
A Dynamics model for each manipulation primitive1

A.1 Hit2

The state is represented by the object position x, and the action is the impact I . The model parame-3

ters include the object mass m and the friction coefficient µ. The motion equation is4

xdes = x0 +
I

m
t− 1

2
µgt2, (1)

Given the initial state x0 and the target xdes, the advantage function is5

A(x, I) = −(∥x− xdes∥2 + 0.01∥I∥2). (2)

We applied TT to approximate the advantage function A(x, I), and the correct impact is computed6

by maximizing (2).7

A.2 Push8

The state is characterized by [sx, sy, sθ, ψ, ϕ],

Figure 1: Illustration of pushing dynamics.

9

and the action is denoted as [fx, fy, ψ̇, ϕ̇].10

Here, [sx, sy, sθ] ∈ SE(2) denotes the posi-11

tion and orientation of the object in the world12

frame. ψ is the relative angle of the contact13

point in the object frame. ϕ represents the dis-14

tance between the contact point and the object15

surface. f = [fx, fy]
⊤ are the forces exerted16

on the object, while vp = [ψ̇, ϕ̇]⊤ represents17

the angular and translational velocities of the18

robot’s end-effector. The physical parameters19

include the object mass m, radius r, and the20

friction coefficient µ between the object and ta-21

ble.22

The applied force on this object can be mapped to its resulting velocity through a convex limit23

surface convex approximation [1], resulting in a sub-level set24

H(w) =
1

2
w⊤Lw, (3)

where L = diag[f−1
max, f

−1
max,m

−1
max], with fmax as the maximum friction force between object and25

table, and mmax as the maximum torsional friction.26

The robot dynamics is defined based on the Quasi-Static approximation and the limit surface, result-27

ing in a similar expression as [2], namely28

ẋ =

[
Rt
vp

]
=

[
RLw
vp

]
, (4)

with29

R =

[
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

]
, (5)

w =

[
f
τ

]
= J⊤f =

[
1 0
0 1

−py px

]
f , (6)

where R is the rotation matrix and w denotes the applied pusher wrench. J is the Jacobian matrix30

of the contact point in the body frame. The contact position [px, py]
⊤ in the object frame can be31

computed by32

1



px =
(
r(ψ) + ϕ

)
cos(ψ), py =

(
r(ψ) + ϕ

)
sin(ψ), (7)

for any shape that can be parameterized radially with the radial distance described as r(ψ).33

We parameterize the object shape using a concatenation of Bézier curves, with the weight matrix C34

defined as35

C =



1 0 · · · 0 0 · · · · · ·
0 1 · · · 0 0 · · · · · ·
...

...
. . .

...
...

. . . · · ·
0 0 · · · 1 0 · · · · · ·
0 0 · · · 0 1 · · · · · ·
0 0 · · · 0 1 · · · · · ·
0 0 · · · 0 0 · · · · · ·
...

...
. . .

...
...

. . . · · ·
0 0 · · · · · · · · · 0 1
1 0 · · · · · · · · · 0 0


, (8)

where the pattern

1 0
0 1
0 1
0 0

 is repeated for each junction of two consecutive Bézier curves. For two36

concatenated cubic Bézier curves, each composed of 4 Bernstein basis functions, we can see locally37

that this operator yields a constraint of the form38 w3

w4

w5

w6

 =

1 0
0 1
0 1
0 0

[
a
b

]
, (9)

which ensures that w4 = w5. These constraints guarantee that the last control point and the first39

control point of the next segment are the same, therefore enforcingC0 continuity of the reconstructed40

shape. Fig. 2 shows an example of reconstructing the shape of a mustard bottle from the YCB41

dataset.42

Figure 2: Shape parametrization of a mustard bottle using basis functions.

2



A.3 Reorientation43

The state is the orientation angle θ, and the control input is the normal force fn between the gripper44

and the object. We build the dynamics model of the reorientation primitive based on [3] as45

Iθ̈ = τg + 2τf ,

θ̇ = θ̇0 − θ̈∆t,
(10)

where τf = µtf
1+γ
n is the torsional sliding friction between robot gripper and the object. In this46

work, we set γ = 0. µt is the torsional friction coefficient, which is related to the materials and47

normal force distribution. τg = mglsin(θ) is the gravity torque. We therefore include µt, object48

mass m and length l as the model parameters. The task is to rotate the object from a vertically49

downward to a vertically upward position. To achieve this, the object is given an initial angular50

velocity θ̇0 by swinging the robot arm.51

B Background of Tensor Train52

B.1 Tensors as Discrete Analogue of a Function53

A multivariate function P (x1, . . . , xd) defined over a rectangular domain made up of the Cartesian54

product of intervals (or discrete sets) I1×· · ·× Id can be discretized by evaluating it at points in the55

set X = {(xi11 , . . . , x
id
d ) : xikk ∈ Ik, ik ∈ {1, . . . , nk}}. This gives us a tensor P , a discrete version56

of P , where P(i1,...,id) = P (xi11 , . . . , x
id
d ),∀(i1, . . . , id) ∈ IX , and IX = {(i1, . . . , id) : ik ∈57

