forecast, binary indicators of
weekends or holidays, and yearly sinusoidal features. The operator decides how much to charge (zin ∈ RT ) or
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discharge (zout ∈ RT ) the battery, which changes the battery’s state of charge (zstate ∈ RT ). The battery
has capacity B, charging efficiency γ, and maximum charging/discharging rates cin and cout. The task loss
function represents the multiple objectives of maximizing profit, flexibility to participate in other markets
by keeping the battery near half its capacity (with weight λ), and battery health by discouraging rapid
charging/discharging (with weight ϵ):

f(y, z) =
T∑

t=1
yt(zin − zout)t + λ

∥∥∥∥zstate − B

2 1
∥∥∥∥2

+ ϵ
∥∥zin∥∥2 + ϵ

∥∥zout∥∥2
.

The constraints are, for all t = 1, . . . , T ,

zstate
0 = B/2, zstate

t = zstate
t−1 − zout

t + γzin
t ,

0 ≤ zin ≤ cin, 0 ≤ zout ≤ cout, 0 ≤ zstate
t ≤ B.

Following Donti et al. (2017), we set T = 24, B = 1, γ = 0.9, cin = 0.5, cout = 0.2, λ = 0.1, and ϵ = 0.05.

Portfolio optimization. We adopt the portfolio optimization setting and synthetic dataset from Chenreddy
& Delage (2024), where the prediction targets y ∈ Rn are the returns of a set of n securities, and the decision
z ∈ Rn sets portfolio weights. The task loss is f(y, z) = −y⊤z, with constraints z ≥ 0, 1⊤z = 1. The synthetic
dataset consists of (x, y) ∈ R2×2 drawn from a mixture of three 4-D multivariate normal distributions. We
provide data details in Appendix E.2 and experimental results in Appendix A.2. The results are similar to
those for battery storage, except that portfolio optimization is a lower dimensional and easier problem.

5.2 Baseline methods

We implemented several “estimate-then-optimize” (ETO) baselines, listed below, to compare against our
end-to-end (E2E) method. These two-stage ETO baselines are trained using task-agnostic losses such as
pinball loss or negative log-likelihood (NLL). To ensure a fair comparison against our E2E method, we also
apply conformal calibration to each ETO method after training to satisfy coverage.

• ETO denotes models with identical neural network architectures to our E2E models, differing only in
the loss function during training. The box uncertainty ETO model is trained with pinball loss to predict
the α

2 and 1− α
2 quantiles. The ellipsoidal uncertainty ETO model is trained with a multivariate normal

negative log-likelihood loss. For the PICNN ETO model, we train sθ using a negative log-likelihood
loss by interpreting sθ as an energy function—i.e., P̂θ(y | x) ∝ exp(−sθ(x, y))—yielding the loss
NLL(θ) = ln sθ(x, y) + ln Zθ(x), where Zθ(x) =

∫
ỹ∈Rn exp(−sθ(x, ỹ)) dỹ, following the approach of

Lin & Ba (2023). More details of the ETO models are given in Appendix E.
• ETO-SLL is our implementation of the box and ellipsoid uncertainty ETO methods from Sun et al.

(2023). Unlike ETO, ETO-SLL first trains a point estimate model (without uncertainty) with mean-
squared error loss. Then, ETO-SLL box and ellipsoidal uncertainty sets are derived from training a
separate quantile regressor using pinball loss to predict the (1 − α)-quantiles of absolute residuals or
ℓ2-norm of residuals of the point estimate. Unlike ETO which can learn ellipsoidal uncertainty sets
with different covariance matrices for each input x, the ETO-SLL ellipsoidal uncertainty sets all share
the same covariance matrix (up to scale).

• ETO-JC is our implementation of the ellipsoid uncertainty ETO method by Johnstone & Cox (2021).
Like ETO-SLL, ETO-JC also first trains a point estimate model (without uncertainty) with mean-
squared error loss. ETO-JC uses the same covariance matrix (with the same scale) for each input
x.

5.3 Battery storage problem results

Figure 3 (top) compares task loss performance for different uncertainty levels (α ∈ {.01, .05, .1, .2}) and the
different uncertainty set representations for the ETO baselines against our proposed E2E methodology on
the battery storage problem with no distribution shift. Our E2E approach consistently yields improved
performance over all ETO baslines, for all three uncertainty set parametrizations, and over all tested
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Figure 3: Task loss performance (mean ±1 stddev across 10 runs) for the battery storage problem with no
distribution shift (top) and with distribution shift (bottom). Lower values are better.
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Figure 4: Coverage (mean ±1 stddev across 10 runs) for the battery storage problem with no distribution
shift (top) and with distribution shift (bottom). The dotted black line indicates the target coverage level
1 − α. Our E2E models achieve similar coverage to the ETO baselines, confirming that the lower task loss of
our E2E models does not come at the expense of worse coverage.

