
Under review as a conference paper at ICLR 2021

A EXPERIMENTS

We evaluated the momentum decay rule with Adam and SGDM on Residual CNNs, Non Residual
CNNS, RNNs, generative models, and Capsule Networks. For CNNs, we used the image clas-
sification datasets CIFAR10, CIFAR100 and STL10 datasets. For RNNs, we used the language
modeling dataset PTB. For generative modeling, we used the MNIST and CIFAR10 datasets. For
Capsule Networks, we used FMNIST. We tried to select a variety of well-known architectures on
well-accepted datasets. For each network dataset pair other than NSCN and Capsule Networks,
we evaluated Adam, QHAdam, AMSGrad, AdamW, YellowFin, DEMON Adam, AggMo, QHM,
DEMON SGDM, SGDM. For adaptive learning rate methods and adaptive momentum methods, we
generally perform a grid search over the learning rate. For SGDM, we generally perform a grid
search over learning rate and initial momentum. For SGDM, Aggmo, and QHM, we decay the
learning rate by 0.1 at 50% and 75% of the total epochs, following the standard in the literature.

A.1 SETUP

We describe the eight test problems in this paper.

• CIFAR10 - ResNet20. CIFAR10 contains 60,000 32x32x3 images with a 50,000 training set,
10,000 test set split. There are 10 classes. ResNet20 (He et al., 2016) is an 20 layers deep CNN
with skip connections for image classification. Trained with a batch size of 128.

• TINY IMAGENET - ResNet56. Tiny ImageNet contains 110,000 64x64x3 images with a
100,000 training set, 10,000 test set split. There are 200 classes. ResNet56 (He et al., 2016)
is a 56 layer deep CNN with skip connections for image classification. Trained with a batch size
of 128.

• CIFAR100 - VGG16. CIFAR100 is a fine-grained version of CIFAR-10 and contains 60,000
32x32x3 images with a 50,000 training set, 10,000 test set split. There are 100 classes. VGG16
(Simonyan & Zisserman, 2014) is a 16 layers deep CNN with extensive use of 3x3 convolutional
filters. Trained with a batch size of 128.

• STL10 - Wide ResNet 16-8. STL10 contains 1300 96x96x3 images with a 500 training set, 800
test set split. There are 10 classes. Wide ResNet 16-8 (Zagoruyko & Komodakis, 2016) is a 16
layers deep ResNet which is 8 times wider. Trained with a batch size of 64.

• PTB - LSTM. PTB is an English text corpus containing 929,000 training words, 73,000 validation
words, and 82,000 test words. There are 10,000 words in the vocabulary. The model is stacked
LSTMs (Hochreiter & Schmidhuber, 1997) with 2 layers, 650 units per layer, and dropout of 0.5.
Trained with a batch size of 20.

• FMNIST - CAPS. FMNIST contains 60,000 32x32x1 grayscale images with a 50,000 training
set, 10,000 test set split. There are 10 classes of 10 clothing items. Capsule Networks (Sabour
et al., 2017) represent Neural Networks as a set of capsules, where each capsule encodes a specific
entity or meaning. The activations of capsules depend on comparing incoming pose predictions,
as opposed to standard neural networks. The Capsule Network uses 3 iterations in the routing
algorithm. Trained with a batch size of 128.

• MNIST - VAE. MNIST contains 60,000 32x32x1 grayscale images with a 50,000 training set,
10,000 test set split. There are 10 classes of 10 digits. VAE (Kingma & Welling, 2015) with three
dense encoding layers and three dense decoding layers with a latent space of size 2. Trained with
a batch size of 100.

• CIFAR10 - NCSN. CIFAR10 contains 60,000 32x32x3 images with a 50,000 training set, 10,000
test set split. There are 10 classes. NCSN (Song & Ermon, 2019) is a recent state-of-the-art
generative model which achieves the best reported inception score. We compute inception scores
based on a total of 50000 samples. Since DEMON depends on a predefined number of epochs, we
evaluate inception score at the end of training; otherwise, we follow the exact implementation in
and defer details to the original paper.

13

Under review as a conference paper at ICLR 2021

A.2 METHODS

A.2.1 ADAPTIVE LEARNING RATE

Adam (Kingma & Ba, 2014), as previously introduced in section 2, keeps an exponentially decaying
average of squares of past gradients to adapt the learning rate. It also introduces an exponentially
decaying average of gradients.

The Adam algorithm is parameterized by learning rate η > 0, discount factors β1 < 1 and β2 < 1,
a small constant ε, and uses the update rule:

Egt+1 = β1 · Egt + (1− β1) · gt,
Eg◦gt+1 = β2 · Eg◦gt + (1− β2) · (gt ◦ gt),
θt+1,i = θt,i − η√

Eg◦gt+1,i+ε
· Egt+1,i, ∀t.

AMSGrad (Reddi et al., 2019) resolves an issue in the proof of Adam related to the exponential
moving average Eg◦gt , where Adam does not converge for a simple optimization problem. Instead
of an exponential moving average, AMSGrad keeps a running maximum of Eg◦g .

The AMSGrad algorithm is parameterized by learning rate η > 0, discount factors β1 < 1 and
β2 < 1, a small constant ε, and uses the update rule:

Egt+1 = β1 · Egt + (1− β1) · gt,
Eg◦gt+1 = β2 · Eg◦gt + (1− β2) · (gt ◦ gt),
Êg◦gt+1,i = max(Êg◦gt,i , E

g◦g
t,i),

θt+1,i = θt,i − η√
Êg◦gt+1,i+ε

· Egt+1,i, ∀t,

where Egt+1 and Eg◦gt+1 are defined identically to Adam.

