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Peeling Back the Layers: Interpreting the Storytelling of ViT
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ABSTRACT
By integrating various modules with the Visual Transformer (ViT),

we facilitate a interpretation of image processing across each layer

and attention head. This method allows us to explore the connec-

tions both within and across the layers, enabling a analysis of how

images are processed at different layers. Conducting a analysis of

the contributions from each layer and attention head, shedding light

on the intricate interactions and functionalities within the model’s

layers. This in-depth exploration not only highlights the visual

cues between layers but also examines their capacity to navigate

the transition from abstract concepts to tangible objects. It unveils

the model’s mechanism to building an understanding of images,

providing a strategy for adjusting attention heads between layers,

thus enabling targeted pruning and enhancement of performance

for specific tasks. Our research indicates that achieving a scalable

understanding of transformer models is within reach, offering ways

for the refinement and enhancement of such models.

CCS CONCEPTS
• Computing methodologies→ Knowledge representation and
reasoning.

KEYWORDS
ViT, representation, attention map, interpretability, explainability

1 INTRODUCTION
Since the introduction of CLIP (Contrastive Language-Image Pre-

training)[26], the model has leveraged the concept of contrast to

derive image representations from natural language supervision,

thereby integrating image and text representations more effectively.

This method transcends traditional supervision signals by harness-

ing the rich expressiveness of language and utilizing extensive

datasets for training. Not only has this approach enhanced perfor-

mance across various downstream tasks, but it has also established

a robust bridge between text and images.

Inspired by this, numerous studies have sought to enhance CLIP,

such as by teaching the model to focus on specific domains[31], or

by attempting to increase the complexity of the CLIP model[13, 30].

This includes strategies like reconstructing masked-out, image-text

aligned vision features. Other researchers have explored utilizing

ViT in isolation, complemented by additional modules. This ap-

proach aims to fully exploit the semantic information acquired

during the pre-training phase. Such researches, as demonstrated
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in works like [7, 16, 17], have contributed to the advancement of

pre-trained vision models and large language models (LLMs) in

the vision-language domain. However, these advancements largely

overlook a crucial question: how exactly does the model understand

the images we input during the image encoding stage?

Although some research have already been conducted to explore

the processes within image encoders, Like Gandelsman[14], this

work analyzes the later attention layers of CLIP-ViT and breaks

down its representations into interpretable textual directions. It

attributes these representations to specific attention heads and im-

age locations, offering insights into CLIP-ViT’s internal structure.

Similarly, Timothée[8] have employed heatmap analyses to investi-

gate. Their research reveals that these artifacts are outlier tokens

with significantly higher norms, which manifest in transformer

models under certain conditions. These tokens do not primarily

carry local image information; instead, they appear to encapsulate

global attributes. However, while these studies, which focus on the

granularity of attention heads and image tokens, explain the in-

terpretability of CLIP-ViT’s internal mechanics, they also guide us

toward a deeper question. This question emerges particularly as we

navigate the transition from the micro-level (attention heads and

image tokens) to the macro-level (the layers within the ViT): What

specific information do the layers within the ViT pay attention to?

This inquiry highlights the intricate interplay between attention

mechanisms, the representation of image tokens, and the overall

depth of the ViT architecture—an area that remains unexplored.

The CLIP-ViT architecture, its use of attention mechanisms al-

lows for focusing on and integrating information from various

image areas. This enables CLIP-ViT to highlight relevant features,

leading to a deeper insight into the visual data. Crucially, given that

CLIP-ViT can be integrated with numerous components, such as

combining with the CLIP-TexT encoder to map the vision-language

space, this allows for the analysis of relationships between images

and text. Directly connecting a text decoder enables the conversion

of captured image features into natural language descriptions, it

significantly enhances the interpretability of the model’s decision-

making process, making it easier to trace how specific image aspects

contribute to the model’s output. Alternatively, appending an MLP

and classification layer enables zero-shot or few-shot learning, serv-

ing as an evidence to the utility of the extracted image features.

Our initial analysis, utilizing heatmaps to examine the domains

of interest within input images while discounting the impact of

outlier tokens[8]. This analysis reveals that each layer of CLIP-ViT

possesses a distinctive focus, engaging with different aspects of the

visual field. As depicted in Figure 1, each layer of the heatmap has

distinct focal points; the earlier layers familiarize with the envi-

ronment, middle layers then focus on characters and details, while

the upper layers distribute attention more evenly. This delineation

underscores the unique contribution of each layer to the overall

interpretative process. Building on this foundation, we explore con-

verting the intricate visual analysis performed by CLIP-ViT into

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 1: The original image, heatmaps, and semantic descriptions for each layer reveal noticeable shifts in focus areas and a
gradual transition in semantic expressions from abstract to concrete.

human language by directly interfacing a decoder with these lay-

ers. This approach reveals that the generated textual descriptions

encompass a diversity of information, mirroring the heterogeneity

observed in visual focus. Moreover, the sequential aggregation of

outputs across layers demonstrates a discernible trajectory from ab-

stract to concrete. This progression is exemplified by the evolution

from "climbing a snowy mountain" to "edge of a sand dune," culmi-

nating in the realization of "a digitally created image." Such findings

convey a profound layered processing within CLIP-ViT, mapping a

procedure from abstract conceptualization to precise detail, thereby

enriching our comprehension of its analytical prowess.

