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A THEORETICAL EXPLANATIONS

In this section, we provide theoretical justifications for the validity of our proposed distribution
πHERO in Eq. (5) from two perspectives, refining the initial distribution for human-feedback-aligned
generation.

A.1 CONCENTRATION OF HUMAN-SELECTED NOISES IN SD’S PRIOR DISTRIBUTION

It is known that the initial distribution of SD sampling is typically the standard normal distribution
N p0, IDq, which yields a random vector that concentrates around the sphere of radius

?
D with

high probability. In the following proposition, we show that a random vector drawn from our pro-
posed distribution πHERO also concentrates around the sphere of radius

?
D with high probability,

provided that the variance ε0 ą 0 of the Gaussian mixture is sufficiently small. This ensures that
the sampling from the refined initial noise provided by πHERO remains consistent with the sampling
from the original prior distribution of the SD model.

Proposition A.1 (Concentration of πHERO). Let π be a Gaussian mixture with each component as
N pµi, ε

2
0IDq, where each mean µi „ N p0, IDq, and ε0 ą 0 is a small constant. Let y „ π be

a random vector drawn from π. Then, for any δ ą 0, we have the following concentration if ε0 is
sufficiently small:

P
´?

Dp1 ´ ε0q ď }y} ď
?
Dp1 ` ε0q

¯

ě 1 ´ δ.

Namely, y is concentrated around the shell of radius
?
D and thickness

?
Dε0.
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Proof. We will show that the overall probability mass is concentrated in a shell around radius
?
D,

which means that for a sample y from the GMM π, }y} «
?
D with high probability.

From the properties of high-dimensional Gaussians (Vershynin, 2018), we know that the norm of
each mean µi concentrates around

?
D. Specifically, for any small δ ą 0, we have the following

concentration bound:

P
´?

Dp1 ´ δq ď }µi} ď
?
Dp1 ` δq

¯

ě 1 ´ 2 exp

ˆ

´
δ2D

8

˙

(6)

This means that the means µ1, . . . ,µn are likely to lie within a thin shell of radius
?
D and width

proportional to δ
?
D.

Now consider the Gaussian component corresponding to µi, which is distributed as N pµi, ε
2
0IDq.

The probability density function for this Gaussian at a point y P RD is:

pipyq “
1

p2πε20qD{2
exp

ˆ

´
}y ´ µi}

2

2ε20

˙

We need to analyze the concentration of this Gaussian around µi. The squared distance }y ´ µi}
2

follows a chi-squared distribution with D degrees of freedom, scaled by ε20. Specifically, for any
δ ą 0, using a concentration inequality (e.g., Chernoff’s bound), we can show that:

P
`ˇ

ˇ}y ´ µi}
2 ´ Dε20

ˇ

ˇ ě δDε20
˘

ď 2 exp

ˆ

´
δ2D

8

˙

This implies that }y ´ µi} is concentrated around ε0
?
D with high probability. For small ε0, the

samples from the Gaussian will be tightly concentrated around µi, and the typical distance from µi

will be approximately ε0
?
D.

Next, we want to understand the behavior of }y}, where y is a sample from the GMM π. Since y is
a sample from one of the Gaussian components, say N pµi, ε

2
0IDq, we have:

y “ µi ` z, where z „ N p0, ε20IDq.

We analyze the expression

}y}2 “ }µi ` z}2 “ }µi}
2 ` 2xµi, zy ` }z}2

term by term.

For }µi}
2 term, we know from Ineq. (6) that }µi}

2 concentrates around D, meaning:

}µi}
2 “ Dp1 ` Opδqq.

For the cross term xµi, zy term, since z „ N p0, ε20IDq and µi „ N p0, IDq, we have that xµi, zy

is a sum of independent normal random variables with mean 0 and variance ε20. Hence, xµi, zy „

N p0, ε20Dq, and we can apply a concentration inequality (e.g., Hoeffding’s inequality) to show that:

P p|xµi, zy| ě tq ď 2 exp

ˆ

´
t2

2ε20D

˙

.

