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A Dynamics model for each manipulation primitive

A.l Hit

The state is represented by the object position x, and the action is the impact I. The model parame-
ters include the object mass m and the friction coefficient ;.. The motion equation is

I 1
wdes =@+ —t — *Mth, (1)
m 2

Given the initial state xy and the target 29 the advantage function is

Az, I) = —(||Jx — (|2 + 0.01||IT||?). )

We applied TT to approximate the advantage function A(«, I'), and the correct impact is computed
by maximizing (2).

A.2 Push

The state is characterized by [s, sy, Sg, %, ¢],
’ and the action is denoted as [f,, fy,qb,é].
) quj Here, [s;, sy, 9] € SE(2) denotes the posi-

tion and orientation of the object in the world
frame. 1 is the relative angle of the contact
point in the object frame. ¢ represents the dis-
tance between the contact point and the object
surface. f = [fs, fy]" are the forces exerted

on the object, while v, = [, @] represents

«"l'(sfm Sy, 59)

. the angular and translational velocities of the
w robot’s end-effector. The physical parameters
include the object mass m, radius 7, and the

Figure 1: Ilustration of pushing dynamics. friction coefficient ;1 between the object and ta-
ble.

The applied force on this object can be mapped to its resulting velocity through a convex limit
surface convex approximation [1], resulting in a sub-level set

1
H(w) = §wTLw, 3)
where L = diag(f,,} , fol m; L ], with f,,q. as the maximum friction force between object and

table, and m,,, 4, as the maximum torsional friction.

The robot dynamics is defined based on the Quasi-Static approximation and the limit surface, result-
ing in a similar expression as [2], namely

o [Rt} _ [RLw] , @
Up Up
with
cos) —sinf O
R = lsin@ cos 6 O] , 5)
0 0 1
£ 1 0
S BT
—Py Dz

where R is the rotation matrix and w denotes the applied pusher wrench. J is the Jacobian matrix
of the contact point in the body frame. The contact position [p,,p,]" in the object frame can be
computed by
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pa = (r(¥) + ) cos(¥)), py = (r(v) +¢) sin(¥), (7
for any shape that can be parameterized radially with the radial distance described as r(1)).

We parameterize the object shape using a concatenation of Bézier curves, with the weight matrix C
defined as

1 0 0 0 v -
0 1 0 0 v «nn
0 0 1 0
0 0 0 1
=10 o 0 1 ’ ®
0 0 0 0
0 1
11 0 0 0.
10
where the pattern 8 } is repeated for each junction of two consecutive Bézier curves. For two
0 0

concatenated cubic Bézier curves, each composed of 4 Bernstein basis functions, we can see locally
that this operator yields a constraint of the form

w3 1 0

wa| |0 1] |a

ws| = 0 1 [b} ®)
We 0 0

which ensures that wy = ws. These constraints guarantee that the last control point and the first
control point of the next segment are the same, therefore enforcing Cy continuity of the reconstructed
shape. Fig. 2 shows an example of reconstructing the shape of a mustard bottle from the YCB
dataset.

Reference radius Reconstructed radius

0.11

011
L0 010 P
002 0.09
£ 0.087 E 008 fﬁ\~~f\ f

0:04 1 Z::Z !I"'J ‘N..~.¢/ \

Figure 2: Shape parametrization of a mustard bottle using basis functions.
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A.3 Reorientation

The state is the orientation angle 6, and the control input is the normal force f,, between the gripper
and the object. We build the dynamics model of the reorientation primitive based on [3] as

16 = Tg + 274,

0 =0y —6At,

where 74 = p. f17 is the torsional sliding friction between robot gripper and the object. In this
work, we set v = 0. u; is the torsional friction coefficient, which is related to the materials and
normal force distribution. 7, = mglsin(f) is the gravity torque. We therefore include 1, object
mass m and length [ as the model parameters. The task is to rotate the object from a vertically

downward to a vertically upward position. To achieve this, the object is given an initial angular
velocity 8y by swinging the robot arm.

(10)

B Background of Tensor Train

B.1 Tensors as Discrete Analogue of a Function

A multivariate function P(z1,...,x4) defined over a rectangular domain made up of the Cartesian
product of intervals (or discrete sets) I1 X - - - X I; can be discretized by evaluating it at points in the
set X = {(«%',...,a%) 1 2l € Iy, iy € {1,...,n4}}. This gives us a tensor P, a discrete version
of P, where P, i) = P(xzf, con ), Vi, .. iq) € Ty, and Ty = {(i1,...,0q) : ix €
{1,...,n}, k € {1,...,d}}. The value of P at any point in the domain can then be approximated
by interpolating between the elements of the tensor P.

B.2 Tensor Networks and Tensor Train Decomposition

Naively approximating a high-dimensional function using a tensor is intractable due to the combi-
natorial and storage complexities of the tensor (O(n?)). Tensor networks mitigate the storage issue
by decomposing the tensor into factors with fewer elements, akin to using Singular Value Decom-
position (SVD) to represent a large matrix. In this paper, we explore the use of Tensor Train, a type
of Tensor Network that represents a high-dimensional tensor using several third-order tensors called
cores.

We can access the element (iq,...,44) of the tensor in this format simply given by multiplying
matrix slices from the cores:

Plirin) = Pri, Py P o

RN P Hid,)
where Pk i € R7=1%Tk represents the ig-th frontal slice (a matrix) of the third-order tensor Pk
For any given tensor, there always exists a TT decomposition [4]. This low-rank structure further
facilitates sampling and optimization for robot planning and control.

There are several ways to acquire a TT model, including TT-SVD [4] and TT-Cross [5, 6]. TT-SVD
extends the SVD decomposition from matrix level to a high-dimensional tensor level. However, it
needs to store the full tensor first, which is impractical to very high-dimensional functions. TT-Cross
solves this issue by selectively evaluating function P on a subset of elements, avoiding the need to
store the entire tensor.

B.3 Function approximation using Tensor Train

Given the discrete analogue tensor P of a function P, we obtain the continuous approximation
by spline-based interpolation of the TT cores corresponding to the continuous variables only. For
example, we can use linear interpolation for the cores (i.e., between the matrix slices of the core)

and define a matrix-valued function corresponding to each core k € {1,...,d},
ik ir+1
Tk — Ty k Ty — Tk k
PH(rp) = ——k_pF, 4k T ph (12)
Lip+1,: LUk,
xzk-i'l _ x;ck 1k ka-‘rl _ x;ck Lk
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where z}* <z, < 22" and P* : I, € R — R™-1%"k with ry = 74 = 1. This induces a
continuous approximation of P given by

P(x1,...,xq) = P'(21) - P(y). (13)

This allows us to selectively do the interpolation only for the cores corresponding to continuous
variables, and hence we can represent functions in TT format whose variables could be a mix of
continuous and discrete elements.

B.4 Global Optimization using Tensor Train

An arbitrary function can be transformed into a nonnegative function in TT format, which can be
interpreted as a probability density function. The efficient sampling techniques for density functions
in TT format allow to pick samples of only high-density regions which in turn correspond to the
optima. In practice, the chosen number of prioritized samples N > 1 and the sample(s) with the
highest density (or least cost) is used to represent the optima. This leads to the near-global solutions,
which can be further refined using local optimization techniques such as Newton-type optimization
for continuous variables. Such process is gradient-free, and it can handle a mix of continuous and
discrete variables.
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