In our exploration of the distinctive variances across successive

layers within CLIP-ViT, our objective is to delineate the origins of

these differences. Through attentive investigation, we discover that

the variation between the initial and final layers can be attributed

to the cumulative impact of the attention mechanisms deployed

within the network. This reason indicates that the discrepancies

noted between individual layers predominantly stem from the ag-

gregate effect of the network’s attention heads. Consequently, by

modulating the configuration of attention heads across the layers, it

becomes feasible to guide the model’s focus towards specific facets

of the visual input, thereby augmenting its sensitivity to the aspects

regarded as critical. This method ofmodulating inter-layer attention

provides a granular level of control over how CLIP-ViT processes

and discerns visual information. For instance, amplifying the in-

fluence of attention heads that favor particular image attributes

can enhance the model’s acuity for those attributes throughout

its depth. In contrast, mitigating the influence of certain attention

heads can decrease the model’s susceptibility to less relevant or

potentially confusing features, thus refining its concentration on

the most essential elements.

We make several contributions to the field, as outlined below:

• By meticulously designing the combination of modules within

the ViT architecture, we have enabled the concrete visualization

of differences across layers and in natural language descriptions,

facilitating subsequent analysis by humans.

•We conduct a quantitative analysis of the roles played by layers

across the lower, middle, and upper layers of the ViT, including the

implications of their removal. This provides new insights into and

explores the black box of these models, offering a clearer under-

standing of their internal mechanisms.

• Through a quantitative assessment of the differences between lay-

ers, this study introduces a method for adjusting the configuration

of attention heads between layers. This approach allows for the

model’s focus to be concentrated on specific aspects of the visual

input, enhancing its analytical precision.

2 RELATEDWORK
2.1 Vision model interpretability
A main stream of explainability techniques focuses on generating

visual explanations by creating heatmaps. The representative exam-

ples include Grad-CAM[28], Integrated Gradients[32], LRP[3], and

SHAP[19], which have been widely adopted in various domains

to enhance the interpretability[5, 36]. While these heatmap-based
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methods can effectively explain the relevance of specific regions

in an image to the model output, they are unable to intuitively

demonstrate how attributes that cannot be precisely localized to

specific areas of the image (such as an object’s size, shape, color,

texture, etc.) influence the model’s predictions. These non-spatially

localizable attributes often holistically affect the model’s perception

and judgment of objects, but heatmap methods try to explain and

visually represent their influence.

2.2 Intermediate representations explainability
Intermediate representations interpretability offers an approach to

deciphering deep learningmodels. Oneway in this domain is feature

inversion, which aims to reconstruct input images from learned fea-

tures at various layers of the model[11, 15, 20]. By visualizing these

reconstructions, we can reveal the visual concepts encoded by the

model, demonstrating its hierarchical feature learning process from

simple textures to complex semantics. Another line of research in-

vestigates individual neurons and their connections[1, 2, 23]. These

studies have identified neurons with specific visual concept selec-

tivity, revealing the model’s structured information flow.

These interpretability approaches are now increasingly comple-

mented by textual descriptions. This evolution aims to better align

the model’s learned features with human semantic knowledge.

Yuksekgonul et al. project model features onto a set of text-based

concepts, allowing visual features to be characterized using human-

interpretable semantic concepts[37]. Gandelsman’s work analyzes

the content focused on by the last four layers of attention heads

in CLIP-ViT, revealing through visualization the visual elements

each head concentrates on[14]. Goh et al. analyze the intermediate

representations of the multimodal model CLIP, identifying "multi-

modal neurons" responsive to different visual presentations of the

same theme[15]. This suggests that CLIP establishes a tight link

between visual and semantic elements.

Our work distinguishes itself from these studies by our ability to

pinpoint and analyze natural language interpretations for each layer

within CLIP, utilizing the differences between layers to leverage the

intrinsic language-image space inherent in the CLIP architecture.

3 DECOMPOSING ViT LAYER-BY-LAYER
This section explores how the ViT processes visual information

across its layers within the CLIP framework, where ViT acts as a

crucial image encoder. We begin by outlining CLIP’s architecture

to understand ViT’s role and then delve into ViT’s functionality,

focusing on Multi-Head Self-Attention and Multilayer Perceptron.

The analysis highlights how attention distribution across layers

and heads contributes to the emergence of inter-layer differences.

Building on this foundation, the differences between layers are

analyzed from three perspectives:

• Data Flow Perspective (Subsection 3.3): By examining the

flow of data through the self-attention mechanism across different

layers and heads, we illustrate the process through which inter-

layer differences arise.

• Heatmap Perspective (Subsection 3.4): Introducing the con-
cept of average attention scores, we define a measure of difference

between adjacent layers’ heatmaps, visually demonstrating varia-

tions in how different layers focus on image regions.

• Linguistic Perspective (Subsection 3.5): By decoding the fea-

ture representations of different layers into human-interpretable

language descriptions, we observe a transition from abstract to

concrete descriptions with increasing layer depth, reflecting the

hierarchical nature of ViT in semantic understanding.

These three perspectives essentially indicate the same phenome-

non, that is, the differences between layers.