uncertainty levels α. Moreover, the PICNN uncertainty representation, when trained end-to-end, provides up
to 42% relative improvement in performance over the best ETO box uncertainty set and up to 209% relative
improvement over the best ETO ellipse uncertainty set. We additionally show the corresponding coverage
obtained by the learned uncertainty sets in Figure 4 (top); all models obtain coverage close to the target
level, confirming that the improvements in task loss performance from our E2E approach do not come at the
cost of worse coverage.
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5.4 Performance under distribution shift

The aforementioned results were produced without distribution shift, where our training and test sets were
sampled uniformly at random, thus ensuring exchangeability and guaranteeing marginal coverage. In this
section, we evaluate our method on the more realistic setting with distribution shift by splitting our data
temporally; our models are trained on the first 80% of days and evaluated on the last 20% of days. Figures 3
(bottom) and 4 (bottom) mirror Figures 3 (top) and 4 (top), except that there is now distribution shift.
We again find that our E2E approach consistently yields improved performance over all ETO baselines, for
all three uncertainty set parametrizations, and for all tested uncertainty levels α. Likewise, the PICNN
uncertainties, when trained end-to-end, improve on the performance offered by box and ellipsoidal uncertainty.
We find unsurprisingly that, under distribution shift, the models do not provide the same level of coverage
guaranteed in the i.i.d. case, as the exchangeability assumption needed for conformal prediction no longer
holds. The ellipsoidal and PICNN models tend to provide worse coverage than the box uncertainty, which
we believe reflects how ellipsoidal and PICNN uncertainty sets offer greater representational power, and
thus might be fitting too closely to the pre-shift distribution, which impacts robustness under distribution
shift. Devising methods to anticipate distribution shift when training these more expressive models, and in
particular the PICNN-based uncertainty, remains an interesting avenue for future work.

6 Conclusion

In this work, we develop the first end-to-end methodology for training predictive models with uncertainty
estimates (with calibration enforced differentiably throughout training) that are utilized in downstream
conditional robust optimization problems. We demonstrate an approach utilizing partially input-convex neural
networks (PICNNs) to represent general convex uncertainty regions, and we perform extensive experiments
on a battery storage application and a portfolio optimization task. Whereas prior works on two-stage
estimate-then-optimize approaches emphasized “the convenience brought by the disentanglement of the
prediction and the uncertainty calibration” (Sun et al., 2023), our results highlight that such “convenience”
comes at a substantial cost; our end-to-end approach, combined with the expressiveness of the PICNN
representation, has clear performance gains over the traditional two-stage methods.

A number of interesting directions for future work on learning decision-aware uncertainty in an end-to-end
manner remain. First, while our PICNN-based uncertainty set representation allows the parametrization
of general convex uncertainty sets, future work may explore nonconvex uncertainty regions. Doing so may
require eschewing the analytical methods for differentiating through convex optimization problems and instead
use, e.g., policy gradient methods for passing gradients through general stochastic and robust optimization
problems. Second, developing end-to-end methods to target conditional calibration (as opposed to marginal
calibration) remains an active research direction. Finally, one may explore other types of constraints besides
uncertainty set-based robustness, such as value-at-risk (VaR) or conditional value-at-risk (CVaR) constraints.
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Table 1: Task loss performance (mean ± 1 stddev across 10 runs) for the portfolio optimization problem.
Lower values are better, and the best performance for each uncertainty-level α is highlighted. The results
show that our E2E methods consistently outperform the ETO baselines.

uncertainty level α
0.01 0.05 0.1 0.2

ETO Box -1.16 ± 0.42 -1.37 ± 0.12 -1.39 ± 0.13 -1.41 ± 0.12
ETO Ellipse -1.09 ± 0.12 -1.24 ± 0.11 -1.29 ± 0.10 -1.33 ± 0.10
ETO PICNN -0.95 ± 0.24 -1.11 ± 0.24 -1.20 ± 0.22 -1.31 ± 0.16
ETO-SLL Box -1.41 ± 0.13 -1.42 ± 0.12 -1.42 ± 0.12 -1.44 ± 0.11
ETO-SLL Ellipse -1.12 ± 0.22 -1.37 ± 0.12 -1.40 ± 0.12 -1.43 ± 0.12
ETO-JC Ellipse -1.16 ± 0.17 -1.40 ± 0.11 -1.42 ± 0.11 -1.44 ± 0.11
E2E Box -1.21 ± 0.44 -1.40 ± 0.14 -1.43 ± 0.11 -1.43 ± 0.10
E2E Ellipse -1.48 ± 0.12 -1.47 ± 0.11 -1.48 ± 0.11 -1.47 ± 0.11
E2E PICNN -1.45 ± 0.14 -1.48 ± 0.10 -1.48 ± 0.10 -1.47 ± 0.11

A Appendix: Additional experimental results

A.1 Experimental results: Battery storage

The optimal task losses shown in black dotted lines in Figure 3 are the lowest average achievable task loss on
the test set given perfect knowledge of the target y. The optimal task loss is calculated for each example
(x, y) in the test set as f(x, y, z⋆

opt) where

z⋆
opt = arg min

z∈Rp

f(x, y, z) s.t. g(x, y, z) ≤ 0.