AdamW (Loshchilov & Hutter, 2017) modifies the typical implementation of weight decay reg-
ularization in Adam, by decoupling the weight decay from the gradient update. In particular, L2
regularization in Adam is usually implemented with the below modification where wt is the rate of
the weight decay at time t:

gt = ∇f(θt) + wtθt,

while AdamW, instead, adjusts the weight decay term to appear in the gradient update:

θt+1,i = θt,i − η
(

1√
Êg◦gt+1,i+ε

· Egt+1,i + wt,iθt,i

)
, ∀t.

QHAdam (Quasi-Hyperbolic Adam) (Ma & Yarats, 2018) extends QHM (Quasi-Hyperbolic Mo-
mentum), introduced further below, to replace both momentum estimators in Adam with quasi-
hyperbolic terms. This quasi-hyperbolic formulation is capable of recovering Adam and NAdam
(Dozat, 2016), amongst others.

The QHAdam algorithm is parameterized by learning rate η > 0, discount factors β1 < 1 and
β2 < 1, ν1, ν2 ∈ R, a small constant ε, and uses the update rule:

Egt+1 = β1 · Egt + (1− β1) · gt,
Eg◦gt+1 = β2 · Eg◦gt + (1− β2) · (gt ◦ gt),
Êgt+1 = (1 + βt+1

1)−1 · Egt+1,

Êg◦gt+1 = (1 + βt+1
2)−1 · Eg◦gt+1,

θt+1,i = θt,i − η

[
(1− ν1) · gt + ν1 · Êgt+1√
(1− ν2)g2t + ν2 · Êg◦gt+1 + ε

]
, ∀t,

14

Under review as a conference paper at ICLR 2021

Table 6: Additional information hyperparameter tuning details for main optimizers. For SGDM, we
extensively tuned the learning rate schedule, including schemes from Huang et al. (2017); Zagoruyko
& Komodakis (2016); Hu et al. (2017); Lin et al. (2017); Wang et al. (2017). We attempt decay on
plateau with patience in intervals of 5 and decay schedules such as 0.1 at 50% and 75% of total
epochs; 0.1 at 25%, 50%, 75%; 0.1 at 33% and 66%; and 0.1 at 10%, 25%, 50%, 75%. A smooth
decay schedule (both per epoch and at every 10% of total epochs) to 0.01 (and 0.001) across total
epochs and no learning rate decay was also attempted. A total of 10 settings. We tried delaying
DEMON till 50% and 75% of epochs, for a total of 3 settings.

Tuning ranges

Optimizer η β/βinit η Schedule Decay Schedule

SGDM Same Same 10x -
DEMONSGDM Same Same - 3x

where Egt+1 and Eg◦gt+1 are defined identically to Adam.

YellowFin. (Zhang & Mitliagkas, 2017) is motivated by robustness properties and analysis of
quadratic objectives. For quadratic objectives, the optimizer tunes both the learning rate and the
momentum to keep the hyperparameters within a region in which the convergence rate is a constant
rate equal to the root momentum. This notion is extended empirically to non-convex objectives. On
every iteration, YellowFin optimizes the hyperparameters to minimize a local quadratic optimiza-
tion. Due to the many details, we defer an indepth explanation to the paper (Zhang & Mitliagkas,
2017).

A.2.2 ADAPTIVE MOMENTUM

AggMo (Aggregated Momentum) (Lucas et al., 2018) takes a linear combination of multiple mo-
mentum buffers. It maintains K momentum buffers, each with a different discount factor, and
averages them for the update.

The AggMo algorithm is parameterized by learning rate η > 0, discount factors β ∈ RK , and uses
the update rule:

(Egt+1)(i) = β(i) · (Egt)(i) + gt, ∀i ∈ [1,K],

θt+1,i = θt,i − η

[
1

K
·
K∑
i=1

(Egt+1)
(i)

]
, ∀t.

QHM (Quasi-Hyperbolic Momentum) (Ma & Yarats, 2018) is a weighted average of the momentum
and plain SGD. QHM is capable of recovering Nesterov Momentum (Nesterov, 1983), Synthesized
Nesterov Variants (Lessard et al., 2016), accSGD (Jain et al., 2017) and others.

The QHM algorithm is parameterized by learning rate η > 0, discount factor β < 1, immediate
discount factor ν ∈ R, and uses the update rule:

Egt+1 = β · Egt + (1− β) · gt,

θt+1,i = θt,i − η
[
(1− ν) · gt + ν · Egt+1

]
, ∀t.

A.3 TUNING OF SGDM AND DEMON SGDM

A.4 OPTIMIZER HYPERPARAMETERS

15

Under review as a conference paper at ICLR 2021

Table 7: Best parameters for CIFAR-10 with ResNet-20.

Optimization method epochs η other parameters

Adam 30 0.001

β1 = 0.9, β2 = 0.999
Adam 75 0.001
Adam 150 0.001
Adam 300 0.0003

AMSGrad 30 0.001

β1 = 0.9, β2 = 0.999
AMSGrad 75 0.001
AMSGrad 150 0.001
AMSGrad 300 0.001

QHAdam 30 0.001

ν1 = 0.7, ν2 = 1.0, β1 = 0.9, β2 = 0.99
QHAdam 75 0.0003
QHAdam 150 0.0003
QHAdam 300 0.0003

AdamW 30 0.001

β1 = 0.9, β2 = 0.999, wd = 0.0001
AdamW 75 0.001
AdamW 150 0.001
AdamW 300 0.001

YellowFin 30 0.001
β1 = 0YellowFin 75 0.001

YellowFin 150 0.001
YellowFin 300 0.001

DEMON Adam 30 0.0001

βinit = 0.9, β2 = 0.999
DEMON Adam 75 0.0001
DEMON Adam 150 0.0001
DEMON Adam 300 0.0001

AggMo 30 0.03

β = [0, 0.9, 0.99]
AggMo 75 0.03
AggMo 150 0.03
AggMo 300 0.03

QHM 30 3.0

ν = 0.7, β = 0.999
QHM 75 3.0
QHM 150 3.0
QHM 300 1.0

DEMON SGDM 30
0.03

βinit = 0.95
DEMON SGDM 75
DEMON SGDM 150
DEMON SGDM 300

SGDM 30 0.3 β1 = 0.9
SGDM 75 0.1 β1 = 0.9
SGDM 150 0.3 β1 = 0.9
SGDM 300 0.1 β1 = 0.9

B ABLATION STUDY

See Table 14 for an ablation study with respect to the parameter T , which defines the proportion of
epochs at which DEMON begins. There exists a small difference.

