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Due to the length constraints of the main text, we provide additional
supplementary materials related to this paper. These materials
primarily include 1) supplementary experiments in this PDF and
2) supplementary code in the zip file. We commit to making the
code and the constructed dataset of this paper publicly available
on GitHub upon final acceptance.

1 SUPPLEMENTARY COMPARISON
The comparison experiment results in the main text present a com-
parison between the state-of-the-art visual few-shot learning (FSL)
models, the visual-language models (VLMs) based on CLIP, and
our MCRNet. Due to space constraints, the complete results of the
few-shot learning models were not listed, hence the need for this
supplementary information. As shown in Tab. 1, meta-learning-
based models like MAML, and metric-learning-based models like
RelationNet, DeepDBC, DeepEMD, and RankDNN all yield lower
results compared to our MCRNet. This further demonstrates the
superiority of MCRNet. Our analysis reveals that the performance
of FSL models generally improves with 5-shot compared to 1-shot,
whereas the performance of VLMs, especially the baseline CLIP,
shows little difference between 1-shot and 5-shot. This is because
FSL models typically train classifiers online based on the prototype
features of five support images, rather than using a matrix to de-
termine the query category as VLMs do. In contrast, our MCRNet
incorporates a category-adaptive fine-tuning mechanism, which
reuses the features of the five support images and their category
information during representation, enabling the learned features
to acquire new category knowledge. As a result, MCRNet not only
utilizes support information more effectively than VLMs but also
delves deeper than FSL models by adjusting distributions beyond
just training classifiers.

In addition, in FSL research, the debate over the merits and draw-
backs of meta-learning, metric learning, and data augmentation
methods has always been a focal point. In the supplementary ex-
periments, we observed that in the extensive validation process
across diverse domain datasets, methods based on metric learning
such as RankDNN or DeepEMD perform better than other methods,
especially in the 1-shot setting. However, as the core focus of this
paper is not on evaluation experiments and analysis, we cannot
simply conclude. In future work, we aim to expand our benchmark
dataset tasks and domains to provide a detailed analysis of these
FSL methods and VLMs.

2 VISUALIZATION
MCRNet is built upon CLIP, and in the main text, we assert that the
key focus of MCRNet lies in its ability to re-represent the feature
prototypes generated by CLIP. This is achieved through MCRNet’s
innovative mechanism that integrates fusion and representation,

After CLIP After MCRNet

Figure 1: The feature visualization after CLIP and the feature
visualization of ourMCRNet are compared. It can be observed
thatMCRNet can correct themisrepresentation of query data
by CLIP, leading to correct classification.

utilizing contrastive learning loss to supervise the category and dis-
tance relationships between the image-text features of queries and
supports. Essentially, MCRNet brings similar supports and queries
closer in multi-modal information and pushes dissimilar ones apart.
To demonstrate this effect, we conducted feature visualizations as
shown in Fig. 1. This comparison of feature visualizations was car-
ried out on five classes in the LeafVirus dataset. Due to the high
similarity between classes in LeafVirus, where the differences be-
tween categories are minimal, and these plant virus categories are
unfamiliar to CLIP, CLIP erroneously classified a query belonging
to class 3 into class 4. However, after processing through MCRNet,
the query was correctly classified. This validates the effectiveness
of MCRNet’s re-representation.
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Table 1: Experimental comparison results ofMCRNet and SOTAmodels in the biological domain (Animal, Insect, andMushroom)
as well as in the agricultural domain (LeafVirus) on 5-way-1-shot and 5-way-5-shot settings. The numbers in bold indicate the
best performance, while the underlined ones denote the second best. All the backbone of the following models is ViT.

Method Animal Insect Mushroom LeafVirus
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
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Vision-Language Models
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