Therefore, with high probability, the cross term is small:

xµi, zy “ Opε0
?
Dq.

For }z}2 term, it is the squared norm of a Gaussian random vector with covariance ε20ID, and hence
follows a chi-squared distribution with D degrees of freedom, scaled by ε20. We know that:

Er}z}2s “ Dε20, Varr}z}2s “ 2Dε40

Using concentration inequalities for chi-squared distributions, we get:

P
`
ˇ

ˇ}z}2 ´ Dε20
ˇ

ˇ ě δDε20
˘

ď 2 exp

ˆ

´
δ2D

8

˙

Thus, }z}2 is concentrated around Dε20 with high probability.

15



Published as a conference paper at ICLR 2025

Combining these terms:

}y}2 “ }µi}
2 ` 2xµi, zy ` }z}2

we have:

}y}2 “ Dp1 ` Opδqq ` Opε0
?
Dq ` Dε20p1 ` Opδqq

“ Dp1 ` ε20q ` O
`

Dp1 ` ε20qδ
˘

` Opε0
?
Dq.

Therefore, whenever ε0 is sufficiently small, this shows that }y} «
?
D with high probability.

A.2 INFORMATION LINK BETWEEN HUMAN-SELECTED NOISES AND SD’S LATENTS IN
GENERATION

We consider the general form of the backward SDE for diffusion model sampling (Song et al.,
2020b; Lai et al., 2023a;b):

dzt “
`

fptqzt ´ g2ptq∇ log ptpztq
˘

dt ` gptqdw̄t, zT „ πHERO, (7)

where f : R Ñ R is the drift scaling term, g : R Ñ Rě0 is the diffusion term determined by the
forward diffusion process, and w̄t represents the time-reversed Wiener process.

In the following proposition, we demonstrate that if ∆t ff 0, then the initial condition zT „ πHERO

and the solution z0 obtained from a finite-step numerical solver will possess mutual information.
This suggests that the information of either z0 or zT is preserved during SDE solving with common
forward designs, such as the variance-preserving SDE (Ho et al., 2020; Song et al., 2020b) in SD.
Typical choices include the Ornstein–Uhlenbeck process

`

fptq, gptq
˘

“ p´1,
?
2q, or

`

fptq, gptq
˘

“
´

´ 1
2βptq,

a

βptq
¯

, where βptq :“ βmin ` tpβmax ´ βminq, with βmin “ 0.1 and βmax “ 20.

We consider discretized time using a uniform partition (Kim et al., 2024a; Hu, 1996; Kim et al.,
2024b) 0 “ tn ă tn´1 ă . . . ă t0 “ T with ∆t “ tk`1 ´ tk for our analysis. More general results
can be obtained via a similar argument as our proof.
Proposition A.2 (Information Link Between zT and Generated z0). Let zT „ πHERO. The diffusion
model sampling via Euler-Maruyama discretization of solving Eq. (7) with uniform stepsize ∆t will
lead to the following form:

z0 “ zT e
řn´1

k“0 fptkq∆t ´

n´1
ÿ

k“0

g2ptkq∇ log ptkpykq∆te
řn´1

j“k`1 fptjq∆t
` Rp∆tq,

where Rp∆tq is the residual term concerning the accumulated stochastic component gptnq∆w̄n and
stepsize ∆t. Therefore, whenever ∆t ff 0, z0 and zT are dependent.

Proof. For the simplicity of notations, we write yn :“ ztn (i.e., y0 “ zT ). Applying the Euler-
Maruyama scheme, we obtain:

yn`1 “ yn `
`

fptnqyn ´ g2ptnq∇ log ptnpynq
˘

∆t ` gptnq∆w̄n,

where y0 „ πHERO, and ∆w̄n „ N p0,∆tIq represents the increment of the Wiener process.