β=.9 β=.95 β=.9 β=.95
T 0 .5 .75 0 .5 .75 0 .5 .75 0 .5 .75

DemonSGDM 30.02 29.68 29.32 29.80 29.02 28.88 9.53 9.56 8.59 10.34 9.60 9.20
DemonAdam 28.84 28.63 28.33 28.53 28.97 29.34 9.03 8.96 8.49 9.96 9.73 9.42

Table 14: Test error for 150 epochs VGG16-CIFAR100 (leftmost 6 cols), and 150 epochs RN20-
CIFAR10. η fixed across T per setting.

16

Under review as a conference paper at ICLR 2021

Table 8: Best parameters for CIFAR-100 with VGG-16.

Optimization method epochs η other parameters

Adam 75 0.0003
β1 = 0.9, β2 = 0.999Adam 150 0.0003

Adam 300 0.0003

AMSGrad 75 0.0003
β1 = 0.9, β2 = 0.999AMSGrad 150 0.0003

AMSGrad 300 0.0003

QHAdam 75 0.0003
ν1 = 0.7, ν2 = 1.0, β1 = 0.9, β2 = 0.99QHAdam 150 0.0003

QHAdam 300 0.0003

AdamW 75 0.0003 β1 = 0.9, β2 = 0.999, wd = 0.01
AdamW 150 0.0003 β1 = 0.9, β2 = 0.999, wd = 0.001
AdamW 300 0.0003 β1 = 0.9, β2 = 0.999, wd = 0.001

YellowFin 75 0.1
β1 = 0YellowFin 150 0.1

YellowFin 300 0.1

DEMON Adam 75 0.00003
βinit = 0.9, β2 = 0.999DEMON Adam 150 0.00003

DEMON Adam 300 0.00003

AggMo 75 0.03
β = [0, 0.9, 0.99]AggMo 150 0.01

AggMo 300 0.01

QHM 75 1.0
ν = 0.7, β = 0.999QHM 150 1.0

QHM 300 0.3

DEMON SGDM 75
0.01 βinit = 0.95DEMON SGDM 150

DEMON SGDM 300

SGDM 75 0.1 β1 = 0.9
SGDM 150 0.03 β1 = 0.9
SGDM 300 0.03 β1 = 0.9

17

Under review as a conference paper at ICLR 2021

Table 9: Best parameters for STL10 with Wide ResNet 16-8.

Optimization method epochs η other parameters

Adam 50 0.001
β1 = 0.9, β2 = 0.999Adam 100 0.0003

Adam 200 0.0003

AMSGrad 50 0.0003
β1 = 0.9, β2 = 0.999AMSGrad 100 0.0003

AMSGrad 200 0.0003

QHAdam 50 0.0003
ν1 = 0.7, ν2 = 1.0, β1 = 0.9, β2 = 0.99QHAdam 100 0.0003

QHAdam 200 0.0003

AdamW 50 0.0003
β1 = 0.9, β2 = 0.999, wd = 0.001AdamW 100 0.0003

AdamW 200 0.0003

YellowFin 50 0.1
β1 = 0YellowFin 100 0.1

YellowFin 200 0.1

DEMON Adam 50 0.00003
βinit = 0.9, β2 = 0.999DEMON Adam 100 0.00003

DEMON Adam 200 0.00003

AggMo 50 0.1
β = [0, 0.9, 0.99]AggMo 100 0.1

AggMo 200 0.1

QHM 50 1.0
ν = 0.7, β = 0.999QHM 100 3.0

QHM 200 3.0

DEMON SGDM 50
0.03 βinit = 0.95DEMON SGDM 100

DEMON SGDM 200

SGDM 50 0.1 β1 = 0.9
SGDM 100 0.1 β1 = 0.9
SGDM 200 0.1 β1 = 0.9

Table 10: Best parameters for Tiny ImageNet with ResNet-56.

Optimization method epochs η other parameters

Adam 20 0.001
β1 = 0.9, β2 = 0.999Adam 40 0.0003

DEMON Adam 20 0.0001
βinit = 0.95, β2 = 0.999DEMON Adam 40 0.0001

DEMON SGDM 20 0.01
βinit = 0.95DEMON SGDM 40 0.01

SGDM 20 0.1
β1 = 0.9SGDM 40 0.1

18

Under review as a conference paper at ICLR 2021

Table 11: Best parameters for PTB with LSTM architecture.