3.1 CLIP Architecture
Details of CLIP. The CLIP model maps images and texts into a

shared representation space through contrastive learning, acting as

a bridge between the two mediums. CLIP comprises two encoders: a

Transformer-based text encoder𝑀text and an image encoder𝑀image,

which map the input text description 𝑡 and image 𝐼 into the same

representation space, respectively.

Relationship Between CLIP-ViT and CLIP-TexT. CLIP-ViT
and CLIP-TexT can be regarded as two parallel modules connected

through linear projection, collaboratively constructing and show-

casing a shared semantic space during the contrastive learning

process. However, a examination of CLIP-ViT reveals its inherent

ability to capture semantic information from images. This capability

is affirmedwhen a linear layer is added to CLIP-ViT for classification

tasks[29, 35] or when a text decoder (such as the Q-former + LLMs

in BLIP series[7, 16, 17]) is attached to generate image descriptions,

demonstrating its proficiency in semantic understanding.

Crucially, the semantic space manifest by CLIP-ViT does not

rely on the presence of the CLIP-TexT module. In fact, CLIP-ViT,

through its interaction with CLIP-TexT during the learning process,

has internalized this shared semantic space. Even in the absence of

CLIP-TexT, CLIP-ViT is still capable of maintaining and utilizing

the knowledge of this semantic space.

3.2 CLIP-ViT Structure
The Vision Transformer is a model architecture designed for com-

puter vision tasks, notably utilized as the backbone network for

image representation in CLIP. For an input image 𝐼 ∈ R𝐻×𝑊 ×3, ViT
first divides it into 𝑁 non-overlapping patches. These patches are

then projected into a 𝑑-dimensional vector space through a linear

transformation, resulting in 𝑁 𝑑-dimensional patch vectors, which

serve as the input sequence to the transformer. In addition to the

patch vectors, a learnable class token 𝑧0
0
∈ R𝑑 is introduced, which

remains at the first position throughout the computation process of

ViT and ultimately serves as the representation of the entire image.

The class token 𝑧0
0
and the 𝑁 patch vectors 𝑧0

1
, . . . , 𝑧0

𝑁
are concate-

nated column-wise to form the initial state matrix 𝑍 0 ∈ R𝑑×(𝑁+1) .
ViT consists of 𝐿 identical layers, each layer featuring two sub-

modules: Multi-Head Self-Attention (MSA) and Multilayer Percep-

tron (MLP). Let 𝑍 𝑙−1
represent the output of the 𝑙-1𝑡ℎ layer. The

computation within the 𝑙𝑡ℎ layer unfolds as follows:

𝑍 𝑙 = MSA
𝑙
(
𝑍 𝑙−1

)
+ 𝑍 𝑙−1

(1)

𝑍 𝑙 = MLP
𝑙
(
𝑍 𝑙

)
+ 𝑍 𝑙

(2)

Here, MSA
𝑙
and MLP

𝑙
denote the multi-head self-attention and

multilayer perceptron at the 𝑙𝑡ℎ layer, respectively. The outputs

from these sub-modules are combined with their respective inputs
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through residual connections, which assist in the learning process

by ensuring a smooth gradient flow across the network.

Following Elhage et al.[12], the MSA output is expressed as a

sum over 𝐻 independent attention heads and the 𝑁 input tokens.

[
MSA

𝑙
(
𝑍 𝑙−1

)]
𝑐𝑙𝑠

=

𝐻∑︁
ℎ=1

𝑁∑︁
𝑖=0

𝑥
𝑙,ℎ
𝑖

, 𝑥
𝑙,ℎ
𝑖

= 𝛼
𝑙,ℎ
𝑖

(
𝑧𝑙−1𝑖 𝑊

𝑙,ℎ
𝑉

)
(3)

where: 𝐻 represents the number of attention heads, 𝑁 signifies

the length of the input sequence, 𝑥
𝑙,ℎ
𝑖

indicates the contribution

of the 𝑖𝑡ℎ input token to the class token at the 𝑙𝑡ℎ layer and ℎ𝑡ℎ

attention head, 𝛼
𝑙,ℎ
𝑖

denotes the attention weight the class token

assigns to the 𝑖𝑡ℎ token at the 𝑙𝑡ℎ layer and ℎ𝑡ℎ attention head,

with

∑𝑁
𝑖=0 𝛼

𝑙,ℎ
𝑖

= 1.𝑊
𝑙,ℎ
𝑉
∈ R𝑑×𝑑ℎ is the value matrix of the ℎ𝑡ℎ

attention head at the 𝑙𝑡ℎ layer, transforming 𝑑-dimensional input

tokens into 𝑑ℎ-dimensional value vectors (𝑑ℎ = 𝑑/𝐻 ). 𝑧𝑙−1
𝑖
∈ R𝑑

represents the 𝑖𝑡ℎ output token of the 𝑙−1 layer. This decomposition

clearly illustrates how the output of the multi-head self-attention is

assembled from the contributions of each layer, attention head, and

input token. Such a decomposition aids in a deeper understanding of

ViT’s internal mechanics and lays the groundwork for subsequent

interpretability analysis.