{1, . . . , nk}, k ∈ {1, . . . , d}}. The value of P at any point in the domain can then be approximated58

by interpolating between the elements of the tensor P .59

B.2 Tensor Networks and Tensor Train Decomposition60

Naively approximating a high-dimensional function using a tensor is intractable due to the combi-61

natorial and storage complexities of the tensor (O(nd)). Tensor networks mitigate the storage issue62

by decomposing the tensor into factors with fewer elements, akin to using Singular Value Decom-63

position (SVD) to represent a large matrix. In this paper, we explore the use of Tensor Train, a type64

of Tensor Network that represents a high-dimensional tensor using several third-order tensors called65

cores.66

We can access the element (i1, . . . , id) of the tensor in this format simply given by multiplying67

matrix slices from the cores:68

P(i1,...,id) = P1
:,i1,:P

2
:,i2,: · · ·P

d
:,id,:

, (11)

where Pk
:,ik,:

∈ Rrk−1×rk represents the ik-th frontal slice (a matrix) of the third-order tensor Pk.69

For any given tensor, there always exists a TT decomposition [4]. This low-rank structure further70

facilitates sampling and optimization for robot planning and control.71

There are several ways to acquire a TT model, including TT-SVD [4] and TT-Cross [5, 6]. TT-SVD72

extends the SVD decomposition from matrix level to a high-dimensional tensor level. However, it73

needs to store the full tensor first, which is impractical to very high-dimensional functions. TT-Cross74

solves this issue by selectively evaluating function P on a subset of elements, avoiding the need to75

store the entire tensor.76

B.3 Function approximation using Tensor Train77

Given the discrete analogue tensor P of a function P , we obtain the continuous approximation78

by spline-based interpolation of the TT cores corresponding to the continuous variables only. For79

example, we can use linear interpolation for the cores (i.e., between the matrix slices of the core)80

and define a matrix-valued function corresponding to each core k ∈ {1, . . . , d},81

P k(xk) =
xk − xikk
xik+1
k − xikk

Pk
:,ik+1,: +

xik+1
k − xk

xik+1
k − xikk

Pk
:,ik,:

, (12)

3



where xikk ≤ xk ≤ xik+1
k and P k : Ik ⊂ R → Rrk−1×rk with r0 = rd = 1. This induces a82

continuous approximation of P given by83

P (x1, . . . , xd) ≈ P 1(x1) · · ·P d(xd). (13)

This allows us to selectively do the interpolation only for the cores corresponding to continuous84

variables, and hence we can represent functions in TT format whose variables could be a mix of85

continuous and discrete elements.86

B.4 Global Optimization using Tensor Train87

An arbitrary function can be transformed into a nonnegative function in TT format, which can be88

interpreted as a probability density function. The efficient sampling techniques for density functions89

in TT format allow to pick samples of only high-density regions which in turn correspond to the90

optima. In practice, the chosen number of prioritized samples N ≥ 1 and the sample(s) with the91

highest density (or least cost) is used to represent the optima. This leads to the near-global solutions,92

which can be further refined using local optimization techniques such as Newton-type optimization93

for continuous variables. Such process is gradient-free, and it can handle a mix of continuous and94

discrete variables.95

References96

[1] J. Zhou, R. Paolini, J. A. Bagnell, and M. T. Mason. A convex polynomial force-motion model97

for planar sliding: Identification and application. In 2016 IEEE International Conference on98

Robotics and Automation (ICRA), pages 372–377. IEEE, 2016.99

[2] F. R. Hogan and A. Rodriguez. Reactive planar non-prehensile manipulation with hybrid model100

predictive control. International Journal of Robotics Research (IJRR), 39(7):755–773, 2020.101

[3] F. Viña Barrientos, Y. Karayiannidis, C. Smith, and D. Kragic. Adaptive control for pivoting102

with visual and tactile feedback. In IEEE International Conference on Robotics and Automation,103

Stockholm, Sweden 16-21 May 2016. Institute of Electrical and Electronics Engineers (IEEE),104

2016.105

[4] I. V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):106

2295–2317, 2011.107

[5] I. Oseledets and E. Tyrtyshnikov. TT-cross approximation for multidimensional arrays. Linear108

Algebra and its Applications, 432(1):70–88, 2010.109

[6] D. V. Savostyanov and I. V. Oseledets. Fast adaptive interpolation of multi-dimensional arrays110

in tensor train format. The 2011 International Workshop on Multidimensional (nD) Systems,111

pages 1–8, 2011.112

4


	Dynamics model for each manipulation primitive
	Hit
	Push
	Reorientation

	Background of Tensor Train
	Tensors as Discrete Analogue of a Function
	Tensor Networks and Tensor Train Decomposition
	Function approximation using Tensor Train
	Global Optimization using Tensor Train