We first ignore the stochastic term gptnq∆w̄n for simplicity, rewriting the equation as:

yn`1 “ yn `
`

fptnqyn ´ g2ptnq∇ log ptnpynq
˘

∆t.

This can be rearranged into:

yn`1 “ ynp1 ` fptnq∆tq ´ g2ptnq∇ log ptnpynq∆t.

To derive a recursive formula for yn, we substitute the above equation back into itself. Starting from
y0:

y1 “ y0p1 ` fpt0q∆tq ´ g2pt0q∇ log pt0py0q∆t,

y2 “ y1p1 ` fpt1q∆tq ´ g2pt1q∇ log pt1py1q∆t.
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By continuing this process, we express yn recursively as:
yn “ yn´1p1 ` fptn´1q∆tq ´ g2ptn´1q∇ log ptn´1

pyn´1q∆t.

Iterating this process (mathematical induction), we derive a general expression for yn:

yn “ y0

n´1
ź

k“0

p1 ` fptkq∆tq ´

n´1
ÿ

k“0

g2ptkq∇ log ptkpykq∆t
n´1
ź

j“k`1

p1 ` fptjq∆tq.

We can utilize the exponential Taylor expansion

efptq∆t “ p1 ` fptq∆tq ` Opp∆tq2q.

to reduce the above expression to:

yn “ y0e
řn´1

k“0 fptkq∆t ´

n´1
ÿ

k“0

g2ptkq∇ log ptkpykq∆te
řn´1

j“k`1 fptjq∆t
` Opp∆tq2q

When considering the stochastic component gptnq∆w̄n, the overall solution can be expressed as:

yn “ y0e
řn´1

k“0 fptkq∆t ´

n´1
ÿ

k“0

g2ptkq∇ log ptkpykq∆te
řn´1

j“k`1 fptjq∆t
` Op∆wnq ` Opp∆tq2q.

Therefore, the solution presented indicates that the state variable retains the memory of its initial
condition for a finite time, influenced by both deterministic drift and stochastic components if ∆t ff

0.

B ADDITIONAL EVALUATION METRICS

In this section, we present evaluation metrics beyond task success rates and supplement the results
of these measurements during inference time in Appendix B.1, as well as during training in Ap-
pendix B.2.

B.1 MEASUREMENT IN INFERENCE

Results of samples from the final epoch for aesthetic quality, image diversity, and text-to-image
alignment are presented in Figure 8. The descriptions of each measurement are detailed as follows.

Aesthetic Quality. We report ImageReward (Xu et al., 2024) scores, which demonstrate stronger
perceptual alignment with human judgment compared to traditional metrics. Higher scores reflect
better aesthetic quality. Although human evaluators prioritized task success based on the criteria in
Appendix D over aesthetic quality and were not instructed to consider aesthetics, HERO demon-
strates comparable aesthetic performance to the baselines, surpassing them in 3 out of 5 tasks.

Image Diversity. Following Section 4.3.3 of von Rütte et al. (2023), we compute “In-Batch Di-
versity”, defined as the complement of the average similarity of CLIP image embeddings (Radford
et al., 2021) between pairs of images in a generated batch. Specifically, for a batch of N generated
images I1, I2, . . . , IN , and the cosine similarity CLIPSimpIi, Ijq of their embeddings in the CLIP
feature space, the in-batch diversity is calculated as:

Dbatch “ 1 ´
2

NpN ´ 1q

ÿ

1ďiăjďN

CLIPSimpIi, Ijq,

where 1 ´ CLIPSimpIi, Ijq represents the dissimilarity between two images. A higher Dbatch sig-
nifies greater diversity. Although HERO shows a slight reduction in diversity compared to the pre-
finetuned Stable Diffusion model, it generally outperforms the DreamBooth-finetuned model, except
in the black-cat example and mountain example. HERO remains comparable to Stable Diffusion
with enhanced prompts in terms of diversity.