A.2 Experimental results: Portfolio optimization

Tables 1 and 2 show the task loss and coverage results for the portfolio optimization problem. We again
find that our E2E approach generally improves upon the ETO baselines at all uncertainty levels α, with
the exception of box uncertainty where all the methods achieve similar performance. Our PICNN-based
uncertainty representation, when learned end-to-end, performs better than box uncertainty and comparably
with ellipse uncertainty. The similarity in performance between E2E ellipsoidal uncertainty and E2E PICNN
uncertainty is likely due to the underlying aleatoric uncertainty (i.e., the uncertainty in P(y | x)) generally
taking an ellipsoidal shape—the conditional distribution P(y | x) is a Gaussian mixture model, and it tends
to have a dominant mode (see, e.g., Figure A1). In terms of coverage, we find that all the models and training
methodologies obtain coverage very close to the target level, confirming that the improvements in task loss
performance from our E2E approach do not come at the cost of worse coverage.

Because the conditional distribution P(y | x) for the portfolio optimization problem is 2-dimensional, we can
visualize the conditional distribution as well as the uncertainty sets estimated by our models. Figure A1 plots
the conditional density for input x =

[
−1.167 0.024

]⊤, along with the α = 0.1 uncertainty sets Ωθ(x) and
the resulting decision vectors z⋆

θ (x) for each uncertainty set parametrization. Uncertainty sets and decision
vectors from both ETO and E2E models are shown in different colors. The key takeaway from this figure is that
smaller uncertainty sets (which is what ETO training tends to produce) do not always result in lower task
loss. Furthermore, the more flexible parametrization of the PICNN allows it to learn uncertainty set shapes
that may be more amenable to the downstream robust decision task than box or ellipsoidal uncertainty, even
if the resulting uncertainty set has a larger or odder shape.

B Appendix: Related Work

“Task-based” or “decision-focused” learning. The notion of “task-based” end-to-end model learning
was introduced by Donti et al. (2017), which proposed to train machine learning models in an end-to-end
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Table 2: Coverage (mean ±1 stddev across 10 runs) for the portfolio optimization problem. Our E2E models
achieve similar coverage to the ETO baselines, confirming that the lower task loss of our E2E models does
not come at the expense of worse coverage.

uncertainty level α
0.01 0.05 0.1 0.2

ETO Box .984 ± .007 .947 ± .017 .902 ± .017 .786 ± .020
ETO Ellipse .988 ± .004 .944 ± .020 .894 ± .022 .794 ± .027
ETO PICNN .989 ± .006 .949 ± .014 .901 ± .019 .801 ± .034
ETO-SLL Box .985 ± .012 .945 ± .021 .885 ± .030 .796 ± .029
ETO-SLL Ellipse .989 ± .011 .945 ± .024 .885 ± .039 .795 ± .030
ETO-JC Ellipse .991 ± .006 .953 ± .017 .902 ± .026 .796 ± .026
E2E Box .989 ± .006 .949 ± .012 .903 ± .016 .785 ± .019
E2E Ellipse .992 ± .006 .954 ± .010 .903 ± .022 .798 ± .022
E2E PICNN .993 ± .002 .953 ± .010 .912 ± .017 .798 ± .024

5 0 5
y1

7.5
5.0
2.5
0.0
2.5
5.0

y 2

Box
ETO task loss 0.67
E2E task loss -1.06

5 0 5
y1

Ellipse
ETO task loss -0.07
E2E task loss -0.08

5 0 5
y1

PICNN
ETO task loss 0.03
E2E task loss -1.06

ETO (x)
ETO z (x)
E2E (x)
E2E z (x)
true y

Figure A1: This figure plots the density of the conditional distribution P(y | x) for x =
[
−1.167 0.024

]⊤

from the portfolio optimization problem, with darker colors indicating higher density. Also plotted are the
α = 0.1 uncertainty sets Ωθ(x) (dashed lines) and the resulting decision vectors z⋆

θ (x) (arrows) for each
uncertainty set parametrization. Results for ETO models are shown in blue, whereas results for E2E are
shown in orange. The “true” y sampled from P(y | x) is drawn in green, and the task loss for this example is
computed using this y. The decision vectors have been artificially scaled larger to be easier to see.

to minimize a downstream stochastic optimization objective. To achieve this, the authors backpropagate
gradients through a stochastic optimization problem, which is made possible for various types of convex
optimization problems via the implicit function theorem (Donti et al., 2017; Amos & Kolter, 2017; Agrawal
et al., 2019). However, Donti et al. (2017) does not train the model to estimate uncertainty and thereby does
not provide any explicit guarantees on robustness on their decisions to uncertainty. Our framework improves
upon this baseline by yielding calibrated uncertainty sets which can then be used to obtain robust decisions.

Another line of related works relies on surrogate loss functions to approximate the gradient of the downstream
task loss, typically in settings where the exact gradient does not exist or is otherwise hard to compute. For
example, the “Smart Predict, then Optimize” approach (Elmachtoub & Grigas, 2022) specifically considers
differentiating the solution of linear programs, whereas (Wilder et al., 2019) differentiates the solution of
discrete (combinatorial) optimization problems. As with Donti et al. (2017), though, these approaches focus
only on average task loss without any estimation of model uncertainty, thereby lacking explicit guarantees on
the robustness of the resulting decisions. A recent survey by Mandi et al. (2024) provides a comprehensive
review of existing decision-focused learning approaches.