Optimization method epochs η other parameters

Adam 25 0.0003
β1 = 0.9, β2 = 0.999Adam 39 0.0003

AMSGrad 25 0.001
β1 = 0.9, β2 = 0.999AMSGrad 39 0.001

QHAdam 25 0.0003
ν1 = 0.7, ν2 = 1.0, β1 = 0.9, β2 = 0.999QHAdam 39 0.0003

AdamW 25 0.001
β1 = 0.9, β2 = 0.999, wd = 0.00005AdamW 39 0.001

YellowFin 25 0.1
β1 = 0YellowFin 39 0.1

DEMON Adam 25 0.0001
βinit = 0.9, β2 = 0.999DEMON Adam 39 0.0001

AggMo 25 0.03
β = [0, 0.9, 0.99]AggMo 39 0.03

QHM 25 1.0
ν = 0.7, β = 0.999QHM 39 1.0

DEMON SGDM 25 1.0 βinit = 0.5, βfinal = −0.5
DEMON SGDM 39 1.0 βinit = 0.3, βfinal = −0.5

SGDM 25 0.1 β1 = 0.9, smooth learning rate decay
SGDM 39 1.0 β1 = 0.0, smooth learning rate decay

C CONVERGENCE ANALYSIS

We analyze the global convergence of DEMON SGDM in the convex setting, following (Ghadimi
et al., 2014). For an objective function f which is convex, continuously differentiable, its gradient
∇f(·) is Lipschitz continuous with constant L, our goal is to show that f(θ̄T) converges to the
optimum f∗ with decreasing momentum, where θ̄T is the average of θt for t = 1, ..., T . Our
following theorem holds for a constant learning rate and βt decaying with t.

Theorem 1. Assume that f is convex, continuously differentiable, its gradient ∇f(·) is Lipschitz
continuous with constant L, with a decreasing momentum, but constant step size, as in:

βt = 1
t ·

t+1
t+2 , α ∈

(
0, 2

3L

)
.

We consider the SGDM iteration in non-stochastic settings, where:

θt+1 = θt − α∇f(θt) + βt (θt − θt−1) .

Then, the sequence {θt}Tt=1 generated by the SGDM iteration, with decreasing momentum, satisfies:

f(θ̄T)− f∗ ≤ ‖θ1−θ
?‖2

T

(
3
4L+ 1

2α

)
,

where θ̄T is the Cesaro average of the iterates: θ̄T = 1
T

∑T
t=1 θt.

Proof. Let βt = 1
t ·

t+1
t+2 and

pt = 1
t (θt − θt−1).

We consider the SGDM iteration in non-stochastic settings, where:

θt+1 = θt − α∇f(θt) + βt (θt − θt−1) .

Using the definition of pt above, one can easily prove that:

θt+1 + pt+1 = (1 +
1

t+ 1
)θt+1 −

1

t+ 1
θt = θt + pt − α(t+2)

t+1 ∇f(θt).

19

Under review as a conference paper at ICLR 2021

Table 12: Best parameters for MNIST with VAE.

Optimization method epochs η other parameters

Adam 50 0.001
β1 = 0.9, β2 = 0.999Adam 100 0.001

Adam 200 0.001

AMSGrad 50 0.001
β1 = 0.9, β2 = 0.999AMSGrad 100 0.001

AMSGrad 200 0.001

QHAdam 50 0.001
ν1 = 0.7, ν2 = 1.0, β1 = 0.9, β2 = 0.99QHAdam 100 0.001

QHAdam 200 0.001

AdamW 50 0.001
β1 = 0.9, β2 = 0.999, wd = 0.0001AdamW 100 0.001

AdamW 200 0.001

YellowFin 50 0.0001
β1 = 0YellowFin 100 0.0001

YellowFin 200 0.0001

DEMON Adam 50 0.0001
βinit = 0.9, β2 = 0.999DEMON Adam 100 0.0001

DEMON Adam 200 0.0001

AggMo 50 0.000003
β = [0, 0.9, 0.99]AggMo 100 0.000003

AggMo 200 0.000003

QHM 50 0.0001
ν = 0.8, β = 0.999QHM 100 0.0001

QHM 200 0.0001

DEMON SGDM 50
0.0003 βinit = 0.95DEMON SGDM 100

DEMON SGDM 200

SGDM 50 0.00001 β1 = 0.9
SGDM 100 0.00001 β1 = 0.9
SGDM 200 0.00001 β1 = 0.9

Table 13: Best parameters for FMNIST with Capsule Network.

Optimization method epochs η other parameters

Adam 50 0.001
β1 = 0.9, β2 = 0.999Adam 100 0.001

AMSGrad 50 0.001
β1 = 0.9, β2 = 0.999AMSGrad 100 0.001

QHAdam 50 0.0003
ν1 = 0.7, ν2 = 1.0, β1 = 0.9, β2 = 0.999QHAdam 100 0.0003

AdamW 50 0.001
β1 = 0.9, β2 = 0.999, wd = 0.0001AdamW 100 0.001

YellowFin 50 0.001
β1 = 0YellowFin 100 0.001

DEMON Adam 50 0.001
βinit = 0.9, β2 = 0.999DEMON Adam 100 0.001

20

Under review as a conference paper at ICLR 2021

Using this expression, we will analyze the term ‖θt+1 + pt+1 − θ?‖2:

‖θt+1 + pt+1 − θ?‖2 = ‖θt + pt − θ?‖2 − 2α(t+2)
t+1 〈θt + pt − θ?,∇f(θt)〉+

(
α(t+2)
t+1

)2
· ‖∇f(θt)‖2

= ‖θt + pt − θ?‖2 − 2α(t+2)
t(t+1) 〈θt − θt−1,∇f(θt)〉

− 2α(t+2)
t+1 〈θt − θ?,∇f(θt)〉+

(
α(t+2)
t+1

)2
· ‖∇f(θt)‖2

Since f is convex, continuously differentiable, its gradient is Lipschitz continuous with constant L,
then

1
L‖∇f(θt)‖2 ≤ 〈θt − θ?,∇f(θt)〉, (2)

f(θt)− f∗ + 1
2L‖∇f(θt)‖2 ≤ 〈θt − θ?,∇f(θt)〉, (3)

f(θt)− f(θt−1) ≤ 〈θt − θt−1,∇f(θt)〉. (4)