Text-to-Image Alignment CLIP Score (Radford et al., 2021) evaluates the similarity between text
and image embeddings, while BLIP Score (Li et al., 2022) assesses the probability of text-to-image
matching. Together, these metrics provide a quantitative measure of how well the generated images
align with the given prompts. Higher scores on both metrics indicate better alignment between the
generated images and the prompts. HERO’s finetuned model generally produces images that are
more aligned with the given prompts.
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Figure 8: Additional evaluation results. For all metrics, a higher value indicates better performance.
Top Left. Aesthetic quality measured with ImageReward (Xu et al., 2024). Top Right. In-Batch
Diversity computation following Radford et al. (2021). Bottom. CLIP (Radford et al., 2021) and
BLIP (Li et al., 2022) Text-to-image alignment scores.

B.2 MEASUREMENTS IN TRAINING PROGRESS

We also provide supplementary results showing different metrics versus training epochs to observe
the influence of the number of feedback samples. As shown in Figure 9, we present results from
samples generated during the first 8 epochs, where we observe the following trends:

• Aesthetic Quality (measured with ImageReward): Aesthetic quality is generally main-
tained throughout the fine-tuning process, demonstrating that HERO does not compromise
aesthetic appeal even with increased human feedback.

• Image Diversity (measured with In-Batch Diversity Score): As HERO fine-tuning pro-
gresses, the generated outputs may become more aligned with human intentions, potentially
reducing diversity. This aligns with the common phenomenon where stronger guidance of-
ten leads to lower diversity. Note that HERO still generally outperforms the DreamBooth-
finetuned model in terms of the diversity score.

• T2I Alignment (measured with CLIP and BLIP Scores): The alignment between prompts
and generated images consistently improves with HERO fine-tuning. This provides implicit
evidence that HERO fine-tuning effectively converges toward human intention, as reflected
in the prompts.
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(a) Aesthetic Quality (ImageReward) (b) Diversity (In-batch Diversity Score)

(c) T2I Alignment (CLIP Score) (d) T2I Alignment (BLIP Score)

Figure 9: Addtional Evaluation Measurements across Training Progress. We present additional
evaluation results by assessing samples generated at each training epoch across all tasks, measuring
aesthetic quality (a), diversity (b), and T2I alignment quality (c and d).

C ADDITIONAL EXPERIMENTS

C.1 RL FINE-TUNING WITH EXISTING REWARD MODELS

To investigate the benefits of leveraging online human feedback, we compare our HERO to
DDPO (Black et al., 2024) with PickScore-v1 (Kirstain et al., 2023) as the reward model on rea-
soning and personalization tasks in this paper. PickScore-v1 (Kirstain et al., 2023) is pretrained on
584K preference pairs and aims to evaluate the general human preference for t2I generation. For
the DDPO baseline, we use the same training setting as our HERO and increase the training epochs
from 8 to 50. The success rate is calculated using 200 evaluation images.

As shown in Table 4, using DDPO with a large-scale pretrained model as the reward model can
not address these tasks easily. Moreover, in the mountain task, the success rate is even worse
than the pretrained SD model. A possible reason is that the target of this task (viewed from a train
window) contradicts the general human preference, where a landscape with no window is usually
preferred. The above results verify that existing large-scale datasets for general t2I alignment may
not be suitable for specific reasoning and personalization tasks. Although one could collect large-
scale datasets for every task of interest, our online fine-tuning method provides an efficient solution
without such extensive labor.

Table 4: Success rates of RL fine-tuning with existing reward models

Method blue-rose black-cat narcissus mountain

SD-Pretrained 0.354 0.422 0.406 0.412
DDPO + PickScore-v1 0.710 0.555 0.615 0.375
HERO (ours) 0.807 0.750 0.912 0.995
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C.2 IMPORVE TIME EFFICIENCY FOR ONLINE FINETUNING

Inspired by Clark et al. (2024), we only consider the last K ` 1 (ď T ) steps of the denoising
trajectories during loss computation in Equation (2) to accelerate training and reduce the workload
for human evaluators:

∇ϕLDDPO-Kpϕq “ EzT „ZT

K
ÿ

t“0

„

pϕpzt´1|zt, cq

pϕold pzt´1|zt, cq
∇ϕ log pϕpzt´1|zt, cqRpz0q

ȷ

. (8)

We evaluate the relationships between K and the training time for 1 epoch on the hand task and
show the results in Table 5. Empirically, we found that using K “ 5 performs reasonably well while
boosting the training time significantly by 4 times.