3.3 Data Flow Perspective
Based on Equations 1 and 2, we can represent the information

difference between two adjacent layers, the information difference

between adjacent layers, Δ𝑍 𝑙
, can be expressed as:

Δ𝑍 𝑙 = 𝑍 𝑙 − 𝑍 𝑙−1 = MLP
𝑙
(
𝑍 𝑙

)
+MSA

𝑙
(
𝑍 𝑙−1

)
(4)

ExpandingMSA
𝑙
(
𝑍 𝑙−1

)
at the class token position into the form

of attention heads as Equation 3, we obtain:

Δ𝑍 𝑙
𝑐𝑙𝑠

=

[
MLP

𝑙
(
𝑍 𝑙

)]
𝑐𝑙𝑠
+

𝐻∑︁
ℎ=1

𝑁∑︁
𝑖=0

𝑥
𝑙,ℎ
𝑖

(5)

Therefore, the information difference between two adjacent layers

can be represented as the sum of the outputs from the MLP and the

multi-head self-attention mechanism.

However, this concept can be extended to all positions in the

sequence. For the 𝑗𝑡ℎ output token at layer 𝑙 , the information dif-

ference Δ𝑍 𝑙
𝑗
relative to the corresponding position in the previous

layer can be fully represented as:

Δ𝑍 𝑙
𝑗 =

[
MLP

𝑙
(
𝑍 𝑙

)]
𝑗
+

𝐻∑︁
ℎ=1

𝑁∑︁
𝑖=0

𝛼
𝑙,ℎ
𝑖, 𝑗

(
𝑧𝑙−1𝑖 𝑊

𝑙,ℎ
𝑉

)
(6)

where,

[
MLP

𝑙
(
𝑍 𝑙

)]
𝑗
denotes the output of the MLP at position 𝑗

in layer 𝑙 . 𝐻 indicates the number of attention heads. 𝑁 represents

the length of the input sequence. 𝛼
𝑙,ℎ
𝑖, 𝑗

is the attention weight the

𝑗𝑡ℎ output token at layer 𝑙 , head ℎ, assigns to the 𝑖𝑡ℎ input token,

satisfying

∑𝑁
𝑖=0 𝛼

𝑙,ℎ
𝑖, 𝑗

= 1.𝑊
𝑙,ℎ
𝑉
∈ R𝑑×𝑑ℎ is the value matrix of the

ℎ𝑡ℎ attention head at layer 𝑙 , transforming 𝑑-dimensional input

tokens into 𝑑ℎ-dimensional value vectors (𝑑ℎ = 𝑑/𝐻 ). 𝑧𝑙−1
𝑖
∈ R𝑑

represents the 𝑖𝑡ℎ output token of layer 𝑙 − 1.

This expression demonstrates how the information difference at

the 𝑖𝑡ℎ position of layer 𝑙 is comprised of the MLP output and the

weighted contributions from all attention heads at that position.

Through this decomposition, we can gain a deeper understanding

of the dynamics of spatial information transmission and updating

within the ViT model, and how different attention heads capture

and integrate information at various positions.

3.4 Heatmap Perspective
At a macro level, we can observe the differences between layers

by comparing the attention heatmaps across different layers. For

instance, the attention heatmaps of layers, as illustrated in Figure 1,

show significant differences, reflecting their distinct focuses in

processing visual information.

This variability can be captured using equations 5 and 6, the

term

∑𝐻
ℎ=1

∑𝑁
𝑖=0 𝑥

𝑙,ℎ
𝑖

represents the sum of contributions from all

attention heads at the CLS position in layer 𝑙 . The difference in this

term directly manifests in the attention heatmaps.

To better describe the variability observed in the heatmaps, we

use 𝐴𝑙
to represent the average attention score at layer 𝑙 :

𝐴𝑙 =
1

𝐻

𝐻∑︁
ℎ=1

𝑁∑︁
𝑖=1

𝛼
𝑙,ℎ
𝑖

(7)

where 𝛼
𝑙,ℎ
𝑖

denotes the attention score assigned by the ℎ𝑡ℎ attention

head at layer 𝑙 to the 𝑖𝑡ℎ input token. With 𝐴𝑙
, we can define the

difference in average attention scores between adjacent layers, Δ𝐴𝑙
:

Δ𝑍 𝑙 ≡ Δ𝐴𝑙 = 𝐴𝑙 −𝐴𝑙−1
(8)

Δ𝐴𝑙
directly reflects the variability between layers 𝑙 and 𝑙 − 1 on

the attention heatmaps. The greater the absolute value of Δ𝐴𝑙
, the

more pronounced the difference in attention distribution between

the two layers; conversely, the smaller the absolute value of Δ𝐴𝑙
,

the more similar the attention distribution between the two layers.

3.5 Linguistic Perspective
By decoding 𝑍 𝑙

, we can convert the visual analysis process of CLIP-

ViT into human understandable language descriptions, thus allow-

ing us to more intuitively observe the differences between layers.

As illustrated in Figure 1, with increasing layer depth, the generated

text descriptions evolve from abstract to concrete. We introduce

a decoder 𝐷 to denote the process of converting 𝑍 𝑙
into natural

language descriptions, where 𝐷 : R𝑑×(𝑁+1) → S, with R𝑑×(𝑁+1)
representing the space of 𝑍 𝑙

and S denoting the space composed

of natural language descriptions. 𝐷 is a Transformer-based autore-

gressive language model. The output representation 𝑍 𝑙
from layer 𝑙

is first mapped to an embedding layer, from which 𝐷 subsequently

generates the corresponding natural language description.

