
A Algorithms

The single-agent version of ICQ is shown in Algorithm 1. Its multi-agent version counterpart (ICQ-
MA) is shown in Algorithm 2.

Algorithm 1: Implicit Constraint Q-Learning in Single-Agent Tasks.
Input: Offline buffer B, target network update rate d.

Initialize critic network Qπ(·;φ) and actor network π(·; θ) with random parameters.
Initialize target networks: φ′ = φ, θ′ = θ.
for t = 1 to T do

Sample trajectories from B.
Train policy according to Jπ(θ) = Eτ∼B

[
− 1
Z(τ) log(π(a | τ ; θ)) exp

(
Qπ(τ,a)

α

)]
.

Train critic according to

JQ(φ) = Eτ∼B
[
r + γ 1

Z(τ ′) exp

(
Q(τ ′,a′;φ′)

α

)
Q (τ ′, a′;φ′)−Q (τ, a;φ)

]2

.

if t mod d = 0 then
Update target networks: φ′ = φ, θ′ = θ.

end
end

Algorithm 2: Implicit Constraint Q-Learning in Multi-Agent Tasks.
Input: Offline buffer B, target network update rate d.

Initialize critic networks Qi(·;φi), actor networks πi(·; θi) and Mixer network M(·;ψ) with
random parameters.

Initialize target networks: φ′ = φ, θ′ = θ, ψ′ = ψ.
for t = 1 to T do

Sample trajectories from B.
Train individual policy according to
Jπ(θ) =

∑
i Eτ i,ai∼B

[
− 1
Zi(τ i) log(πi(ai | τ i; θi)) exp

(
wi(τ )Qi(τ i,ai)

α

)]
.

Train critic according to JQ(φ, ψ) =

EB
[∑

t≥0(γλ)t
[
rt + γ

exp( 1
αQ(τt+1,at+1;φ′,ψ′))
Z(τt+1;φ′,ψ′) Q(τt+1,at+1;φ′, ψ′)−Q(τt,at;φ, ψ)

]]2

.

if t mod d = 0 then
Update target networks: φ′ = φ, θ′ = θ, ψ′ = ψ.

end
end
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B Detailed Proof

B.1 Proof of Theorem 1

Theorem 1. Given a deterministic MDP, the propagation of εb to εs is proportional to ‖Pπs,u‖∞:

‖εs‖∞ ≤
γ
∥∥Pπs,u∥∥∞

(1− γ)
(

1− γ
∥∥Pπs,s∥∥∞) ‖εb‖∞ . (21)

Proof. Based on the Remark 1 in BCQ [16], the exact form of εMDP(τ, a) is:

εMDP(τ, a) = QπM (τ, a)−QπB(τ, a)

=
∑
τ ′

(PM (τ ′ | τ, a)− PB(τ ′ | τ, a))

(
r(τ, a, τ ′) + γ

∑
a′

π(a′ | τ ′)QπB(τ ′, a′)

)
+ PM (τ ′ | τ, a)γ

∑
a′

π(a′ | τ ′)εMDP(τ ′, a′),

(22)
where PB = N (τ,a,τ ′)∑

τ̃ N (τ,a,τ̃) and N is the number of times the tuple (τ, a, τ ′) is observed in B. If∑
τ̃ N (τ, a, τ̃) = 0, then PB(τinit | τ, a) = 1. Since the considered MDP is deterministic, we have

PM (τ ′ | τ, a)− PB(τ ′ | τ, a) = 0 for Pπs,s and Pπs,u. For notational simplicity, the error generated by
PM (τ ′ | τ, a)− PB(τ ′ | τ, a) in Pπu,s and Pπu,u is attributed to εb as they have the same dimension.
Then, based on the extrapolation error decomposition assumption, we rewrite Equation 22 in the
matrix form: [

εs
εu

]
= γ

[
Pπs,s Pπs,u
Pπu,s Pπu,u

] [
εs
εu

]
+

[
0
εb

]
. (23)

The result indicates that the error is the solution of a linear program with [0, εb]T as the reward
function. Thus, we solve this linear program and arrive at[

εs
εu

]
= (I − γPπ)

