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Appendix A Proofs

Proposition 1. For w, v, r and c containing no zeros, the resulting optimal coupling matrices Z
and W are always an h-almost hard clustering with h ∈ {0, . . . , k − 1}. Furthermore, when n = k
(resp. d = k) and w = r (resp. v = c), Z (resp. W) represents a hard clustering Z ∈ Γ(n, n) (resp.
W ∈ Γ(d, d)).

Proof for proposition 1. The Kantorovich OT problem is a bounded linear program since Π(w,v)
is a polytope i.e. a bounded polyhedron. The fundamental theorem of linear programming states that
if the feasible set is non-empty then the solution lies in the extremity of the feasible region. This
means that a solution Z to the OT problem is an extreme point of Π(w,v). We have that the extreme
points of Π(w,v) can have at most n+ d− 1 nonzero elements. To prove this we have to show that
the bipartite graph induced by biadjacency matrix Z, the solution to the optimal transport problem
has no cycles. The maximum number of edges in an acyclic graph is |V | − 1 where |V | is the number
of nodes in the graph. Since the number of edges in the bipartite graph induced by biadjacency matrix
Z is n+ d− 1, the matrix Z can not have more than n+ d− 1 nonzero entries. For a detailed proof
see proposition 3.3 in [6].

We also have to show that for probability measures w and v that have no zero probability events,
there is at minimum max(n, d) number of nonzero elements in Z. This is straightforward since w
and v contain no zeros, there will always be at least one nonzero element in every row and column of
Z that represents some transfer of mass between elements of w and v.

BCOT is a bilinear program that has a finite global solution which means that there exists at least one
optimal solution pair (Z,W) such that Z is an extreme point of Π(w, r) and W is an extreme point
of Π(v, c) (theorem 1 in [3]).

We then have that, For BCOT, Z has at most n+ k − 1 and at least max(n, k) = n nonzero entries
and that W has at most d+ k− 1 and at least max(d, k) = d elements which are both h-almost hard
clusterings with h ∈ {0, . . . , k − 1}.

When n = k and w = r, the solution Z is a permutation matrix (up to a constant factor) and
the number of nonzero elements in it is exactly n which means that it represents a hard partition
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Z ∈ Γ(n, n). The proof is the same for W. □

Proposition 2. Suppose that the target row and column representative distributions are the same,
i.e. r = c with no zero entries. Then, given a solution pair Z and W to BCOT, the matrix
Q = Z diag(1/r)W⊤ is an approximation of the optimal transport plan that is a solution to problem
The the Kantorovich OT problem and whose rank is at most min(rank(Z), rank(W)).

Proof of proposition 2. From linear algebra, we have that rank(Q) ≤
min(rank(Z), rank(diag(1/r)), rank(W)). Since Z and W cannot have a rank greater
than k due to their dimension, and since diag(1/r) is a full rank matrix due to the assumption that r
has no zero entries, we then have that rank(Q) ≤ min(rank(Z), rank(W)).

For a proof that Q is indeed a valid transport plan i.e. Q ∈ Π(w,v), we refer the reader to
proposition 2.2 in [6]. □

Proposition 3. The computational complexity of the BCOT algorithm when using an exact OT
solver is O (tk∥B∥0 + tnk(n+ k) log(n+ k) + tdk(d+ k) log(d+ k))), and when using entropic
regularization the complexity is O(tk∥B∥0 + tkn+ tkd), where t is the number of iterations.

Proof of proposition 3. We suppose that L(B) is a sparse matrix with the same number of nonzero
entries as B. The complexity of computing L(B)W and L(B)W in the BCOT algorithm is
O(k∥B∥0).
The optimal transport problem can be formulated and solved as the Earth Mover’s Distance (EMD)
problem using any minimum-cost flow problem algorithm, such as one of the many variants of
the network simplex algorithm. The authors in [5] proposed an algorithm for the network simplex
in O(|V ||E| log |V |), where |V | is the number of nodes and |E| is the number of edges in the
network. In our case, when solving the EMD for Z and cost matrix L(B)W, the number of nodes is
|V | = n+ k and the number of edges is |E| = nk, which means that the complexity of the operation
is O(nk(n + k) log(n + k)). When computing the optimal transport plan for W, for cost matrix
L(B)⊤Z, the complexity is O(dk(d+k) log(d+k)). The overall complexity of the BCOT algorithm
is then O(k∥B∥0) + tnk(n+ k) log(n+ k) + tdk(d+ k) log(d+ k))

When using entropic regularization the complexity is smaller, since computing the optimal transport
plan requires only a transformation of the inputs matrix, which takes O(nk) in the Z computation
step and O(dk) for W. The ensuing application of the Sinkhorn-Knopp algorithm on the transformed
matrices has complexities O(tnk) and O(tdk) for Z and W respectively, where t is the number
of iterations necessary. The overall complexity of BCOTλ is then O(k∥B∥0) + tnk + tdk), here t
includes the number of iterations of our algorithm as well as that of Sinkhorn-Knopp. □

Appendix B Additional Experiments

B.1 Experiments on Synthetic Data

Datasets. As datasets with labels along both rows and columns are unavailable, we use synthetic
data as in [4, 7]. Their structure is shown in figure 1, while their characteristics are reported in table
1.