This allows us to extend the concept of Δ𝑍 𝑙
into the linguistic

domain. Specifically, we can define Δ𝑆𝑙 to represent the difference

in language descriptions between layer 𝑙 and layer 𝑙 − 1:

Δ𝑍 𝑙 ≡ Δ𝑆𝑙 = Metric(𝐷 (𝑍 𝑙 ), 𝐷 (𝑍 𝑙−1)) (9)

Here, Metric denotes a chosen standard of measurement (such as

BLEU[25], ROUGE[18], BERTScore[38], CIDEr[33], or using GPT-

4[24] to score) to assess the difference between two descriptions.
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As the layer number 𝑙 increases, according to the Equations 2,

𝑍 𝑙
is continuously updated and enriched, integrating information

from all preceding layers. Descriptions from earlier layers might

be more abstract and general, while those from later layers become

more specific and detailed. When we decode 𝑍 𝑙
, the generated text

descriptions will reflect these changes in hierarchy and detail. This

transformation aligns with the evolution of 𝑍 𝑙
, providing a deeper

insight into the model’s internal mechanisms through the lens of

human-interpretable language.

4 EXPERIMENT
In our experimental section, we start from a classic conclusion that

in ViT, the lower layers are responsible for processing low-level fea-

tures, focusing on local texture details, the middle layers introduce

concepts of object shapes and handle abstract features, while the

upper layers are tasked with processing high-level semantics and

capturing more global information[10, 22, 27]. We employ the three

perspectives —Data Flow, Heatmap, and Linguistic Perspectives—to

quantitatively analyze these aspects in a combined manner.

4.1 Experimental Information
Dataset Selection To thoroughly validate the effectiveness of our

experiments, we conduct tests across multiple datasets. These in-

clude WHOOPS[4], which features commonsense-defying images

for a variety of reasons, including deviations from expected social

norms and everyday knowledge. We also include the classic Ima-

geNet dataset[9] in our experiments; however, due to its size, we

only conduct experiments on the validation set.

Model SelectionOur study primarily focuses on EVA-CLIP-ViT[13,

30], a model with a 40-layer ViT architecture. This choice of ar-

chitecture is deliberate, as the 40-layer configuration provides a

more granular insight into the hierarchical processing of visual in-

formation compared to the short layer variant. This depth enables

us to more thoroughly investigate the transition from low-level

texture details to high-level semantic understanding, aligning with

our goal to analyze the meticulous ways in which ViT architectures

interpret and analyze visual data. In the section on the Linguistic

Perspective, we employ a decoder using instructBlip[7], which ap-

pends a Q-former behind its own ViT to obtain image query tokens.

This setup is further extend with a flan-t5-xl[6] for decoding. Our

experiments are conducted entirely in a zero-shot manner, without

any fine-tuning or training. The GPU use for our experiments is

equipped with 80 GB of VRAM, specifically the A800 model.

4.2 Lower layers: The Texture Tailors
Experiment Setting. In this experiment, our aim is to delve into

the details that the lower layers of the ViT model (specifically layers

0-10 and 11-20) focus on, as well as the main features processed

by these layers. From prior research, we understand that the lower

layers of the ViT model tend to capture texture details in images.

However, the specifics of these texture features and how they vary

between different layers require further investigation.

To determine whether the features extracted by the lower layers

exhibit universality and shareability, we conduct experiments on the

Whoops dataset as follows: First, we extract the output features of

the ViT model’s layers 0-10 and 11-20 for each image in the dataset.

Then, we average the output features across the entire dataset

to obtain an average feature vector for each layer. We consider

this average vector as a representation of the shared lower-level

features extracted by the corresponding layer. The Whoops dataset

is chosen for our experiments because its task is to describe strange

or unusual aspects of images. This demands from the model an

understanding of details, commonsense, and context, where any

difference directly reflects in the outcomes.

By analyzing the image descriptions generated by the model, i.e.,

through the perspectives of Data Flow and Linguistic Perspectives,

we can understand the role of lower-level features in capturing

anomalies in images, and thereby infer the types of texture details

these features represent. To validate the effectiveness and gener-

alizability of these average feature vectors, we apply them to a

downstream image description generation task. Specifically, we

replace the input to the Multi-Head Self-Attention (MSA) in Equa-

tion 1 with these average feature vectors, so the model’s attention

mechanism operates solely on these average vectors. This allows

us to evaluate the effectiveness of generating image descriptions

using only shared lower-level features.

Experiment Result. Figure 2 illustrates the changes in BERTScore

values between the model’s output and the original output after

averaging the features of different layers in the ViT model. The

x-axis represents the layer number (0-20), and the y-axis shows the

BERTScore value after averaging for each layer.

Figure 2: The graph averages results from the bottom and
middle-lower layers.

The results indicate that averaging any 0-10 layers significantly

impacts the model’s output, as shown by the red curve in the graph.

Upon further check of the averaged natural language description

outputs, we observe that the content becomes disordered, the output

cases will be shown in Appendix A.