−1

[
0
εb

]
=

[
I − γPπs,s −γPπs,u
−γPπu,s I − γPπu,u

]−1 [
0
εb

]
=

[
A B
C D

]−1 [
0
εb

]
. (24)

With the block matrix inverse formula, we have[
A B
C D

]−1

=

[
A−1 +A−1B

(
D − CA−1B

)−1
CA−1 −A−1B

(
D − CA−1B

)−1

−
(
D − CA−1B

)−1
CA−1

(
D − CA−1B

)−1

]
. (25)

Since
(
D − CA−1B

)−1
is just the lower right block of (I − γPπ)

−1, we have∥∥∥(D − CA−1B
)−1
∥∥∥
∞
≤
∥∥∥(I − γPπ)

−1
∥∥∥
∞
≤ 1

1− γ
. (26)

Thus, we obtain∥∥∥−A−1B
(
D − CA−1B

)−1
∥∥∥
∞
≤
∥∥A−1

∥∥
∞ ‖−B‖∞

∥∥∥(D − CA−1B
)−1
∥∥∥
∞

≤ 1

1− γ
∥∥A−1

∥∥
∞ ‖−B‖∞

=
1

1− γ

∥∥∥(I − γPπs,s)−1
∥∥∥
∞

∥∥γPπs,u∥∥∞
≤

γ
∥∥Pπs,u∥∥∞

(1− γ)
(

1− γ
∥∥Pπs,s∥∥∞) .

(27)

Plugging the result into Equation 25, we finish our proof at

‖εs‖∞ ≤
∥∥∥−A−1B

(
D − CA−1B

)−1
∥∥∥
∞
‖εb‖∞ ≤

γ
∥∥Pπs,u∥∥∞

(1− γ)
(

1− γ
∥∥Pπs,s∥∥∞) ‖εb‖∞ . (28)
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B.2 Proof of Theorem 2

The proof of our Theorem 2 is based on the Theorem 3 in [46]. The main difference is that we
consider a behavior policy to regularize the softmax operation. All the actions considered in the
analysis are batch-constrained, thus µ(a | τ) > 0,∀τ, a in the proof.
Lemma 1. By assuming fTα (Q(τ, ))Q(τ, ) as target value of the Implicit Constraint Q-learning opera-
tor, we have ∀Q, maxa∼BQ(τ, a)−fTα (Q(τ, ))Q(τ, ) ≤ (|Aτ |−1) max{ 1

( 1
α+1)C+1

, 2Qmax

1+C exp( 1
α )
},

where Qmax = Rmax

1−γ represents the maximum Q-value in Q-iteration with TICQ.

Proof. The target value operation of Implicit Constraint Q-learning is defined as:

fα(τ | µ) =

[
µ1 exp( 1

ατ1), µ2 exp( 1
ατ2), ..., µ|Aτ | exp( 1

ατ|Aτ |)
]T∑|Aτ |

i=1 µi exp( 1
ατi)

, (29)

We first sort the sequence {Q(τ, ai)} such that Q(τ, a[1]) ≥ · · · ≥ Q(τ, a[|Aτ |]). Then, ∀Q and ∀τ ,
we have that the distance between optimal Q-value and Implicit Constraint Q-value is:

max
a∼B

Q(τ, a)− fTα (Q(τ, ·) | µ(·|τ))Q(τ, )

= Q(τ, a[1])−
∑|Aτ |
i=1 µ(a[i] | τ) exp

[
1
αQ

(
τ, a[i]

)]
Q
(
τ, a[i]

)∑|Aτ |
i=1 µ(a[i] | τ) exp

[
1
αQ

(
τ, a[i]

)]
=

∑|Aτ |
i=1 µ(a[i] | τ) exp

[
1
αQ

(
τ, a[i]

)] [
Q
(
τ, a[1]

)
−Q

(
τ, a[i]

)]∑|Aτ |
i=1 µ(a[i] | τ) exp

[
1
αQ

(
τ, a[i]

)] .