Uncertainty Quantification. Various designs for deep learning regression models that provide uncertainty
estimates have been proposed in the literature, including Bayesian neural networks (Blundell et al., 2015; Gal
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& Ghahramani, 2016), Gaussian process regression and deep kernel learning (Rasmussen & Williams, 2005;
Wilson et al., 2016; Liu et al., 2020), ensembles of models (Lakshminarayanan et al., 2017), and quantile
regression (Romano et al., 2019), among other techniques. These methods typically only provide heuristic
uncertainty estimates that are not necessarily well-calibrated (Nado et al., 2022).

Post-hoc methods such as isotonic regression (Kuleshov et al., 2018) or conformal prediction (Shafer & Vovk,
2008) may be used to calibrate the uncertainty outputs of deep learning models. These calibration methods
generally treat the model as a black box and scale predicted uncertainty levels so that they are calibrated
on a held-out calibration set. Isotonic regression guarantees calibrated outputs in the limit of infinite data,
whereas conformal methods provide probabilistic, finite-sample calibration guarantees when the calibration
set is exchangeable (e.g., drawn i.i.d. from the same distribution) with test data. These calibration methods
are generally not included in the model training procedure because they involve non-differentiable operators,
such as sorting. However, recent works have proposed differentiable losses (Einbinder et al., 2022; Stutz
et al., 2022) that approximate the conformal prediction procedure during training and thus allow end-to-end
training of models to output more calibrated uncertainty. As approximations, these methods lose the marginal
coverage guarantees that true conformal methods provide. However, such guarantees can be recovered at test
time by replacing the approximations with true conformal prediction.

Robust and stochastic optimization. The optimization community has proposed a number of techniques
over the years to improve robust decision-making under uncertainty, including stochastic, risk-sensitive,
chance-constrained, distributionally robust, and robust optimization (e.g., (Ben-Tal et al., 2009; Shapiro et al.,
2009; Nemirovski & Shapiro, 2007; Rahimian & Mehrotra, 2019)). These techniques have been applied to a
wide range of applications, including energy systems operation (Zheng et al., 2015; Ndrio et al., 2021; Dvorkin,
2020; Zhong et al., 2021; Poolla et al., 2021; Warrington et al., 2012; Bertsimas et al., 2013; Christianson et al.,
2022) and portfolio optimization (Gregory et al., 2011; Quaranta & Zaffaroni, 2008; Bertsimas et al., 2018).
In these works, the robust and stochastic optimization methods enable selecting decisions (grid resource
dispatches or portfolio allocations) in a manner that is aware of uncertainty, e.g., so an energy system operator
can ensure that sufficient generation is available to meet demand even on a cloudy day without much solar
generation. Typically, however, the construction of uncertainty sets, estimated probability distributions
over uncertain parameters, or ambiguity sets over distributions takes place offline and is unconnected to the
eventual decision-making task. Thus, our proposed end-to-end approach allows for simultaneous calibration
of uncertainty sets with optimal decision-making.

C Appendix: Maximizing over the uncertainty set

We consider robust optimization problems of the form

min
z∈Rp

max
ŷ∈Rn

ŷ⊤Fz + f̃(x, z) s.t. ŷ ∈ Ω(x), g(x, z) ≤ 0.

For fixed z, the inner maximization problem is

max
ŷ∈Rn

ŷ⊤Fz s.t. ŷ ∈ Ω(x),

which we analyze in the more abstract form

max
y∈Rn

c⊤y s.t. y ∈ Ω

for arbitrary c ∈ Rn \ {0}. The subsections of this appendix derive the dual form of this maximization
problem for specific representations of the uncertainty set Ω.

Suppose y is standardized or whitened by an affine transformation with µ ∈ Rn and invertible matrix
W ∈ Rn×n

ytransformed = W −1(y − µ)
so that Ω is an uncertainty set on the transformed ytransformed. Then, the original primal objective can be
recovered as

c⊤y = c⊤(Wytransformed + µ) = (Wc)⊤ytransformed + c⊤µ.
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In our experiments, we use element-wise standardization of y by setting W = diag(ystd), where ystd ∈ Rn is
the element-wise standard-deviation of y.

C.1 Maximizing over a box constraint

Let [y, y] ⊂ Rn be a box uncertainty set for y ∈ Rn. Then, for any vector c ∈ Rn, the primal linear program

max
y∈Rn

c⊤y s.t. y ≤ y ≤ y

has dual problem
min

ν∈R2n

[
y⊤ −y⊤]

ν s.t.
[
In −In

]
ν = c, ν ≥ 0,

which can also be equivalently written as

min
ν∈Rn

(y − y)⊤ν + y⊤c s.t. ν ≥ 0, ν − c ≥ 0.

Since strong duality always holds for linear programs, the optimal values of the primal and dual problems
will be equal so long as one of the problems is feasible, e.g., so long as the box [y, y] is nonempty. We can
thus incorporate this dual problem into the outer minimization of (1) to yield the non-robust form (4).