Table 1: Characteristics of the synthetic datasets.
Rows Cols Biclusters Sizes Sparse Structure

A 500 500 10 equal Yes Block diagonal
B 800 1000 6 unequal No Block diagonal
C 800 800 7 equal No Checkerboard
D 2000 1200 4 unequal No Checkerboard
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Figure 1: Synthetic datasets rearranged with respect to the true partition.

Metrics. From row πr and column πc clusters, we use the Co-Clustering Accuracy (CCA) proposed
by [2] to compare two pairs of partitions. CCA is defined from Clustering Accuracy (CA) associated
to πr and πc in comparison with the true row and column clusters; it is given by

CCA(πr, πc) = CA(πr) + CA(πc)− CA(πr)× CA(πc).

Results. We report the biclustering performance on the synthetic datasets in table 2. At least one of
our models finds the perfect partition in all cases. These tests additionally allow us to show the utility
of the the row cluster distribution r and column cluster distribution c. The use of these ground truth
distributions resulted in an increase of 19.5 and 4.2 points for BCOT on C and D, and an increase of
0.3 and decrease of 0.8 for BCOTλ on C and D.

Table 2: Biclustering performance on four synthetic datasets. gnd stands for ground truth.
Method A B C D
k-means 100.0±0.0 95.0±5.0 95.3±4.0 96.6±4.7

CCOT 54.4±3.5 70.0±0.0 29.7±0.4 55.7±1.8
CCOT-GW 99.1±0.0 83.5±0.0 83.4±0.0 75.3±0.0
COOT 99.8±0.0 78.8±2.0 99.8±0.0 93.7±1.2
COOTλ 39.9±2.4 84.9±4.6 28.2±0.0 60.7±0.0

BCOT 99.8±0.0 80.4±2.2 99.6±0.1 91.3±0.7
BCOTλ 100.0±0.0 99.1±0.4 100.0±0.0 100.0±0.0
BCOT (gnd r, c) same r, c 99.9±0.0 same r, c 95.5±2.3
BCOTλ (gnd r, c) same r, c 100.0±0.0 same r, c 99.2±0.9

B.2 Experiments on Gene Expression Data

Datasets. The gene-expression matrices used are the Cumida Breast Cancer and Leukemia datasets.
Their characteristics are shown in Table 3.

Table 3: Characteristics of the gene expression datasets.
Dataset Samples Genes k Sparsity (%)

Breast Cancer [1] 26 42945 2 0.0
Leukemia [1] 64 22283 5 0.0

Metrics. The metrics are the same as for document clustering.

Performance In table 4, we report results on the two micro-array datasets, BCOTλ has the best
performance on both of them.
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Table 4: Gene clustering performance on the two microarray datasets.
Method Breast Cancer Leukemia

CA NMI ARI CA NMI ARI

k-means 75.8±18.0 41.9±40.5 31.2±49.0 74.8±7.2 72.1±5.4 50.1±8.3

CCOT OOM 40.6±0.0 0.0±0.0 0.0±0.0
CCOT-GW OOM OOM
COOT 63.1±5.2 5.4±8.7 -1.2±2.9 36.2±2.7 14.0±3.6 5.4±3.2
COOTλ 61.5±0.0 5.4±0.0 2.2±0.0 32.5±3.3 8.7±2.7 -.5±2.1

BCOT 76.9±0.0 37.2±0.0 26.7±0.0 71.2±5.4 59.6±6.9 39.9±6.3
BCOTλ 84.6±0.0 48.3±0.0 46.0±0.0 80.9±3.8 70.9±4.1 55.3±3.3

References
[1] Bruno César Feltes, Eduardo Bassani Chandelier, Bruno Iochins Grisci, and Márcio Dorn.

Cumida: An extensively curated microarray database for benchmarking and testing of machine
learning approaches in cancer research. Journal of Computational Biology, 26(4):376–386, 2019.

[2] Gérard Govaert and Mohamed Nadif. Block clustering with bernoulli mixture models: Com-
parison of different approaches. Computational Statistics & Data Analysis, 52(6):3233–3245,
2008.

[3] Hiroshi Konno. A cutting plane algorithm for solving bilinear programs. Mathematical Program-
ming, 11(1):14–27, 1976.

[4] Charlotte Laclau, Ievgen Redko, Basarab Matei, Younes Bennani, and Vincent Brault. Co-
clustering through optimal transport. In International Conference on Machine Learning, pages
1955–1964. PMLR, 2017.

[5] James B Orlin. A polynomial time primal network simplex algorithm for minimum cost flows.
Mathematical Programming, 78(2):109–129, 1997.

[6] Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport. Center for Research in
Economics and Statistics Working Papers, (2017-86), 2017.

[7] Vayer Titouan, Ievgen Redko, Rémi Flamary, and Nicolas Courty. Co-optimal transport. Advances
in Neural Information Processing Systems, 33:17559–17570, 2020.

4


	Proofs
	Additional Experiments
	Experiments on Synthetic Data
	Experiments on Gene Expression Data