However, averaging any layer within the 11-20 range seems not

to have a significant impact on the model’s output, as indicated by

the yellow curve. Further experiments averaging all layers between

11-20 simultaneously also show no significant effect, as depicted

by the blue curve. To further explore the role of layers 11-20, we

randomly select 500 images from the ImageNet dataset, extract

their average vectors for layers 11-20, and then replace the corre-

sponding layers in theWHOOPS dataset with these average vectors.

Surprisingly, this replacement still does not significantly affect the

model’s output, as shown by the green curve.

Does this mean that layers 11-20 are unimportant to the model’s

decision-making process? To answer this question, we attempt to

"confuse" these layers by replacing the residual connections with
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average vectors in Equation 1. We find that such "confusion," even

if it occurs in just one layer, leads to a sharp decline in model

performance. Additionally, in the natural language descriptions, we

observe mentions of "black and white photos".

Experiment analysis. In this section, we address three questions:

(1) Impact of Averaging Layers 0-10: In the ViT model, layers 0-

10 are primarily responsible for extracting low-level image features.

These features lay the foundation for subsequent high-level feature

extraction and semantic understanding. Averaging these layers can

break these crucial low-level features, thereby affecting feature

extraction in subsequent layers and the final output. The model

struggles to identify and make sense of the modified basic features.

(2) Lack of Impact from Averaging Layers 11-20: The middle

to lower layers (11-20) of ViT process more abstract and complex

features, such as parts of objects, entire objects, and ultimately

achieving global scene understanding. By the time visual informa-

tion reaches these layers, it has been abstracted to a level where

averaging may not avoid the essential features the model relies on

for high-level reasoning. The absence of significant impact from re-

placing averaged vectors from layers 11-20 in the WHOOPS dataset

onto the model suggests that these layers are robust against aver-

aging. Even downplayed, the averaged vectors might still contain

enough semantic information for the model to generate accurate

outputs. This resilience underscores the model’s ability to extract

meaningful information from even compromised abstract features.

(3) Drastic Performance Decline from "confusion" Layers:
Directly "confusing" layers 11-20, by replacing residual connections

with averaged vectors, leads to a drastic decline in model perfor-

mance. This finding may seem contradictory to previous results,

where averaging layers 11-20 did not affect model outputs. Altering

the residual connections fundamentally changes how information

is propagated through the model, possibly leading to a failure in cor-

rectly integrating and interpreting visual information and causing

substantial performance decreases. Experiments reveal that when

residual connections are replaced with average vectors, descrip-

tions such as "black and white photos" emerge, suggesting layers

11-20 might be closely related to color information expression.

4.3 Upper layers: The Semantic Sculptors
Experiment Setting. In investigating the impact of the ViT’s top

layers (primarily layers 31-38) on model performance, we adopt

an approach that combines Data Flow and Linguistic Perspectives.

Similar to previous experiments, we compare the model’s output

at different layers with the golden label on the WHOOPS dataset.

Unlike experiments with lower layers, here, the focus is more on the

influence of high-level abstract semantics on the final golden label

rather than comparing it with the final layer’s output, to assess each

layer’s contribution to the overall output quality. Figure 3 presents

the experimental results, with the horizontal axis representing the

layer numbers and the vertical axis showing the average CIDEr

calculated across the entire dataset.

Experiment Result. The results indicate that as the number of

layers increases, the CIDEr gradually improves. However, starting

from layer 35, the increase in CIDEr begins to be stable.

Experiment Analysis. In this section, we address two questions:

Figure 3: The CIDEr as it changes from Layers 31 to 38.

(1) The result improvement tend to plateau after layer 35: The
plateauing after layer 35 can be attributed to the model reaching a

point of diminishing returns in terms of extracting and integrating

additional semantic information from the visual input. The top

layers of the ViT model are designed to capture high-level semantic

features and global contextual information. By layer 35, the model

has likely already captured the most significant semantic features

relevant to the task, and additional layers contribute marginally

smaller improvements to the final output quality.

(2) Explanations from the perspectives of Data Flow and Lin-
guistic Perspectives: • Data Flow Perspective. By the time infor-

mation flows through to the upper layers (beyond layer 35), it’s al-

ready highly abstracted, representing complex scene configurations

and relationships among objects within a global context. Further

layers add only marginal semantic differentiation or refinement

to this already comprehensive visual understanding, thus offering

minimal additional benefit to the task of semantic interpretation

from a visual standpoint. • Linguistic Perspective. The essence of
the plateau from a linguistic perspective is that the visual semantics

necessary for text generation have reached a saturation point; the

model’s linguistic output cannot be significantly improved without

additional external input or a more detailed processing mechanism

that can extract further subtleties from the visual data.

4.4 Middle layers: The Concept Weavers
Experiment Setting. In exploring the mid-layers (20-30) of the

ViT model, we integrate observations from sections 4.2 and 4.3,

discovering these layers play a crucial role in generating accurate

descriptions. Analyzing from the Linguistic Perspective, we observe

a transition from "abstract to detail" in the upper mid-layers.

For instance, the model refines "a large animal" to "a giraffe,"

specifies "a white statue" as "a snowman," and identifies "plants"

as "cacti." This transition from abstract descriptions to concrete

entities highlights the mid-layers’ significant role in semantic ex-

pression and detail capture, the cases will be shown in Appendix

B. To further validate this finding, we conduct experiments on the

WHOOPS dataset, particularly examining the model’s performance

on questions requiring high detail.