(30)

Let δi(τ) = Q
(
τ, a[1]

)
−Q

(
τ, a[i]

)
. The distance in the Equation 30 can be rewritten as:∑|Aτ |

i=1 µ(a[i] | τ) exp
[

1
αQ

(
τ, a[i]

)] [
Q
(
τ, a[1]

)
−Q

(
τ, a[i]

)]∑|Aτ |
i=1 µ(a[i] | τ) exp

[
1
αQ

(
τ, a[i]

)]
=

∑|Aτ |
i=1 µ(a[i] | τ) exp

[
− 1
αδi(τ)

]
δi(τ)∑|Aτ |

i=1 µ(a[i] | τ) exp
[
− 1
αδi(τ)

]
=

∑|Aτ |
i=2 µ(a[i] | τ) exp

[
− 1
αδi(τ)

]
δi(τ)

µ(a[1] | τ) +
∑|Aτ |
i=2 µ(a[i] | τ) exp

[
− 1
αδi(τ)

]
(31)

First note that for any two non-negative sequences {xi} and {yi},∑
i xi

1 +
∑
i yi
≤
∑
i

xi
1 + yi

. (32)

We have the following conclusion by applying the Equation 32 to Equation 31:∑|Aτ |
i=2 µ(a[i] | τ) exp

[
− 1
αδi(τ)

]
δi(τ)

µ(a[1] | τ) +
∑|Aτ |
i=2 µ(a[i] | τ) exp

[
− 1
αδi(τ)

] ≤ |Aτ |∑
i=2

µ(a[i] | τ) exp
[
− 1
αδi(τ)

]
δi(τ)

µ(a[1] | τ) + µ(a[i] | τ) exp
[
− 1
αδi(τ)

]
=

|Aτ |∑
i=2

µ(a[i] | τ)δi(τ)

µ(a[i] | τ) + µ(a[1] | τ) exp
[

1
αδi(τ)

]
=

|Aτ |∑
i=2

δi(τ)

1 +
µ(a[1]|τ)

µ(a[i]|τ) exp
[

1
αδi(τ)

]
≤
|Aτ |∑
i=2

δi(τ)

1 + C exp
[

1
αδi(τ)

] ,
(33)
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where C = infτ∈S inf2≤i≤|Aτ |
µ(a[1]|τ)

µ(a[i]|τ) .
If δi(τ) > 1, we have

δi(τ)

1 + C exp
[

1
αδi(τ)

] ≤ δi(τ)

1 + C exp
(

1
α

) ≤ 2Qmax

1 + C exp( 1
α )
. (34)

else 0 ≤ δi(τ) ≤ 1:

δi(τ)

1 + C exp
[

1
αδi(τ)

] =
1

1+C
δi(τ) + 1

αC + 0.5 1
α2 δi(τ)C + · · ·

≤ 1

( 1
α + 1)C + 1

. (35)

By combining these two cases with Equation 33, we complete the proof.

Theorem 2. Let T kICQQ0 denote that the operator TICQ are iteratively applied over an initial state-
action value function Q0 for k times. Then, we have ∀(τ, a), lim supk→∞ T kICQQ0(τ, a) ≤ Q∗(τ, a),

lim inf
k→∞

T kICQQ0(τ, a) ≥ Q∗(τ, a)− γ(|A| − 1)

(1− γ)
max

{
1

( 1
α + 1)C + 1

,
2Qmax

1 + C exp( 1
α )

}
, (36)

where |A| is the action space, |Aτ | is the action space for state τ , C , infτ∈S inf2≤i≤|Aτ |
µ(a[1]|τ)

µ(a[i]|τ)

and µ(a[1] | τ) denotes the probability of choosing the expert action according to behavioral policy
µ. Moreover, the upper bound of T kBCQQ0 − T kICQQ0 decays exponentially fast in terms of α.

Proof. We first conjecture that

T kBCQQ0(τ, a)− T kICQQ0(τ, a) ≤
k∑
j=1

γjζ, (37)

where ζ = supQ maxτ
[
maxa∼BQ(τ, a)− fTα (Q(τ, ))Q(τ, )

]
denotes the supremum of the differ-

ence between the BCQ and ICQ operators, over all Q-functions that occur during Q-iteration, and
state τ . Equation 37 is proven using induction as follows:

• When i = 1, we start from the definitions for TBCQ and TICQ, and proceed as

TBCQQ0(τ, a)− TICQQ0(τ, a) = γ
∑
τ ′

P (τ ′ | τ, a)
[
max
a′∼B

Q0(τ ′, a′)− fTα (Q0(τ ′, ))Q0(τ ′, )
]

≤ γ
∑
τ ′

P (τ ′ | τ, a)ζ = γζ.