C.2 Maximizing over an ellipsoid

For any c ∈ Rn \ {0}, Σ ∈ Sn
++, and q > 0, the primal quadratically constrained linear program (QCLP)

max
y∈Rn

c⊤y s.t. (y − µ)⊤Σ−1(y − µ) ≤ q

has dual problem

min
ν∈R

1
4ν

c⊤Σc + µ⊤c + νq s.t. ν ≥ 0.

By Slater’s condition, strong duality holds by virtue of the assumption that q > 0 (which implies strict
feasibility of the primal problem), and thus the primal and dual problems have the same optimal value.
Moreover, since Σ is positive definite and q > 0, this problem has a unique optimal solution at ν⋆ = 1

2√
q ∥L⊤c∥2,

where L is the unique lower-triangular Cholesky factor of Σ (i.e., Σ = LL⊤). Substituting ν⋆ into the dual
problem yields

√
q

∥∥L⊤c
∥∥

2 + µ⊤c.

Plugging this into (1) yields the non-robust form (5).

We write the dual objective in terms of the Cholesky factor L because our predictive models for ellipsoidal
uncertainty directly output the entries of L (see Appendix E). Note, however, that the dual problem solution
can be equivalently written in terms of the square-root of Σ, because

∥∥L⊤c
∥∥2

2 = c⊤LL⊤c = c⊤Σc = c⊤Σ1/2Σ1/2c =
∥∥∥Σ1/2c

∥∥∥2

2
.

C.3 Proof of Theorem 4.1: Maximizing over the sublevel set of a PICNN

Let sθ : Rm × Rn → R be a partially input-convex neural network (PICNN) with ReLU activations as
described in (6), so that sθ(x, y) is convex in y. Suppose that all the hidden layers have the same dimension
d (i.e., ∀l = 0, . . . , L − 1: Wl ∈ Rd×d, Vl ∈ Rd×n, bl ∈ Rd), and the final layer L has WL ∈ R1×d, VL ∈ R1×n,
bL ∈ R. Let c ∈ Rn be any vector. Then, the optimization problem

max
y∈Rn

c⊤y s.t. sθ(x, y) ≤ q (8)
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can be equivalently written as

max
y∈Rn, σ1,...,σL∈Rd

c⊤y (9a)

s.t. σl ≥ 0d ∀l = 1, . . . , L (9b)
σl+1 ≥ Wlσl + Vly + bl ∀l = 0, . . . , L − 1 (9c)
WLσL + VLy + bL ≤ q, (9d)

To see that this is the case, first note that (9) is a relaxed form of (8), obtained by replacing the equalities
σl+1 = ReLU (Wlσl + Vly + bl) in the definition of the PICNN (6) with the two separate inequalities σl+1 ≥ 0d

and σl+1 ≥ Wlσl + Vly + bl for each l = 0, . . . , L − 1. As such, the optimal value of (9) is no less than
that of (8). However, given an optimal solution y, σ1, . . . , σL to (9), it is possible to obtain another feasible
solution y, σ̂1, . . . , σ̂L with the same optimal objective value by iteratively decreasing each component of σl

until one of the two inequality constraints (9b), (9c) is tight, beginning at l = 1 and incrementing l once all
entries of σl cannot be decreased further. This procedure of decreasing the entries in each σl will maintain
problem feasibility, since the weight matrices Wl are all assumed to be entrywise nonnegative in the PICNN
construction; in particular, this procedure will not increase the left-hand side of (9d). Moreover, since one of
the two constraints (9b), (9c) will hold for each entry of each σ̂l, this immediately implies that y is feasible
for the unrelaxed problem (8), and so (8) and (9) must have the same optimal value.

Having shown that we may replace the convex program (8) with a linear equivalent (9), we can write this
latter problem in the matrix form

max
y∈Rn, σ1,...,σL∈Rd

c⊤y s.t. A


y
σ1
...

σL

 ≤ b

where

A =



−Id

. . .
−Id

V0 −Id

... W1
. . .

... . . . −Id

VL WL


∈ R(2Ld+1)×(n+Ld), b =



0d

...
0d

−b0
...

−bL−1
q − bL


∈ R2Ld+1. (10)

By strong duality, if this linear program has an optimal solution, its optimal value is equal to the optimal
value of its dual problem:

min
ν∈R2Ld+1

b⊤ν s.t. A⊤ν =
[

c
0Ld

]
, ν ≥ 0. (11)

We can incorporate this dual problem (11) into the outer minimization of (1) to yield the non-robust
form (7). For a more interpretable form of this dual problem, let ν(i) denote the portion of the dual
vector ν corresponding to the i-th block-row of matrix A, indexed from 0. That is, ν(i) = νid+1:(i+1)d for
i = 0, . . . , 2L − 1. Furthermore, let µ = ν2Ld+1 be the last entry of ν. Written out, the dual problem (11)
becomes

min
ν(0),...,ν(2L−1)∈Rd, µ∈R

µ(q − bL) −
L∑

l=0
b⊤

l ν(L+l)

s.t.
[
V ⊤

0 · · · V ⊤
L

]
νLd+1: = c

W ⊤
l+1ν(L+l+1) − ν(L+l) − ν(l) = 0d ∀l = 0, . . . , L − 1

ν ≥ 0.
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C.4 Ensuring feasibility of the PICNN maximization problem