Overall, the research process of this subsection is as follows: We

first analyze the connection between this abstract-to-detail transi-

tion and model performance from both the Heatmap Perspective

and the Linguistic Perspective. Then, we carefully design prompts

and used GPT-4V(ision) to score the semantic descriptions of these

layers, objectively evaluating the "abstract to detail" phenomenon
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we identified. After experimental validation, we further explore

how such macro-level differences emergence. We focus on the at-

tention heads within the same layer. By analyzing the data flow, we

discover that certain attention heads play a key role in capturing

and conveying detail information. Based on this finding, we attempt

to prune some irrelevant heads, and the result showed that doing

so could enhance the model’s attention to details, further validating

the effectiveness of the Data Flow Perspective.

Heatmap and Linguistic. As illustrated in Figure 1, the heatmaps

and semantic descriptions work synergistically. In the appendix

B, we provide more samples of heatmaps and semantic descrip-

tions. These comparison images illustrate the attention distribution

across different layers and their corresponding semantic descrip-

tions, visually presenting the transition from abstract to detail. On

the heatmaps, there is a process from focusing on general areas to

specific detail parts , in terms of semantic descriptions, is reflected

as a shift from general descriptions to the capture of details.

GPT-4V(ision) Evaluating. In exploring semantic changes in the

middle layers, we choose to use GPT-4 as an objective evaluation

tool, based on two important considerations: Firstly, GPT-4 has

been shown to significantly overlap with human evaluators across

many tasks, providing us with reliable assessment results. Secondly,

there is currently no tool as efficient and comprehensive as GPT-4

in dealing with entities and their relationships. For example, un-

derstanding the transition from "a white statue" to "a snowman,"

requires a rich background in semantic knowledge and the integra-

tion of image information for accurate judgment.

To fully leverage the GPT-4V, we carefully design the prompts for

the evaluation task. As shown in Figure 4, we construct a structured

prompt to guide GPT-4V in scoring the descriptions from different

layers from a semantic perspective. This prompt clearly defines

the criteria and objectives of the evaluation, asking GPT-4V to

determine whether the descriptions exhibit a progression from

abstract to concrete and to assign a corresponding score.

Please evaluate the changes between different layers of the given image de-

scription and determine if the description becomes more concrete according to

the following criteria:

Number of Entities: The count of specific entities mentioned in the descrip-

tion, such as objects, people, scenes, etc. Specificity of Entities: Considering
factors such as entity attributes and detailed descriptions, the average level

of specificity of entities in the description. Information Content of the De-
scription: The amount of useful information contained in the description,

considering the richness and detail of the description, and whether it is more

specific than the previous layer (the first input is default scored as 3). Corre-
spondence Between Description and Image: The relevance and degree of

match between the description and the image content.

For each criterion, please score according to the following levels:

1 point: Few/Poor. 3 points: Medium/Average. 5 points: Many/Good.

{LAYERS_LIST}

Figure 4: The above depicts the prompt input for GPT-
4V(ision), where {LAYERS_LIST} serve as placeholders, which
will be provided during actual implementation.

This approach enables us to objectively quantify the trend of

semantic changes in the middle layers, thereby validating the ob-

served phenomenon of a transition from "abstract to concrete." The

specific results are illustrated in Figure 5, where the vertical axis

represents the scores given by GPT-4V, and the horizontal axis

shows the changes in layers. By using GPT-4V to score semantic

descriptions across different layers, we observe an upward trend,

indicating that the semantic descriptions indeed transition from

abstract to concrete. Furthermore, the results show a significant se-

mantic shift particularly between layers 24-28. More examples will

be provided in the appendix C. The scoring results from GPT-4V

provide us with objective, quantifiable evidence that supports the

phenomena.

Figure 5: Abstract to concrete score as evaluated by GPT-4V.

Specific Attention Head. To further explore the transition phenom-

enon from "abstract to concrete", we approach from the perspective

of data flow, focusing on individual attention heads or combinations.

By designing masking matrices, we selectively block the influence

of certain attention heads (details described in the appendix D),

thus precisely identifying the role of each head or head combina-

tion in semantic expression and detail capture. This decomposition

method not only aids in understanding the information processing

mechanisms within layers but also offers new insights into the

study of model interpretability.

Figure 6: The original image, Layer 26 outputs, and atten-
tion heads of Layer 27 demonstrate a correlation between
heatmaps and textual descriptions, linked to specific heads.

In Figure 6, we present heatmaps for individual attention heads

and their corresponding semantic expressions. These visual results
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provide rich information, revealing the diversity and complemen-

tarity of different attention heads in semantic expression and detail

capture. From the heatmaps, different attention heads exhibit vary-

ing focus patterns. Some heads may focus more on the overall

structure and layout of the image, while others concentrate on

specific local areas and details. Furthermore, we observ significant

differences in the semantic expressions generated by different at-

tention heads. Some heads produce more abstract and generalized

descriptions, whereas others generate more detailed descriptions.