(38)

• Suppose the conjecture holds when i = l, i.e., T lBCQQ0(τ, a)−T lICQQ0(τ, a) ≤
∑l
j=1 γ

jζ ,
then

T l+1
BCQQ0(τ, a)− T l+1

ICQQ0(τ, a) = TBCQT lBCQQ0(τ, a)− T l+1
ICQQ0(τ, a)

≤ TBCQ

T lICQQ0(τ, a) +

l∑
j=1

γjζ

− T l+1
ICQQ0(τ, a)

=

l∑
j=1

γj+1ζ + (TBCQ − TICQ) T lICQQ0(τ, a)

≤
l∑

j=1

γj+1ζ + γζ =

l+1∑
j=1

γjζ.

(39)
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By using the fact that limk→∞ T kBCQQ0(τ, a) and applying Lemma 1 to bound ζ, we have
∀(τ, a), lim supk→∞ T kICQQ0(τ, a) ≤ Q∗(τ, a) and lim infk→∞ T kICQQ0(τ, a) ≥ Q∗(τ, a) −
γ(|A|−1)

(1−γ) max{ 1
( 1
α+1)C+1

, 2Qmax

1+C exp( 1
α )
}. Based on the Equation 33, we can bound Equation 37

as:

T kBCQQ0(τ, a)− T kICQQ0(τ, a) ≤ γ(1− γk)

1− γ

|A|∑
i=2

δi(τ)

1 + C exp
[

1
αδi(τ)

] . (40)

From the definition of δi(τ), we have δ|Aτ |(τ) ≥ δ|Aτ |−1(τ) ≥ · · · ≥ δ2(τ) ≥ 0. Furthermore, there
must exist an index i∗ ≤ |Aτ | such that δi > 0,∀i∗ ≤ i ≤ |Aτ |. Therefore, we can proceed from
Equation 40 as

γ(1− γk)

1− γ

|A|∑
i=2

δi(τ)

1 + C exp
[

1
αδi(τ)

] =
γ(1− γk)

1− γ

|A|∑
i=i∗

δi(τ)

1 + C exp
[

1
αδi(τ)

]
≤ γ(1− γk)

1− γ

|A|∑
i=i∗

δi(τ)

C exp
[

1
αδi(τ)

] ≤ γ(1− γk)

1− γ

|A|∑
i=i∗

δi(τ)

C exp
[

1
αδi∗(τ)

]
=
γ(1− γk)

1− γ
exp

[
− 1

α
δi∗(τ)

] |A|∑
i=i∗

δi(τ)

C
,

(41)

which implies an exponential convergence rate in terms of α.

B.3 Proof of Remark 3.2

We analyze the MMDP experimental result in Section 3.2 from the perspective of the concentrability
coefficient C(Π), which illustrates the degree to which states and actions are out of distribution. In
the MMDP case, we theoretically prove C(Πi) satisfies: C(Π1) < C(Π2) < · · · < C(Πn), where
Πi denotes the set of joint policies including i agents. As illustrated in the above conclusion, the
increase in the number of agents makes the distribution shift issue more severe in the MMDP case.
Remark 1. Let %(s) denote the marginal distribution over S, ρ0 indicate the initial state distribution,
and Πi represent the set of joint policies including i agents. Assume there exist coefficients c(k)

satisfying ρ0P
π1Pπ2 ...Pπk(s) ≤ c(k)%(s). We define the concentrability coefficient C(Π) ,

(1 − γ)2
∑∞
k=1 kγ

k−1c(k), which illustrates the degree to which states and actions are out of
distribution. Due to the limited datasets, the number of seen state-action pairs m is fixed. Then,
C(Πi) is monotonically increasing with the number of agents

C(Π1) < C(Π2) < · · · < C(Πn) (42)

Proof. We first note that c(k) ≥ ρ0P
π1Pπ2 ...Pπk (s)