As noted at the end of Section 3.1, it may sometimes be the case that the inner maximization problem of (1)
is unbounded or infeasible when Ωθ(x) is parametrized by a PICNN, since in general, the sublevel sets of the
PICNN might be unbounded, or the q selected by the split conformal procedure detailed in Section 3.2 may
be sufficiently small that Ωθ(x) = {ŷ ∈ Rn | sθ(x, ŷ) ≤ q} is empty for certain inputs x. We can address each
of these concerns using separate techniques.

Ensuring compact sublevel sets. To ensure that the PICNN-parametrized score function sθ(x, y) has
compact sublevel sets in y, we can redefine the output layer by setting VL = 01×n and adding a small ℓ∞

norm term penalizing growth in y:

sθ(x, y) = WLσL + ϵ∥y∥∞ + bL, (12)

where ϵ ≥ 0 is a small penalty term, and where all the remaining parameters and layers remain identical to
their definition in (6). This modification ensures that, for any fixed x, sθ(x, y) has compact sublevel sets,
since σL ≥ 0 by construction (6) and the penalty term ϵ∥y∥∞ will grow unboundedly large as y goes to
infinity in any direction, so long as ϵ > 0. Moreover, so long as ϵ is chosen sufficiently small and the PICNN
is sufficiently deep, this modification should not negatively impact the ability of the PICNN to represent
general compact convex uncertainty sets.

Using this modified PICNN (12), the maximization problem (8) can be written as an equivalent linear
program

max
y∈Rn, σ1,...,σL∈Rd,

κ∈R

c⊤y (13a)

s.t. σl ≥ 0d ∀l = 1, . . . , L (13b)
σl+1 ≥ Wlσl + Vly + bl ∀l = 0, . . . , L − 1 (13c)
κ ≥ yi, κ ≥ −yi ∀i = 1, . . . , n (13d)
WLσL + ϵκ + bL ≤ q (13e)

where the equivalence between (8) and (13) follows the same argument as that employed in the previous
section when showing the equivalence of (8) and (9). We can thus likewise apply strong duality to obtain an
equivalent minimization form of the problem (13) and incorporate this into the outer minimization of (1) to
yield a non-robust problem of the general form (7).

Ensuring Ωθ(x) is nonempty. If the q chosen by the split conformal procedure is too small such that
Ωθ(x) is empty, i.e., q ≤ qmin where

qmin := min
ŷ∈Rn

sθ(x, ŷ), (14)

then we simply increase q to qmin so that Ωθ(x) is guaranteed to be nonempty. That is, for input x, we set

q = max
(

min
ŷ∈Rn

sθ(x, ŷ), Quantile({sθ(xi, yi)}(xi,yi)∈Dcal , 1 − α)
)

.

This preserves the marginal coverage guarantee, as increasing q can only result in a larger uncertainty set
Ωθ(x).

In theory, qmin varies as a function of θ, and it is possible to differentiate through the optimization problem
(14) using the methods from Agrawal et al. (2019) since the problem is convex and sθ is assumed to be
differentiable w.r.t. θ almost everywhere. However, to avoid this added complexity, in practice, we treat qmin
as a constant. In other words, on inputs x where we have to increase q to qmin, we treat ∂q

∂θ = 0.

D Appendix: Exact differentiable conformal prediction

In this section, we prove how to exactly differentiate through the conformal prediction procedure, unlike the
approximate derivative first introduced in Stutz et al. (2022).
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Theorem D.1. Let α ∈ (0, 1) be a risk level, and let si := sθ(xi, yi) denote the scores computed by a score
function sθ : Rm × Rn → R over data points {(xi, yi)}M

i=1. Suppose sθ(xi, yi) is differentiable w.r.t. θ for all
i = 1, . . . , M .

Define sM+1 := ∞. Let σ : {1, . . . , M + 1} → {1, . . . , M + 1} denote the permutation that sorts the scores in
ascending order, such that sσ(i) ≤ sσ(j) for all i < j. For simplicity of notation, we may write s(i) := sσ(i).

Let q = Quantile({si}M
i=1, 1 − α) where the Quantile function is as defined in Algorithm 1. That is,

q = s(k), where k := ⌈(M + 1)(1 − α)⌉ ∈ {1, . . . , M, M + 1}. If s(k) is unique, then

dq

dθ
=

{
d

dθ sθ(xσ(k), yσ(k)), if α ≥ 1
M+1

0, otherwise.

Proof. First, when α ∈ (0, 1
M+1 ), we have k = M + 1, so q = ∞ is constant regardless of the choice of θ.

Thus, dq
dθ = 0.