Substituting the above inequalities leads to

‖θt+1 + pt+1 − θ?‖2 ≤ ‖θt + pt − θ?‖2 − 2α(t+2)
t(t+1) (f(θt)− f(θt−1))

− 2α (1−λ)(t+2)
L(t+1) · ‖∇f(θt)‖2 − 2αλ t+2

t+1 (f(θt)− f∗)

−
(
α λ(t+2)
L(t+1)

)
· ‖∇f(θt)‖2 +

(
α(t+ 2)

t+ 1

)2

· ‖∇f(θt)‖2

where λ ∈ (0, 1] is a parameter weighting (2) and (3). Grouping together terms yields(
2α(t+2)
t(t+1) + 2αλ(t+2)

t+1

)
(f(θt)− f∗) + ‖θt+1 + pt+1 − θ?‖2

≤ 2α(t+2)
t(t+1) (f(θt−1)− f∗) + ‖θt + pt − θ?‖2

+ α(t+2)
t+1

(
α(t+2)
t+1 −

2(1−λ)
L − λ

L

)
‖∇f(θt)‖2.

The last term is non-positive when α ∈ [0, t+1
t+2 (2−λ

L)] so it can be dropped. Summing over t =
1, ..., T yields

2αλ

T∑
t=1

t+2
t+1 (f(θt)− f∗) +

T∑
t=1

(
2α(t+2)
t(t+1) (f(θt)− f∗) + ‖θt+1 + pt+1 − θ?‖2

)
≤

T∑
t=1

(
2α(t+2)
t(t+1) (f(θt−1)− f∗) + ‖θt + pt − θ?‖2

)
,

implying that:

2αλ

T∑
t=1

t+2
t+1 (f(θt)− f∗) ≤ 3α(f(θ1)− f∗) + ‖θ1 − θ?‖2.

Since:

2αλ

T∑
t=1

(f(θt)− f∗) ≤ 2αλ

T∑
t=1

t+2
t+1 (f(θt)− f∗) ≤ 3αλ

T∑
t=1

(f(θt)− f∗),

we further have:

3αλ

T∑
t=1

(f(θt)− f∗) ≤ 3
2

(
3α(f(θ1)− f∗) + ‖θ1 − θ?‖2

)
.

Due to the convexity of f ,

f(θ̄t) ≤ 1
T

T∑
t=1

f(θt),

21

Under review as a conference paper at ICLR 2021

observe that

f(θ̄T)− f∗ ≤ 1
T

T∑
t=1

(f(θt)− f∗) ≤ 1
3αλT

(
9
2α(f(θ1)− f∗) + 3

2‖θ1 − θ
?‖2
)
.

Since f(θ1) − f∗ ≤ L
2 ‖θ1 − θ

?‖2 by Lipschitz continuous gradients, setting λ = 1 and observing
(t+ 1)/(t+ 2) ≥ 2/3 gives the result.

For DEMON Adam, we observe it lies within the definition of Generic Adam in Zou et al. (2018),
and inherits the non-convex results. This can be obtained through a re-parameterization and since
there is no change in the proof and the result is direct, we give credit to Zou et al. (2018) and leave
this as an exercise to the reader.

D LINEAR REGRESSION

Figure 4: Linear regression with 1/rate vs κ (Condition Number). Left: Discrete. Right: Gaussian.

We replicate the linear regression setting in (Kidambi et al., 2018) and summarize the key details
here. We consider two different classes of linear regression problems in two dimensions, where κ is
the condition number and samples are (a, b), namely:
Discrete: a = e1 with probability 0.5, and a = 2

κe2 w.p. 0.5; ei is the i-th standard basis vector.

Gaussian: a ∈ R2 distributed as a Gaussian random vector with covariance matrix
(

1 0
0 1
κ

)
.

We evaluate SGD, SGDM, DEMON SGDM, Adam, and DEMON Adam, tuning with a grid search.
We fix a randomly generated θ?, and let b = 〈θ?, a〉. κ is varied from 24 to 212 in powers of 2
and for each setting we run 100 independent trials for t = 5κ iterations, considering only those
that converged. Following (Kidambi et al., 2018), the algorithm is considered to converge is no
error in the second half of iterations exceeds starting error. Performance is measured using rate =
log(f(θ1))−log(f(θt))

t and we compute the rate for different κ. Results are given in Figure 4: What
is apparent is that the convergence rate is preserved when we decrease the momentum parameter,
despite the fact that theory dictates the opposite in convex scenarios.

22

Under review as a conference paper at ICLR 2021

Table 15: VGG16-CIFAR100-DEMONSGDM and WRN-STL10-DEMONSGDM generalization error. The
number of epochs was predefined before the execution.

VGG-16 Wide Residual 16-8

75 epochs 150 epochs 300 epochs 50 epochs 100 epochs 200 epochs

SGD ELR 36.82± .68 30.34± .30 29.81± .31 20.90± .47 17.53± .32 15.37± .51
DEMON SGDM 33.08± .49 30.22± .50 27.71± .05 19.45± .20 15.98± .40 13.67± .13

Table 16: PTB-LSTM-DEMONSGDM (perplexity) and VAE-MNIST-DEMONSGDM (generalization loss) ex-
periments.