%(s) and c(k) determines the value of C(Πi). To
compare C(Πi), we just need to compare c(k) at iteration k. For clarity of analysis, we assume each
state-action pair is visited only once, and individual policy is random πi(A(i)|s) = 1

2 . In the MMDP
case, the transition matrix Pπ is stable for the number of agents:

Pπ
1
k = Pπk = Pπ

1
kπ

2
k...π

n
k =

[
1 0
1
2

1
2

]
. (43)

For this reason, ρ0P
π1Pπ2 ...Pπk(s) does not change with the number of agents. As %(s) =∑

a %(s, a) =
∑
a

∑
s,a∈D 1[s=s,a=a]∑

s′,a′∈D 1[s=s′,a=a′] , we can calculate %(s) by counting state-action pairs in D
as follows

%(s) =
m

2n+1
. (44)

The gradient of %(s) is:

%(s)′ =
( m

2n+1

)′
=
−m · 2n+1 ln 2

(2n+1)2
< 0. (45)

Therefore, c(k) is monotonically increasing with the number of agents and C(Π1) < C(Π2) < · · · <
C(Πn).
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B.4 Proof of Remark 2

Remark 2. For the optimization problem

πk+1 = arg max
π

Ea∼π(·|τ)[Q
πk(τ, a)] s.t. DKL(π‖µ)[τ ] ≤ ε,

∑
a

π(a|τ) = 1, (46)

the optimal policy is π∗k+1(a | τ) =
µ(a|τ) exp( 1

αQ
πk (τ,a))∑

ã µ(ã|τ) exp( 1
αQ

πk (τ,ã))
.

Proof. First, note the objective is a linear function of the decision variables π. All constraints are
convex functions. Thus Equation 46 is a convex optimization problem. The Lagrangian equation is

L(π, α) = Ea∼π[Qπk(τ, a)] + α (ε−DKL (π‖µ) [τ ]) + λ

(
1−

∑
a

π(a | τ)

)
, (47)

where α > 0 denotes the Lagrangian coefficient. Differentiate π to get the following formula

∂L
∂π

= Qπk(τ, a)− α
(

1 + log

(
π(a | τ)

µ(a | τ)

))
− λ. (48)

Setting ∂L
∂π to zero, then:

Qπk(τ, a)− α
(

1 + log

(
π(a | τ)

µ(a | τ)

))
− λ = 0

Qπk(τ, a) = α

(
1 + log

(
π(a | τ)

µ(a | τ)

))
+ λ

Qπk(τ, a)

α
− 1− λ

α
= log

(
π(a | τ)

µ(a | τ)

)
π(a | τ)

µ(a | τ)
= exp

(
Qπk(τ, a)

α
− 1− λ

α

)
π(a | τ) = µ(a | τ) exp

(
Qπk(τ, a)

α
− 1− λ

α

)
(49)

Due to the second constraint in Equation 46, the policy is a probability distribution. Therefore, we
adopt Z to normalize the result by moving the constant µ(a | τ) exp(−1− λ

α ) to Z:

π∗k+1(a | τ) =
1

Z(τ)
µ(a | τ) exp

(
Qπk(τ, a)

α

)
, (50)

where Z(τ) =
∑
ã µ(ã | τ) exp

(
1
αQ

πk(τ, ã)
)

is the normalizing partition function.

B.5 Proof of Theorem 3

Theorem 3. Assuming the joint action-value function is linearly decomposed, we can decompose the
multi-agent joint-policy under implicit constraint as follows

π = arg max
π1,...,πn

∑
i

Eτ i,ai∼B
[

1

Zi(τ i)
log(πi(ai | τ i)) exp

(
wi(τ )Qi(τ i, ai)

α

)]
, (51)

where Zi(τ i) =
∑
ãi µ

i(ãi | τ i) exp
(

1
αw

i(τ )Qi(τ i, ãi)
)

is the normalizing partition function.

Proof. Let Jπ denote the joint-policy loss. According to the assumption, Jπ is written:

Jπ = Eτ ,a∼B
[
− 1

Z(τ )
log(π(a|τ )) exp

(
1

α
Qπ(τ ,a)

)]
= Eτ ,a1,...,an∼B

[
− 1

Z(τ )

(∑
i

log(πi(ai | τ i))

)
exp

(
1

α

(∑
i

wi(τ )Qi(τ i, ai) + b(τ )

))]
.