Table 5: The impact of update steps K on training time

K 1 2 5 10 20

Training time(s) 30.34 60.24 149.58 298.55 595.49

C.3 DREAMBOOTH PROMPTING EXPERIMENTS

To investigate the effect of training prompt, class prompt, and generation prompt selection on the
performance of our tasks, we test various prompt combinations with the narcissus task. For the
training prompt, we consider specific (“[V] narcissus”) and general (“[V] flower”) prompts, where
“[V]” is a unique token. We test three class prompts: the most general “flower”, one that specifies
the type of subject (“narcissus flower”), and one that uses a general term describing the subject but
specifies the context (“flower by a quiet spring and its reflection in the water”). Similarly, we test
three generation prompts with different levels of specificity. Results are shown in Table 6. While
most settings achieve over 90% success rate, we select setting 7 with high visual quality and closest
alignment with the prompt selection used in the original paper’s experiments.

Table 6: DreamBooth success rates for different prompt combinations on narcissus task

Training Prompt Class Prompt Generation Prompt Success Rate

1 “[V] narcissus” “flower” “[V] narcissus by a quiet spring
and its reflection in the water” 0.43

2 “[V] narcissus” “flower” “[V] narcissus” 0.94

3 “[V] narcissus” “narcissus flower” “[V] narcissus” 0.92

4 “[V] narcissus” “narcissus flower” “[V] narcissus by a quiet spring
and its reflection in the water” 0.84

5 “[V] narcissus” “flower by a quiet spring and
its reflection in the water” “[V] narcissus” 0.96

6 “[V] narcissus” “flower by a quiet spring and
its reflection in the water”

“[V] narcissus by a quiet spring
and its reflection in the water” 0.91

7 “[V] flower” “flower” “[V] flower” 0.95

8 “[V] narcissus” “narcissus” “[V] narcissus” 0.92

D DETAILS OF TASKS AND TASK CATEGORIES

Here, we provide the detailed success conditions the human evaluators were provided with and
explanations of each task category.

Detailed Task Success Conditions

• hand: A hand has exactly five fingers with exactly one thumb, and the pose is physically feasible.
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• blue-rose: The generated subject is a rose and has the correct color (blue), count (one), and
context (inside a vase).

• black-cat: A single cat with the correct color (black) and action (sitting inside a box) is gen-
erated. The cat’s pose is feasible, with no parts of the body penetrating the box. The cardboard is
shaped like a functional box.

• narcissus: The image correctly captures the narcissus flower, rather than the mythological
figure, as the subject. Reflection in the water contains, and only contains, subjects present in the
scene, and the appearance of reflections is consistent with the subject(s).

• mountain: View of the mountains is from a train window. The body of the train the mountain
is seen from is not in the view. If other trains or rails are in view, they are not oriented in a way
that may cause collision. Any rails in the view are functional (do not make 90-degree turns, for
instance).

Description of Task Categories

• Correction: Removing distortions or defects in the generated image. For example, generating
non-distorted human limbs.

• Reasoning: Capturing object attributes (e.g., color or texture), spatial relationships (e.g., on top
of, next to), and non-spatial relationships (e.g., looking at, wearing).

• Counting: Generating the correct number of specified objects.
• Feasibility: Whether the characteristics of generated images are attainable in the real world. For

example, the pose of articulated objects is physically possible, or reflections are consistent with
the subject.

• Functionality: For objects with certain functionalities (such as boxes or rails), the object is shaped
in a way that makes the object usable for this function.