LSTM VAE

25 epochs 39 epochs 50 epochs 100 epochs 200 epochs

SGD ELR inf inf inf inf inf
DEMON SGDM 88.33± .16 88.32± .12 139.32± .23 137.51± .29 135.95± .21

E DEMON AND EFFECTIVE LEARNING RATE

In this section, we present results of Demon against the effective learning rate adjusted SGD (SGD
ELR). The effective learning rate is proposed to approximate SGDM with SGD, where the learning
rate is adjusted with a factor of 1/(1 − m) and m is the momentum coefficient. However, the
results in Tables 15, 16, and 17 demonstrate that DEMON cannot be accurately approximated with an
effective learning rate adjusted SGD. For both settings in Table 16 (PTB-LSTM-DEMONSGDM and
VAE-MNIST-DEMONSGDM), SGD ELR causes learning to diverge. In Table 15, there exists a 1-3%
generalization error gap for VGG16-CIFAR100-DEMONSGDM and WRN-STL10-DEMONSGDM.
In Table 17, there exists a 1% generalization gap for RN20-CIFAR10-DEMONSGDM.

F ADDITIONAL PLOTS

Figure 5: Top row, two left-most plots: RN20-CIFAR10-DEMONAdam for 300 epochs. Top
row, right-most plot: VGG16-CIFAR100-DEMONAdam for 300 epochs. Bottom row, left-most plot:
WRN-STL10-DEMONAdam for 200 epochs. Bottom row, middle plot: PTB-LSTM-DEMONAdam for 25
epochs. Bottom row, right-most plot: VAE-MNIST-DEMONAdam for 200 epochs. Dotted and solid lines
represent training and generalization metrics respectively. Shaded bands represent one standard deviation.

Table 17: RN20-CIFAR10-DEMONSGDM generalization error. The number of epochs was predefined before
the execution of the algorithms.

30 epochs 75 epochs 150 epochs 300 epochs

SGD ELR 11.82± .13 9.46± .25 8.72± .06 8.46± .19
DEMON SGDM 10.39± .39 8.74± .28 7.82± .27 7.58± .04

23

Under review as a conference paper at ICLR 2021

Figure 6: Additional empirical results on adaptive learning rate methods. Left plot:
VGG16-CIFAR100-DEMONAdam for 300 epochs. Right plot: WRN-STL10-DEMONAdam for
200 epochs. Dotted and solid lines represent training and generalization metrics respectively.
Shaded bands represent 1 standard deviation.

Figure 7: Additional empirical results on RN20-CIFAR10-DEMONAdam. Top row: 30 epochs.
Middle row: 75 epochs. Bottom row: 150 epochs. Dotted and solid lines represent training and
generalization metrics respectively. Shaded bands represent 1 standard deviation.

24

Under review as a conference paper at ICLR 2021

Figure 8: Additional empirical results on VGG16-CIFAR100-DEMONAdam. Top row: 75 epochs.
Bottom row: 150 epochs. Dotted and solid lines represent training and generalization metrics re-
spectively. Shaded bands represent 1 standard deviation.

Figure 9: Additional empirical results on WRN-STL10-DEMONAdam. Top row: 50 epochs. Bottom
row: 100 epochs. Dotted and solid lines represent training and generalization metrics respectively.
Shaded bands represent 1 standard deviation.

G DIFFERENT MOMENTUM SCHEDULES

In this section, we present empirical results for multiple possible momentum schedule variants in
comparison to DEMON. In particular, we experiment with a linear decay schedule, a cyclic momen-

25

Under review as a conference paper at ICLR 2021

Figure 10: Additional empirical results on PTB-LSTM-DEMONAdam for 39 epochs. Dotted and
solid lines represent training and generalization metrics respectively. Shaded bands represent 1
standard deviation.

Figure 11: Additional empirical results on VAE-MNIST-DEMONAdam. Left: 50 epochs. Right: 100
epochs. Dotted and solid lines represent training and generalization metrics respectively. Shaded
bands represent 1 standard deviation.

tum schedule, a DEMON schedule with restarts, and multiple step decay schedules. All experiments
were performed on the CIFAR10 dataset using the ResNet-20 architecture. Training was performed
for 75 epochs and no learning rate decay was used. All tests were performed with identical hyper-
parameters, aside from the differing momentum schedules. All of the exact momentum schedules
that were tested are as follows:

• LINEAR: a linear decay schedule was performed from a momentum of 0.9 to 0.0. The
application of momentum decay was delayed until 75% of epochs, which yielded improved
performance.

• CYCLE-1: a linear, cyclic momentum schedule was utilized. For a single cycle, momen-
tum will increase linearly from 0.0 to 0.9, followed by a linear decay back to 0.0. In this
test, only a single cycle was performed over the 75 epochs.

• CYCLE-2: the same linear, cyclic momentum schedule was utilized. In this test, two cycles
were performed during training instead of one.

• RESTART-2: the DEMON schedule was used with restarts. Namely, the entire Demon
schedule was applied until 50% of training was complete, at which point the momentum
schedule was reset. Two complete DEMON schedules were completed during training.

• RESTART-4: DEMON with restarts was used once again. This test performed four restarts
during training.

• STEP-50-75: a step momentum schedule was utilized. Momentum began at 0.9, was de-
cayed to 0.7 at 50% of total epochs, and decayed to 0.3 at 75% of total epochs.

• STEP-75-90: a step momentum schedule was utilized. Momentum began at 0.9, was de-
cayed to 0.4 at 75% of total epochs, and was decayed to 0.1 at 90% of total epochs.

• STEP-85-95: a step momentum schedule was utilized. Momentum began at 0.9, was de-
cayed to 0.3 at 85% of total epochs, and was decayed to 0.1 at 95% of total epochs.

26

Under review as a conference paper at ICLR 2021

Figure 12: Additional empirical results on RN20-CIFAR10-DEMONSGDM. Top row: 30 epochs.
Middle upper row: 75 epochs. Middle lower row: 150 epochs. Bottom row: 300 epochs. Dotted
and solid lines represent training and generalization metrics respectively. Shaded bands represent 1
standard deviation.

