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1. Introduction 
    The rising demand for green computing together 
with applications of high-performance, low-power, 
and compact systems like machine learning and 
autonomous vehicles, has elevated the need for 
optimal integration of chiplets through advanced 
packaging techniques [1]. Generic rule-based 
placement or random stochastic methods take long to 
converge in scenarios with multi-objective 
optimization (MOO) and large search space. 
Navigation through search space must be driven by 
active learning using multi-objective agents, where 
one agent performs chiplet placement actions and the 
other critic agent feedback to the actor on the 
placement wirelength and package temperature 
profile. This multi-objective RL approach intelligently 
arranges chiplets to reduce wirelength and improve 
thermal management, resulting in more efficient, 
reliable next-generation electronic systems that 
outperform traditional placement algorithms. 
 
2. Methodology 
    The methodology of the proposed multi-objective 
Actor-Critic framework is shown in Fig. 1. The process 
begins by drawing batches of input states from a 
proportional replay buffer. These states are processed 
by either a GCN (Graph Convolutional Neural 
Network) (A2C-GCN) or NN (Neural Network) (A2C-
NN) based agent. Additionally, when using GCN as the 
RL agent, the framework effectively incorporates 
interconnectivity between chiplets by treating both 
node and edge features. The node features provide a 
detailed representation of each macro’s spatial 
characteristics, such as orientation, relative 
positioning within the grid, and spatial interactions 
with other macros whereas edge features are derived 
from the connectivity configuration between macros, 
offering a more comprehensive understanding of how 
each macro relates to the overall system’s thermal and 
connectivity optimization. The Actor Local agent 
predicts potential chiplet placements and rotations 
and interacts with the interposer environment to 
compute wirelength and temperature metrics. The 
Mask module handles infeasible placement choices. A 
Differential Reward with a Potential mechanism 
evaluates the performance based on wirelength and 
thermal profiles, guiding the system to minimize 
hotspots and interconnect lengths. Simultaneously, 
the Critic agent, aided by the Information Gain 
Computation Unit, evaluates the predicted reward 
against actual outcomes to feedback on the Actor's 
loss. This feedback is crucial for improving the Actor’s 
placement predictions. The system utilizes gradient 
extraction and the N-Step Reward Predictor to 
effectively adjust future actions. This adaptive 
approach extracts actionable insights from chiplet 
states and connections resulting in performance 
improvement over traditional placement methods like 
simulated annealing (SA). This iterative process 
continues as both the actor and critic refine their 

performance, achieving optimized chiplet placements 
while addressing thermal and connectivity challenges 
dynamically. 
 
3. Result and Discussion 
The proposed methodology’s effectiveness is 
validated through extensive simulations and 
comparisons with traditional methods like SA across 
the three systems described in [2]. However, due to 
space limitations, only a specific case study featuring a 
multi-GPU system with 2 GPUs, 1 CPU, and 3 high-
bandwidth memory (HBM) modules on a 50 mm x 50 
mm interposer are benchmarked here. The aim is to 
optimize the placement of all chiplets to minimize 
wirelength, boost signal integrity, reduce latency, and 
manage thermal distribution for improved 
performance.  The optimized placements determined 
by A2C-NN RL for these systems are shown in Fig. 2. 
The performance comparison with SA, A2C-GCN and 
A2C-NN are tabulated in Table 1. A2C-GCN optimized 
wirelength, achieving 92.4 m, outperforming SA by 
10% and A2C-NN by 8% in multi-GPU system. 
However, it raised the temperature to 91.4°C, 
compared to 89.6°C for SA and 89.9°C for A2C-NN, 
showing trade-offs in thermal management. These 
performances showcase A2C’s ability to balance 
performance trade-offs for optimizing complex chiplet 
placement, particularly in minimizing wirelength for 
better system performance. 
 
4. Conclusion 
The Actor-Critic reinforcement learning framework 
presented here leverages both GCNs and NNs to 
address key multi-objective challenges in chiplet 
placement by optimizing thermal management and 
reducing wirelength. This impacts the downstream 
cooling solution requirements and will be able to 
reduce the power consumption of heterogeneous 
compute infrastructure. GCNs excel in modelling 
spatial relationships and chiplet connectivity, 
outperforming traditional approaches. Extensive 
simulations confirm that the framework effectively 
balances trade-offs between wirelength and 
temperature, offering a highly efficient solution for 
chiplet placement in high-performance, thermally 
constrained systems and this approach is extendible 
to other types of advanced packages such as 
wirelength reduction from chip-to-wafer hybrid 
bonding and to other mechanical or electrical 
constraints through multi-agent actor-critic 
frameworks. 
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Fig. 1:  A2C RL framework that leverages connectivity and thermal behavior to optimize chiplet placement in heterogeneous 2.5D 

systems. 
 

 
 

Fig. 2:  Optimized chiplet placement determined by A2C-NN 
RL framework for multi-GPU system 

 
 

 
 

Table 1: Performance comparison of both RL frameworks 
with SA. 

 
Case Study  SA A2C-GCN A2C-NN 

Multi-GPU 
WL (m)  101.8    92.4 97.9 
T (oC) 89.6 91.3 89.9 
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