• Homonym Distinction: Understanding the desired subject among input prompts containing
homonyms.

• Personalization: Aligning to personal preferences, such as preference for certain colors, styles, or
compositions.

E HERO IMPLEMENTATION

E.1 HERO DETAILED ALGORITHM

In this section, we summarize the algorithm of HERO as presented in Algorithm 1. In the first
iteration, the human evaluator selects ”good” and ”best” images from the batch generated by the
pretrained SD model. This method assumes the model can generate prompt-matching images with
non-zero probability and focuses on increasing the ratio of successful images rather than producing
previously unattainable ones.

Algorithm 1 HERO’s Training

Require: pretrained SD weights ϕ, best image ratio β, feedback budget Nfb
Initialize: learnable weights θ, # of feedback nfb “ 0, latent distribution πHERO “ N pzT ;0, Iq

1: while nfb ă Nfb do
2: Sample nbatch noise latents zT from πHERO Ź Feedback-Guided Image Generation
3: Perform denoising process for each zT to obtain trajectory tzT , zT´1, ¨ ¨ ¨ , z0u.
4: Decode Z0 with SD decoder for images X .
5: Query human feedback on X , and save corresponding Z`

T , Z´
T , zbest

T .
6: Update θ of Eθ and gθ by minimizing Eq. (3). Ź Feedback-Aligned Representation Learning
7: Compute reward Rpz0q according to Eq. (4).
8: Update ϕ via DDPO by minimizing Eq. (8).
9: Update latents distribution πHERO using Eq. (5).

10: nfb `“ nbatch.
11: end while
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E.2 HERO TRAINING PARAMETERS

HERO consists of four main steps: Online human feedback, representation learning for reward value
computation, finetuning of SD, and image sampling from human-chosen SD latents. In πHERO, we
choose its variance as ε20 “ 0.1 accross all experiments. Table 7 lists the parameters used in each
step.

Representation learning network architecture. The embedding map is an embedding network
Eθp¨q followed by a classifier head gθp¨q. The embedding network Eθp¨q consists of three convo-
lutional layers with ReLU activation followed by a fully connected layer. The kernel size is 3, and
the convolutional layers map the SD latents to 8 ˆ 8 ˆ 64 intermediate features. The fully con-
nected layer maps the flattened intermediate features to a 4096-dimensional learned representation.
The classifier head gθp¨q consists of three fully connected layers with ReLU activation, where the
dimensions are r4096, 2048, 1024, 512s.

Table 7: HERO training parameters

Embedding Network Eθp¨q and Classifier Head gθp¨q

Learning rate 1e´5

Optimizer Adam (Kingma & Ba, 2015)
(β1 “ 0.9, β2 “ 0.999,weight decay “ 0)

Batch size 2048
Triplet margin α 0.5

SD Finetuning

Learning rate 3e´4

Optimizer Adam (Kingma & Ba, 2015) (β1 “

0.9, β2 “ 0.999,weight decay “ 1e´4)
Batch size 2

Gradient accumulation steps 4
DDPO clipping parameter 1e´4

Update steps for loss computation K 5

Image Sampling

Diffusion steps 50 (20 for hand)
DDIM sampler parameter η 1.0

Classifier free guidance weight 5.0
Best image ratio β 0.5

F BASELINE IMPLEMENTATIONS

F.1 DREAMBOOTH TRAINING SETTINGS

Here, we discuss the DreamBooth (Ruiz et al., 2023) experiment design.

Input Images. Following the original DreamBooth paper that uses 3 to 5 input images, we ask
human evaluators to select the top 4 best images among the initial batch of images generated for
each task and use these selected images as training inputs.

Hyperparameters. We follow the common practice of training DreamBooth with LoRA (Hu et al.,
2022). Training hyperparameters are listed in Table 8.