• DEMON: the normal DEMON momentum schedule was used. Momentum decay was not
applied until 75% of training was complete, which mirrors the experimental settings pre-
sented in the main text.

The validation performance of all models trained with each of these different momentum schedules
is presented in Table 18. No other momentum schedule outperforms DEMON.

27

Under review as a conference paper at ICLR 2021

Figure 13: Additional empirical results on VGG16-CIFAR100-DEMONSGDM. Top row: 75 epochs.
Middle row: 150 epochs. Bottom row: 300 epochs. Dotted and solid lines represent training and
generalization metrics respectively. Shaded bands represent 1 standard deviation.

Table 18: Validation error on CIFAR10 for models training with different momentum schedule
variants

Experiment Validation Error

Linear 9.85± 0.14
Cycle-1 13.72± 0.18
Cycle-2 13.74± 0.45

Restart-2 10.90± 0.21
Restart-4 10.83± 0.11

Step-50-75 10.50± 0.05
Step-75-90 9.78± 0.18
Step-85-95 9.58± 0.10

Demon 9.61± 0.09

H PADAM AND ONECYCLE PRELIMINARY RESULTS

In this section, we present preliminary results on Padam Chen & Gu (2018) and OneCycle Smith
(2018) on several tasks. We conducted preliminary studies of Padam for the settings of ResNet20 on
CIFAR10 with 300 epochs, VGG16 on CIFAR100 with 150 epochs, and Variational AutoEncoder
on MNIST with 50 epochs.

For RN20-CIFAR10, following the Padam paper, we try learning rate in
[0.1, 0.03, 0.01, 0.003, 0.001, 0.0003], p ∈ [1/4, 1/8, 1/16], β1 = 0.9, β2 = 0.999.

28

Under review as a conference paper at ICLR 2021

Figure 14: Additional empirical results on WRN-STL10-DEMONSGDM. Top row: 50 epochs. Mid-
dle row: 100 epochs. Bottom row: 200 epochs. Dotted and solid lines represent training and
generalization metrics respectively. Shaded bands represent 1 standard deviation.

Figure 15: Additional empirical results on PTB-LSTM-DEMONSGDM. Left: 25 epochs. Right: 39
epochs. Dotted and solid lines represent training and generalization metrics respectively. Shaded
bands represent 1 standard deviation.

The lowest test error is attained with learning rate 0.01 and p = 1/4, at 12.13± .70. Demon Adam
achieves significantly lower test error at 8.44± .05.

For VGG16-CIFAR100 and Padam, we try learning rate in
[0.1, 0.03, 0.01, 0.003, 0.001, 0.0003], p ∈ [1/4, 1/8, 1/16], β1 = 0.9, β2 = 0.999. The

29

Under review as a conference paper at ICLR 2021

Figure 16: Additional empirical results on VAE-MNIST-DEMONSGDM. Left: 50 epochs. Right: 100
epochs. Bottom: 200 epochs. Dotted and solid lines represent training and generalization metrics
respectively. Shaded bands represent 1 standard deviation.

lowest test error is attained with learning rate 0.03 and p = 1/16, at 34.38 ± .71. Demon Adam,
again, achieves significantly lower test error at 28.84± .18.

For VAE-MNIST and Padam, we try learning rate in [0.003, 0.001, 0.0003, 0.0001], exponent
p ∈ [0.4, 0.25, 0.125, 0.0625] and β1 = 0.9, β2 = 0.999. The lowest validation loss is attained
with learning rate 0.001 and p = 0.4, with a loss value of 137.37± .75. For this task, Demon Adam
achieves 134.46± .17, substantially better.

We also conducted preliminary studies of 1cycle with momentum SGD for the settings of ResNet20
on CIFAR10 for 300 epochs and VGG16 on CIFAR100 for 150 epochs.

Following the suggestions in the paper, for RN20-CIFAR10 we try all combinations of maximum
learning rate in [3.0, 1.0, 0.3, 0.1, 0.03, 0.01], maximum momentum in [0.97, 0.95, 0.9], mini-
mum momentum in [0.85, 0.8], batch size in [128, 256, 512], with minimum learning rate = 0.1·
maximum learning rate. The lowest test error is achieved with maximum learning rate 1.0, maxi-
mum momentum 0.95, minimum momentum 0.85, batch size 512, achieving 7.65 ± .13. Demon
SGDM, with no tuning, achieves 7.58± .04.

For VGG16-CIFAR100, we try all combinations of maximum learning rate in [1.0, 0.3, 0.1, 0.03],
maximum momentum in [0.97, 0.95, 0.9], minimum momentum in [0.85, 0.8], batch size in
[128, 256, 512], with minimum learning rate = 0.1·maximum learning rate. The lowest test error is
achieved with maximum learning rate 0.1, maximum momentum 0.95, minimum momentum 0.85,
batch size 512, achieving 32.05 ± 1.05. In comparison, Demon SGDM, with no tuning, achieves
significantly lower at 30.22± .50.

I ADDITIONAL RESULTS FOR ADAPTIVE MOMENTUM METHODS WITHOUT
LEARNING RATE DECAY

We present additional results for Aggregated Momentum (AggMo) (Lucas et al., 2018), and Quasi-
Hyperbolic Momentum (QHM) (Ma & Yarats, 2018) without learning rate decay. Since SGDM with
learning rate decay is most often used to achieve the state-of-the-art results with the architectures
and tasks in question, we include SGDM with learning rate decay as the target to beat. SGDM with

30

Under review as a conference paper at ICLR 2021

Figure 17: Top row, two left-most plot: RN20-CIFAR10-DEMONSGDM for 300 epochs. Top
row, right-most plot: VGG16-CIFAR100-DEMONSGDM for 300 epochs. Bottom row, left-most plots:
WRN-STL10-DEMONSGDM for 200 epochs. Bottom row, middle plot: PTB-LSTM-DEMONSGDM for 25
epochs. Bottom row, right-most plot: VAE-MNIST-DEMONSGDM for 200 epochs. Dotted and solid lines
represent training and generalization metrics respectively. Shaded bands represent 1 standard deviation.

learning rate decay is implemented with a decay on validation error plateau, where we hand-tune
the number of epochs to define plateau. We tune all learning rates in roughly multiples of 3 and
try to keep all other parameters close to those recommended in the original literature. For DEMON
SGDM, we leave βinit = 0.9 for most experiments and generally decay from βinit to 0.