Now, suppose α ≥ 1
M+1 . The Quantile function returns the k-th largest value of {si}M

i=1 ∪ {∞}. Since we
assume s(k) is unique, we have dq

ds(i)
= 1[i = k]. Finally, we have

dq

dθ
=

M∑
i=1

dq

dsi

dsi

dθ
=

M∑
i=1

dq

ds(i)

ds(i)

dθ
=

ds(k)

dθ
= d

dθ
sθ(xσ(k), yσ(k)).

The two key assumptions in this theorem are that (1) sθ is differentiable w.r.t. θ, and (2) s(k) is unique. When
sθ is a neural network with a common activation function (e.g., ReLU), (1) holds for inputs (x, y) ∈ Rm ×Rn

almost everywhere and θ almost everywhere. Regarding (2), in practice, just as the gradient of the max
function is typically implemented without checking whether its inputs have ties, we do not check whether s(k)
is unique.

E Appendix: Experiment details

Our experiments were conducted across a variety of machines, including private servers and Amazon AWS
EC2 instances, ranging from 12-core to 128-core machines. Our ETO experiments benefited from GPU
acceleration across a combination of NVIDIA GeForce GTX 1080 Ti, Titan RTX, T4, and A100 GPUs. Our
E2E experiments did not use GPU acceleration, due to the lack of GPU support in the cvxpylayers Python
package (Agrawal et al., 2019).

In all experiments, we use a batch size of 256 and the Adam optimizer (Kingma & Ba, 2015). Models
were trained for up to 100 epochs with early stopping if there was no improvement in validation loss for 10
consecutive epochs.

For box and ellipsoid ETO baseline models, we performed a hyperparameter grid search over learning rates
(10−4.5, 10−4, 10−3.5, 10−3, 10−2.5, 10−2, 10−1.5) and L2 weight decay values (0, 10−4, 10−3, 10−2). For
PICNN ETO models we performed a hyperparameter grid search over learning rates (10−4, 10−3, 10−2) and
L2 weight decay values (10−4, 10−3, 10−2).

E.1 Uncertainty representation

Box uncertainty. Our box uncertainty model uses a neural network hθ with 3 hidden layers of 256 units
each and ReLU activations with batch-normalization. The output layer has dimension 2n, where dimensions
1 : n predict the lower bound. Output dimensions n + 1 : 2n, after passing through a softplus to ensure
positivity, represents the difference between the upper and lower bounds. That is,[

hlo
θ (x)

hhi
θ (x)

]
=

[
hθ(x)1:n

hθ(x)1:n + softplus(hθ(x)n+1:2n)

]
.
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This architecture ensures that hhi
θ (x) > hlo

θ (x).

In the two-stage ETO baseline, we first train hθ to estimate the α/2- and (1 − α/2)-quantiles, so that
[hlo

θ (x), hhi
θ (x)] represents the centered (1 − α)-confidence region. Quantile regression is a common method

for generating uncertainty sets for scalar predictions by estimating quantiles of the conditional distribution
P(y | x) (Romano et al., 2019). For scalar true label y, quantile regression models are commonly trained to
minimize pinball loss (a.k.a. quantile loss) where β is the quantile level being estimated:

pinballβ(ŷ, y) =
{

β · (y − ŷ), if y > ŷ

(1 − β) · (ŷ − y), if y ≤ ŷ,

To generalize the pinball loss to our setting of multi-dimensional y ∈ Rn, we sum the pinball loss across the
dimensions of y: pinballβ(ŷ, y) =

∑n
i=1 pinballβ(ŷi, yi).

Our end-to-end (E2E) box uncertainty models use the same architecture as above, initialized with weights
from the the trained ETO model. We found it helpful to use a weighted combination of the task loss and
pinball loss during training of the E2E models to improve training stability. In our experiments, we used a
weight of 0.9 on the task loss and 0.1 on the pinball loss. The E2E models used the best L2 weight decay
from the ETO models, and the learning rate was tuned across 10−2, 10−3, and 10−4.

Ellipsoidal uncertainty. Our ellipsoidal uncertainty model uses a neural network hθ with 3 hidden
layers of 256 units each and ReLU activations with batch-normalization. The output layer has dimension
n + n(n + 1)/2, where dimensions 1 : n predict the mean µθ(x) and the remaining output dimensions are used
to construct a lower-triangular Cholesky factor Lθ(x) of the covariance matrix Σθ(x) = Lθ(x)Lθ(x)⊤. We
pass the diagonal entries of Lθ(x) through a softplus function to ensure strict positivity, which then ensures
Σθ(x) is positive definite.

For the ETO baseline, we trained the model using the negative log-likelihood (NLL) loss

NLL(θ) = 1
N

∑
(x,y)∈D

− ln N (y | µθ(x), Σθ(x)),

where N (· | µ, Σ) denotes the density of a multivariate normal distribution with mean µ and covariance
matrix Σ.

Our end-to-end (E2E) ellipsoidal uncertainty models use the same architecture as above, initialized with
weights from the the trained ETO model. We found it helpful to use a weighted combination of the task loss
and NLL loss during training of the E2E models to improve training stability. In our experiments, we used a
weight of 0.9 on the task loss and 0.1 on the NLL loss. The E2E models used the best L2 weight decay from
the ETO models, and the learning rate was tuned across 10−2, 10−3, and 10−4.