These experimental results lead us to pay attention to whether

we could enhance the model’s focus on desired details for specific

tasks through attention head pruning. Such targeted pruning offers

a method for fine-tuning the model’s attention mechanism, which

could lead to improved performance.

Attention Pruning. In this part, we discuss the method of pruning

attention heads based on a limited samples. Specifically, we select

100 samples and conduct the pruning operation following the pro-

cedure outlined in Algorithm 1. After completing the pruning, we

evaluate two key metrics using the remaining samples to assess the

effects of the pruning, with the results present in Table 1.

Table 1: Evaluation metrics for Attention Pruning.

CIDEr ↑ Convergence Layers ↓
BLIP2 FlanT5-XXL 1.2 35

+ Attention Pruning 1.24 34

Algorithm 1 Attention Pruning

1: Input: Dataset Dataset, number of attention heads 𝑛 in the current layer, Decoder

D, attention head coefficients 𝛼ℎ
𝑖,𝑗

2: Output: Adjusted attention head coefficients

3:

4: procedure PruneAttentionHeads
5: Randomly select𝑚 data from Dataset to form sample set 𝑆

6: for each data point 𝑠 in 𝑆 do
7: Decode the combined output Z𝑠 using D to get Ẑ𝑠
8: for each attention head ℎ from 1 to 𝑛 do
9: Extract and decode the output of head ℎ, Z𝑠

ℎ
, using D

10: Compute the BERTScore Score
𝑠
ℎ
= 𝐵𝐸𝑅𝑇𝑆𝑐𝑜𝑟𝑒 (D (Z𝑠

ℎ
), Ẑ𝑠 )

11: end for
12: end for
13: Calculate the average BERTScore for each head ℎ, get Score

𝑎𝑣𝑔

ℎ

14: Compute softmax for importance scaling: 𝛼ℎ = Softmax(Score𝑎𝑣𝑔
ℎ
)

15: Adjust coefficients: 𝛼ℎ
𝑖,𝑗
← 𝛼ℎ

𝑖,𝑗
· 𝛼ℎ

16: Prune attention heads with low importance scores

17: end procedure

Firstly, we examine the convergence speed of the model after

pruning. By comparing the average number of layers required

for the model to converge before and after pruning, we find that

the pruned model converges more quickly. The pruning process,

which removes redundant or less important attention heads, makes

the model more streamlined and efficient, thus accelerating the

convergence process.

Secondly, we evaluate the performance of the pruned model

on the dataset. By comparing the model’s output with the golden

label, we calculate a comparative metrics. Fortunately, the pruned

model achieves better results on this metrics. This indicates that the

streamlined model performs better than the original model across

the entire dataset and contains fewer model parameters.

Experiment Analysis. In this section, we address two questions:

(1) Transition from Abstract to Concrete: Firstly, the transition
observed is related to the hierarchical nature of visual information

processing, consistent with many previous research. Secondly, the

middle layers serve a pivotal role in bridging shallow local features

with deep semantic representations. Compared to the bottom layers,

which have a limited receptive field, and the top layers, which may

be overly coarse, the middle layers achieve a better balance.

(2) Effectiveness of Attention Pruning: Firstly, not all attention
heads are necessary. Different heads focus on different aspects;

some concentrate on crucial features while others may capture

irrelevant information. Secondly, pruning helps the model focus

more on key details. Retaining well-performing heads and sup-

pressing or removing underperforming ones acts as a form of "soft

guidance." Additionally, pruning can mitigate overfitting to some

extent, thereby enhancing its generalization capabilities.

5 CONCLUSION
The Vision Transformer (ViT) serves as a backbone framework

that merits detailed exploration, particularly by analyzing its layer-

by-layer processing within the CLIP architecture. We have metic-

ulously examined how layers and their corresponding attention

heads contribute to image understanding and revealing variations.

The application of a combination of data flow, heatmap, and lin-

guistic perspectives has facilitated a comprehensive understanding

of ViT’s functionality, offering insights into the complex dynamics

of the model. Our findings demonstrate that by modulating atten-

tion heads and their configurations, one can adjust themodel’s focus

and enhance its interpretability. This ability to guide layer-specific

processing emphasizes the potential of ViT models in applications

requiring precise image analysis and interpretation.

These discoveries provide new manners for understanding and

improving ViT as well as other similar transformer models, enhanc-

ing their applicability across various domains.

6 FUTUREWORK AND LIMITATIONS
In future work, we plan to delve deeper into the intrinsic connec-

tions between layers in the ViT model. There is a need to further

explore the mechanisms of cooperation between attention heads,

the methods of interaction and collaboration between heads remain

to be explored. Additionally, the robustness of the ViT model across

different layers has not yet been conclusively determined, such as

noise, occlusions, and adversarial attacks at various levels.

We recognize some limitations in this study. Observations sug-

gest that attention heads on certain layers may not directly influ-

ence the output of those layers but rather have a more significant

impact on subsequent layers[21, 34]. This phenomenon is closely

related to attention pruning techniques. Although our small-sample

pruning experiments validate the effectiveness of this method, this

pruning strategy might only find locally optimal solutions between

adjacent layers. Therefore, we emphasize that when applying at-

tention pruning techniques, it should be tailored to specific tasks

and validated through small-sample data. This approach can ensure

model performance while reducing computational costs.
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