Residual Neural Network (RN20-CIFAR10-DEMONSGDM). We train a ResNet20 model on the
CIFAR-10 dataset. With DEMON SGDM, we achieve better generalization error than SGDM with
learning rate decay, the optimizer for producing state-of-the-art results with ResNet architecture.
The better performance of decaying momentum relative to learning rate decay is surprising.

Running 5 seeds, DEMON SGDM outperforms all other adaptive momentum methods by a large
3%-8% validation error margin with a small and large number of epochs and is competitive or better
than SGDM with learning rate decay. In Figure 17 (Top row, two left-most plots), DEMON SGDM is
observed to continue learning after other adaptive momentum methods appear to begin to plateau.

Non-Residual Neural Network (VGG16-CIFAR100-DEMONSGDM). For the CIFAR-100 dataset,
we train an adjusted VGG-16 model. In Figure 17 (Top row, right-most plot), we observe DEMON
SGDM to learn slowly initially in loss and error, but similar to the previous setting it continues to
learn after other methods begin to plateau, resulting in superior final generalization error.

Running 5 seeds, DEMON SGDM achieves an improvement of 1%-8% generalization error margin
over all other methods. Refer to Table 20 for more details.

Wide Residual Neural Network (WRN-STL10-DEMONSGDM). We train a Wide Residual 16-8
model for the STL-10 dataset. In Figure 17 (Bottom row, left-most plot), training in both loss and
error slows down quickly for other adaptive momentum methods with a large gap with SGDM
learning rate decay. DEMON SGDM continues to improve and eventually catches up to SGDM
learning rate decay.

Running 5 seeds, DEMON SGDM outperforms all other methods by a 1.5%-2% generalization error
margin with a small and large number of epochs. Refer to Table 20 for more details.

LSTM (PTB-LSTM-DEMONSGDM). We train an RNN with LSTM architecture for the PTB lan-
guage modeling task. Running 5 seeds, DEMON SGDM slightly outperforms other adaptive mo-
mentum methods in generalization perplexity, and is competitive with SGDM with learning rate
decay. Refer to Figure 17 (Bottom row, middle plot) and Table 21 for more details.

Variational AutoEncoder (VAE-MNIST-DEMONSGDM). We train the generative model VAE on
the MNIST dataset. Running 5 seeds, DEMON SGDM outperforms all other methods by a 2%-
6% generalization error for a small and large number of epochs. Refer to Figure 17 (Bottom row,
right-most plot) and Table 21 for more details.

31

Under review as a conference paper at ICLR 2021

30 epochs 75 epochs 150 epochs 300 epochs

SGDM LR decay 11.29± .35 9.05± .07 8.26± .07 7.97± .14
AggMo 18.85± .27 13.02± .23 11.95± .15 10.94± .12
QHM 14.65± .24 12.66± .19 11.27± .13 10.42± .05

DEMON SGDM 10.39± .39 8.74± .28 7.82± .27 7.58± .04

Table 19: RN20-CIFAR10-DEMONSGDM generalization error with no learning rate decay. The number of
epochs was predefined before the execution of the algorithms.

VGG-16 Wide Residual 16-8

75 epochs 150 epochs 300 epochs 50 epochs 100 epochs 200 epochs

SGDM LR decay 35.29± .59 30.65± .31 29.74± .43 21.05± .27 17.83± 0.39 15.16± .36
AggMo 42.85± .89 34.25± .24 32.32± .18 22.70± .11 20.06± .31 17.90± .13
QHM 42.14± .79 33.87± .26 32.45± .13 22.86± .15 19.40± .23 17.79± .08

DEMON SGDM 33.08± .49 30.22± .50 28.99 (27.71)± .16 (.05) 19.45± .20 15.98± .40 13.67± .13

Table 20: VGG16-CIFAR100-DEMONSGDM and WRN-STL10-DEMONSGDM generalization error with no
learning rate decay. The number of epochs was predefined before the execution.

LSTM VAE

25 epochs 39 epochs 50 epochs 100 epochs 200 epochs

SGDM LR decay 89.59± .07 87.57± .11 140.51± .73 139.54± .34 137.33± .49
AggMo 89.09± .16 89.07± .15 139.69± .17 139.07± .26 137.64± .20
QHM 94.47± .19 94.44± .13 145.84± .39 140.92± .19 137.64± .20

DEMON SGDM 88.33± .16 88.32± .12 139.32± .23 137.51± .29 135.95± .21

Table 21: PTB-LSTM-DEMONSGDM (perplexity) and VAE-MNIST-DEMONSGDMwith no learning rate decay
(generalization loss) experiments.

32

	Experiments
	Setup
	Methods
	Adaptive learning rate
	Adaptive momentum

	Tuning of SGDM and Demon SGDM
	Optimizer hyperparameters

	Ablation study
	Convergence Analysis
	Linear Regression
	Demon and effective learning rate
	Additional plots
	Different Momentum Schedules
	Padam and OneCycle preliminary results
	Additional results for adaptive momentum methods without learning rate decay