(52)

20



The loss function Jπ is equivalent to the following form by relocating the sum operator:

Jπ =
∑
i

Eτ ,a1,...,an∼B
[
− 1

Z(τ )
log(πi(ai | τ i)) exp

(∑
i w

i(τ )Qi(τ i, ai) + b(τ )

α

)]
=
∑
i

Eτ ,a1,...,an∼B[− 1

Z(τ )
log(πi(ai | τ i)) exp

(
wi(τ )Qi(τ i, ai)

α

)

exp

(∑
j 6=i w

j(τ )Qj(τ j , aj) + b(τ )

α

)
]

=
∑
i

Eτ ,ai∼BEaj 6=i∼B[− 1

Z(τ )
log(πi(ai | τ i)) exp

(
wi(τ )Qi(τ i, ai)

α

)

exp

(∑
j 6=i w

j(τ )Qj(τ j , aj) + b(τ )

α

)
]

=
∑
i

Eτ ,ai∼B
[
− 1

Zi(τ i)
log(πi(ai | τ i)) exp

(
wi(τ )Qi(τ i, ai)

α

)]
,

(53)

Zi(τ i) =

∑
ãi
∑
ãj 6=i µ(ā | τ ) exp

(
1
αw

i(τ )Qi(τ i, ãi)
)

exp
(

1
α (
∑
j 6=i w

j(τ )Qj(τ j , ãj) + b(τ ))
)

Eãj 6=i∼B
[
exp

(
1
α

(∑
j 6=i w

j(τ )Qj(τ j , ãj) + b(τ )
))]

=

∑
ãi
∑
ãj 6=i µ

i(ãi | τ i)µj 6=i(ãj | τ j) exp
(

1
αw

i(τ )Qi(τ i, ãi)
)∑

ãj 6=i µ
j 6=i(ãj | τ j) exp

(
1
α

(∑
j 6=i w

j(τ )Qj(τ j , ãj) + b(τ )
)) ·

exp

 1

α

∑
j 6=i

wj(τ )Qj(τ j , ãj) + b(τ )


=
∑
ãi

µi(ãi | τ i) exp

(
1

α
wi(τ )Qi(τ i, ãi)

)
.

(54)

C Additional Results

C.1 Additional Ablation Results in StarCraft II
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Figure 6: Module ablation study in additional StarCraft II environments.

C.2 Additional Results in MMDP

Due to the space limits, we put the complete results in MMDP in Figure 7. BCQ gradually diverges
as the number of agents increases, while ICQ has accurate estimates.
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Figure 7: Additional results in MMDP.

C.3 Additional Results in D4RL
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Figure 8: The performance on D4RL tasks with different implementation of ICQ.

C.4 Ablation Study
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Figure 9: Ablation study on MMM map.
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D Experimental Details

D.1 Implementation details of ICQ

We provide the two implementation options of our methods regards whether learning µ to calculate ρ.

Learning an auxiliary behavior model µ̂. We first consider to learn the behavior policy µ̂ using
conditional variational auto-encoder as BCQ. Next, we will sample actions n times (n = 100 in our
experiment) from µ̂ to calculate Z(τ) on each value update:

ρ(τ, a) =
exp(Q(τ,a)

α )

Z(τ)
≈

exp(Q(τ,a)
α )

Eã∼µ̂ exp(Q(τ,ã)
α )

. (55)

If µ̂ ≈ µ, this method is favored as it provides an accurate approximation. However, since it may
introduce unseen pairs sampled from the learned behavior model, it is against the principle of our
analysis. Nevertheless, we believe it is still a better choice compared with BCQ. If there is any unseen
pair τ, ã with large extrapolation error sampled from µ̂, e.g, QB(τ, ã) � QM (τ, ã), we will have
ρ̂(τ, a) < ρ(τ, a), which means the unsafe estimation is truncated and the resulting target Q-value
tends to be conservative.