Table 8: DreamBooth training parameters

Parameters Values

Learning rate 1e´5

Training epochs 250

Optimizer Adam (Kingma & Ba, 2015) (β1 “

0.9, β2 “ 0.999,weight decay “ 0.01)
Batch size 2

Prior presevation loss weight 1.0
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Prior Preservation Loss (PPL). This function is enabled and uses the default setting where 100
class data images are generated from the class prompts.

Prompts. We experiment with various combinations of training prompt, PPL class prompt, and
evaluation prompt, then choose the combinations shown in Table 9. See Appendix C.3 for details on
prompting experiments.

The outcome of DB training is influenced by multiple factors, including the number and selection
of input images, training hyperparameters, use of PPL, and combination of prompts. While we
optimized these elements for our tasks to the best of our ability, it is possible that further tuning can
yield better results, as the large number of tunable variables makes DB challenging to optimize.

Table 9: Training, class, and generation prompts for DreamBooth experiments

Task Name Training Prompt Class Prompt Generation Prompt

hand “[V] hand” “hand” “[V] hand”
blue-rose “[V] flower” “flower” “[V] flower”
black-cat “[V] cat” “cat” “[V] cat”
narcissus “[V] flower” “flower” “[V] flower”
mountain “[V] mountains” “mountains” “[V] mountains”

Table 10: Enhanced prompts used in SD-Enhanced baseline

Task Name Generation Prompt Enhanced Prompt

hand “1 hand”

“A close-up of a beautifully detailed hand with five fingers,
featuring delicate and lifelike skin texture, fingers
gracefully extended. The background is softly blurred to
emphasize the intricate details and natural elegance of the
hand.”

blue-rose
“photo of one blue rose
in a vase”

“A high-resolution photo of a single vibrant blue rose
elegantly placed in a crystal vase on a polished wooden
table, with soft natural light illuminating the petals and
creating gentle shadows. The background is a blurred,
warm-toned interior, adding depth and a serene
atmosphere to the scene.”

black-cat
“a black cat sitting
inside a cardboard box”

“A high-resolution photo of a sleek black cat comfortably
sitting inside a slightly worn cardboard box. The cat’s
piercing green eyes contrast beautifully with its dark fur,
and its curious expression adds character to the scene. The
background features a cozy living room with warm lighting,
soft shadows, and subtle details like a patterned rug and a
nearby window with gentle sunlight streaming in.”

narcissus
“narcissus by a quiet
spring and its reflection
in the water”

“A serene, high-resolution image of a delicate narcissus
flower growing by a tranquil spring, its vibrant petals and
slender stem clearly reflected in the crystal-clear water.
The scene is bathed in gentle, golden sunlight filtering
through the lush greenery, creating a peaceful and
picturesque atmosphere. Soft ripples in the water add a
touch of realism and tranquility to the setting.”

mountain
“beautiful mountains
viewed from a train
window”

“A breathtaking, high-resolution view of majestic
mountains seen from the window of a moving train. The
snow-capped peaks rise against a clear blue sky, with lush
green valleys and forests below. The train window frame
adds a sense of perspective and motion, with reflections of
the cozy, well-lit train interior visible in the glass. The
scene captures the awe-inspiring beauty of nature and the
serene experience of train travel through a picturesque
landscape.”

23



Published as a conference paper at ICLR 2025

F.2 PROMPT ENHANCEMENT WITH A LARGE VLM

In the SD-enhanced baselines, we prompt the Stable Diffusion v1.5 model with a prompt en-
hanced by GPT-4 (Brown, 2020; Achiam et al., 2023). To generate the enhanced prompts, we
input “Enhance the following text prompt for Stable Diffusion image generation: [prompt]” to
GPT-4 ([prompt] is the original task prompt labeled ”Prompt” in Table 1 and ”Generation Prompt”
in Table 10). Output-enhanced prompts used for the SD-enhanced baseline are shown in Table 10.
Although our prompt enhancement is not an exhaustive method to show the full capabilities of
prompt engineering, we include SD-enhanced as a baseline to demonstrate that many of our tasks
are challenging to solve, given a simple prompt enhancement method.