PICNN uncertainty. Our PICNN has 2 hidden layers with ReLU activations.

For the battery storage problem, we used 64 units per hidden layer. We did not run into any feasibility issues
for the PICNN maximization problem, so we did not restrict VL as described in Appendix C.4, and we set
ϵ = 0.

For the portfolio optimization problem, we tried 32, 64, and 128 units per hidden layer, finding that 32 units
worked best for the portfolio optimization problem, 128 units performed marginally better for the battery
storage problem. We did run into feasibility issues for the PICNN maximization problem, which we resolved
by setting VL = 01×n as described in Appendix C.4. This change alone was sufficient, and we set ϵ = 0.

For the ETO baseline, we take inspiration from the approach by Lin & Ba (2023) to give probabilistic
interpretation to a PICNN model sθ via the energy-based model P̂θ(y | x) = 1

Zθ(x) exp(−sθ(x, y)) where
Zθ(x) :=

∫
ỹ∈Rn exp(−sθ(x, ỹ)) dỹ is the normalizing constant. We train our ETO PICNN models with an

approximation to the true NLL loss based on samples from the Metropolis-Adjusted Langevin Algorithm
(MALA), a Markov Chain Monte Carlo (MCMC) method. We refer readers to our code for the specific
hyperparameters and implementation details we used.
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Note that under this energy-based model, adding a scalar constant c to the PICNN (i.e., sθ(x, y) + c) does
not change the probability distribution. That is, exp(−sθ(x, y)) ∝ exp(−sθ(x, y) + c). To regularize the
PICNN model, which has a bias term in its output layer, we therefore introduce a regularization loss of
wzero · sθ(x, y)2 where wzero is a regularization weight. This regularization loss encourages sθ(x, y) to be close
to 0, for all examples in the training set. In our experiments, we set wzero = 1.

Our end-to-end (E2E) PICNN uncertainty models use the same architecture as above, initialized with weights
from the the trained ETO model. Unlike for box and ellipsoidal uncertainty which used a weighted combination
of task loss and NLL loss, our E2E PICNN uncertainty models are trained only with the task loss. Similar to
the ETO PICNN model, we also regularize the E2E PICNN. Here, we add a regularization loss of wq · q2, where
wq is a regularization weight and q is the conformal prediction threshold computed in each minibatch of E2E
training. This regularization loss term aims to keep q near 0; without this regularization, we found that q
tended to grow dramatically over training epochs with poor task loss. In our experiments, we set wq = 0.01.

The E2E models used the best L2 weight decay from the ETO models. For the battery storage problem, we
tested learning rates of 10−3 and 10−4. For the portfolio optimization problem, we used a learning rate of
5 × 10−3.

E.2 Data

Price forecasting for battery storage. We use the same dataset as Donti et al. (2017) in our price
forecasting for battery storage problem. In this dataset, the target y ∈ R24 is the hourly PJM day-ahead
system energy price for 2011-2016, for a total of 2189 days. Unlike Donti et al. (2017), though, we do not
exclude any days whose electricity prices are too high (>500$/MWh). Whereas Donti et al. (2017) treated
these days as outliers, our conditional robust optimization problem is designed to output robust decisions.
For predicting target for a given day, the inputs x ∈ R101 include the previous day’s log-prices, the given
day’s hourly load forecast, the previous day’s hourly temperature, the given day’s hourly temperature, and
several calendar-based features such as whether the given day is a weekend or a US holiday.

For the setting without distribution shift, we take a random 20% subset of the dataset as the test set; because
the test set is selected randomly, it is considered exchangeable with the rest of the dataset. For the setting
with distribution shift, we take the chronologically last 20% of the dataset as the test set; because load,
electricity prices, and temperature all have distribution shifts over time, the test set is not exchangeable with
the rest of the dataset. For each seed, we further use a 80/20 random split of the remaining data for training
and calibration.

Portfolio optimization. For the portfolio optimization task, we used synthetically generated data. We
sample x ∈ R2, y ∈ R2 from a mixture of three 4-D multivariate Gaussian distributions as used in Chenreddy
& Delage (2024). Formally, [

x
y

]
∼ paN (µa, Σa) + pbN (µb, Σb) + pcN (µc, Σc)

where pa + pb + pc = 1. Specifically,

pa = ϕ, pb = 1
αGMM + 1(1 − ϕ), pc = αGMM

αGMM + 1(1 − ϕ),

µa = 04, µb =
[
0 5 5 0

]⊤
, µc = µb,

Σa =


1 0 0.37 0
0 1.5 0 0

0.37 0 2 0.73
0 0 0.73 3

 , Σb = αGMMΣa, Σc = 1
αGMM

Σa

for some ϕ ∈ [0, 1] and αGMM ∈ [0, 1]. In our experiments, we used ϕ = 0.7 and αGMM = 0.9. (Chenreddy &
Delage (2024) do not disclose the values of ϕ and αGMM chosen for their experiments.) For each random
seed, we generate 2000 samples and use a (train, calibration, test) split of (600, 400, 1000).
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