Approximate with softmax operation over a mini-batch. We have the following measure to
approximately calculate ρ without µ, which reduces the computational complexity:

ρ(τ, a) =
exp(Q(τ,a)

α )

Z(τ)
≈

exp(Q(τ,a)
α )∑

(τ ′,a′)∼mini-batch exp(Q(τ ′,a′)
α )

, (56)

where Zi(τ i) is approximated by softmax operation over mini-batch samples. The benefit of the
softmax operation is that it does not include any unseen pairs, which is consistent with our theoretical
analysis. However, the price is that the softmax operation ignores the difference of states over a
mini-batch, which introduces an additional bias. However, we find it does not harm the performance
a lot in practice. There are also some previous works using softmax to deal with the partition
function, such as AWAC [29]) and VMPO [45], which has been confirmed to promote performance
improvement.

Considering the concise form of the softmax operation, we prefer the the second version in the
multi-agent tasks. We conduct ablation studies of these two measures on D4RL to demonstrate their
superior performance (see Figure 8).

D.2 Baselines Details

BCQ-MA is trained by minimizing the following loss:

J BCQ
Q (φ, ψ) = Eτ∼B,a∼µ

[(
r(τ ,a) + γmax

ã[j]
Qπ(τ ′, ã[j];φ′, ψ′)−Qπ(τ ,a;φ, ψ)

)2
]

ã[j] = a[j] + ξ(τ ,a[j])

, (57)

where Qπ(τ ,a) = wi(τ )Qi(τ i, ai) + b(τ ) and ξ(τ ,a[j]) denotes the perturbation model, which

is decomposed as ξi(τ i, ai,[j]). If ai,[j]∼Gi(τ i;ψi)
max{ai,[j]∼Gi(τ i;ψi)}mj=1

≤ ζ in agent i, ai,[j] is considered an

unfamiliar action and ξi(τ i, ai,[j]) will mask ai,[j] in maximizing Qi-value operation.

CQL-MA is trained by minimizing the following loss:

J CQL
Q (φ, ψ) = αCQLEτ∼B

[∑
i

log
∑
ai

exp(wi(τ )Qi(τ i, ai) + b(τ ))− Ea∼µ(a|τ )[Q
π(τ ,a)]

]

+
1

2
Eτ∼B,a∼µ(a|τ )

[(
yCQL −Qπ(τ ,a)

)2]
J CQL
π (θ) =

∑
i

Eτ i,ai∼B
[
− log(πi(ai | τ i; θi))Qi(τ i, ai)

]
,

(58)
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where we adopt the decomposed policy gradient to train π, and yCQL is calculated based on n-step
off-policy estimation (e.g., Tree Backup algorithm). Besides, wi(τ ) = wi(τ ;ψ), b(τ ) = b(τ ;ψ)
and Qπ(τ ,a) = Qπ(τ ,a;φ, ψ).

BC-MA only optimize π by minimizing the following loss:

J BC
π (θ) =

∑
i

Eτ i,ai∼B[− log(πi(ai | τ i; θi))]. (59)

E Multi-Agent Offline Dataset Based on StarCraft II

We divide maps in StarCraft II into three classifications based on difficulty (see Table 2). We divide
behavior policies into three classifications based on the episode returns (see Table 3).

Table 2: Classification of maps in the dataset.
Difficulties Maps

Easy MMM, 2s_vs_3z, 3s_vs_3z, 3s5z, 2s3z, so_many_baneling
Hard 10m_vs_11m, 2c_vs_64zg

Super Hard MMM2, 27m_vs_30m

Table 3: Classification of behavior policies in the dataset.
Level Episode Returns

Good 15 ∼ 20
Medium 10 ∼ 15

Poor 0 ∼ 10

E.1 Hyper-parameters

Hyper-parameters in multi-agent tasks are respectively presented in Table 4. Please refer to our
official code for the hyper-parameter in single-agent tasks.

Table 4: Multi-agent hyper-parameters sheet
Hyper-parameter Value

Shared
Policy network learning rate 5× 10−4

Value network learning rate 10−4

Optimizer Adam
Discount factor γ 0.99
Parameters update rate d 600
Gradient clipping 20
Mixer network dimension 32
RNN hidden dimension 64
Activation function ReLU
Batch size 16
Replay buffer size 1.2× 104

Others
Lagrangian coefficient α 1000 or 100
λ 0.8
αCQL 2.0
ζ 0.3
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