G ADDITIONAL ELABORATION OF HERO’S MECHANISMS

In this section, we elaborate on HERO’s mechanism, highlighting its cost-effective trainable embed-
dings and the application of contrastive learning.

About Trainable Embedding. While HERO introduces additional training for a human-aligned
embedding to convert binary feedback into informative continuous reward signals, this mechanism is
both efficient and effective in significantly reducing the need for online human feedback, compared
to D3PO. To further illustrate the efficient training of this embedding, consider the hand deformation
correction task in Figure 3. HERO requires only 1152 samples and 144 update iterations (batch
size 8), compared to D3PO, which needs 5000 samples and 500 update iterations (batch size 10).
Moreover, HERO’s embedding map is implemented using a simple network with three CNN layers
and one fully connected layer, making its training far less complex than fine-tuning Stable Diffusion.

About Trainable Embedding with Selected “Best”. Below, we also provide an estimated run-
time comparison. The process of selecting a single “best” image from all “good” images requires
minimal extra effort from the evaluators. While providing binary “good”/“bad” labels, the evaluators
are already exposed to all candidate images. With only 64 to 128 images presented at a time, evalu-
ators typically have a general sense of which image to select as the “best” by the time they complete
the binary evaluations. To provide a concrete estimate, we measured the time spent by evaluators
during feedback. Evaluators spent approximately 0.5 seconds per image for binary “good”/“bad”
evaluations. The time required to select the “best” image among candidates ranged from 3 to 5 sec-
onds, depending on the number of candidates. For the upper limit of 128 candidates in our setup, the
selection process took approximately 10 seconds. In terms of time, providing the “best” image label
is roughly equivalent to giving feedback on 5–20 binary labels. For example, in the hand anomaly
correction experiment, human evaluators provided feedback over 9 epochs with 128 feedback in-
stances per epoch, resulting in a total of 9 ˆ 128 “ 1152 binary feedback labels. If we estimate the
effort of “best” image feedback as 20ˆ that of binary feedback, this adds 9 ˆ 20 “ 180 additional
feedback, for an approximate total of 1332 feedback labels. This is still significantly less than the
5000` feedback labels required by D3PO to achieve a comparable success rate.

About the Usage of Contrastive Learning. We emphasize the distinction in HERO’s use of con-
trastive learning, which focuses on learning relationships among human-annotated samples through
triplet loss. This differs from the contrastive learning literature (Chen et al., 2020; He et al., 2020;
Caron et al., 2020), which primarily emphasizes unsupervised learning with large-scale unlabeled
datasets. Specifically, HERO employs feedback-aligned representation learning by leveraging hu-
man annotations (e.g., “good”, “bad”, and “best”) to structure embedded representations into distinct
clusters using triplet loss. This approach enables efficient fine-tuning using continuous rewards de-
rived from the similarity to the human-selected “best” samples. As a result, HERO significantly
reduces the need for online human feedback, requiring only 0.5 ´ 1K samples, compared to base-
lines such as D3PO, which require at least 5K.
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H ADDITIONAL RESULTS

Figure 10: Randomly generated samples from pretrained SD and HERO for hand task.
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Figure 11: Randomly generated samples from pretrained SD and HERO for blue-rose task.
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Figure 12: Randomly generated samples from pretrained SD and HERO for black-cat task.
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Figure 13: Randomly generated samples from pretrained SD and HERO for narcissus task.
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Figure 14: Randomly generated samples from pretrained SD and HERO for mountain task.
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Figure 15: Randomly generated samples from pretrained SD and HERO (trained on the prompt
“sexy”) for potentially NSFW D3PO prompts, listed as follows: “provocative art”, “forbidden plea-
sures”, “intimate moments”, “sexy pose”, “ambiguous beauty”, “seductive allure”, “sensual ele-
gance”, “artistic body”, “gentle intimacy”, “provocative aesthetics”, “whispers of desire”, “artful
sensuality”, “seductive grace”, and “ostentatious temptation”.
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