
A Comparison of mainstream RNA secondary structure prediction methods504

We compare our proposed method RFold with several other leading RNA secondary structure505

prediction methods and summarize the results in Table 8. RFold satisfies all three constraints (a)-(c)506

for valid RNA secondary structures, while the other methods do not fully meet some of the constraints.507

RFold utilizes a sequence-to-map attention mechanism to capture long-range dependencies, whereas508

SPOT-RNA simply concatenates pairwise sequence information and E2Efold/UFold uses hand-crafted509

features. In terms of prediction accuracy on the RNAStralign benchmark test set, RFold achieves the510

best F1 score of 0.977, outperforming SPOT-RNA, E2Efold and UFold by a large margin. Regarding511

inference time, RFold is much more efficient and requires only 0.02 seconds to fold the RNAStralign512

test sequences. In summary, RFold demonstrates superior performance over previous methods for513

RNA secondary structure prediction in both accuracy and speed.514

Table 8: Comparison between RNA secondary structure prediction methods and RFold.

Method SPOT-RNA E2Efold UFold RFold

constraint (a) ˆ X X X
constraint (b) ˆ X X X
constraint (c) ˆ ˆ ˆ X

sequence-to-map pairwise concat pairwise concat hand-crafted seq2map attention
F1 on RNAStralign test 0.711 0.686 0.915 0.977

Inference time on RNAStralign test 77.80 s 0.40 s 0.16 s 0.02 s

B Discussion on Abnormal Samples515

Although we have illustrated three hard constraints in 3.2, there exist some abnormal samples that do516

not satisfy these constraints in practice. We have analyzed the datasets used in this paper and found517

that there are some abnormal samples in the testing set that do not meet these constraints. The ratio518

of valid samples in each dataset is summarized in the table below:519

Table 9: The ratio of valid samples in the datasets.
Dataset RNAStralign ArchiveII bpRNA

Validity 93.05% 96.03% 96.51%

As shown in Table 6, RFold forces the validity to be 100.00%, while other methods like E2Efold only520

achieve about 50.31%. RFold is more accurate than other methods in reflecting the real situation.521

Nevertheless, we provide a soft version of RFold to relax the strict constraints. A possible solution to522

relax the rigid procedure is to add a checking mechanism before the Rol-Col Argmax function in the523

inference. Specifically, if the confidence given by the Rol-Col Softmax is low, we do not perform524

Rol-Col Argmax and assign more base pairs. It can be implemented as the following pseudo-code:525

1 y_pred = row_col_softmax(y)526

2 int_one = row_col_argmax(y_pred)527

3528

4 # get the confidence for each position529

5 conf = y_pred * int_one530

6 all_pos = conf > 0.0531

7532

8 # select reliable position533

9 conf_pos = conf > thr1534

10535

11 # select unreliable position with the full row and column536

12 uncf_pos = get_unreliable_pos(all_pos , conf_pos)537

13538

14 # assign "1" for the positions with the confidence higher than thr2539

15 # note that thr2 < thr1540

16 y_pred[uncf_pos] = (y_pred[uncf_pos] > thr2).float()541

17 int_one[uncf_pos] = y_pred[uncf_pos]542
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We conduct experiments to compare the soft-RFold and the original version of RFold in the RNAS-543

tralign dataset. The results are summarized in the Table 10. It can be seen that soft-RFold improves544

the recall metric by a small margin. The minor improvement may be because the number of abnormal545

samples is small.546

Table 10: The results of soft-RFold and RFold
on the RNAStralign.

Method Precision Recall F1

RFold 0.981 0.973 0.977
soft-RFold 0.978 0.974 0.976

Table 11: The results of soft-RFold and RFold
on the abnormal samples on the RNAStralign.

Method Precision Recall F1

RFold 0.956 0.860 0.905
soft-RFold 0.949 0.889 0.918

We then select those samples that do not obey the three constraints to further analyse the performance.547

The total number of such samples is 179. It can be seen that soft-RFold can deal with abnormal548

samples well. The improvement of the recall metric is more obvious.549

C Proofs of Theorems550

C.1 Proof of Theorem 1551

Theorem 1. Given a symmetric matrix xH P RLˆL, the matrix Row-Col-ArgmaxpxHq is also a552

symmetric matrix.553

Proof: From Eq. 10 and Eq. 11, we can know that:554

Row-Col-ArgmaxpxHijq “ 1,

if maxttxHikuLk“1 Y txHkjuLk“1u “ xHij ,
(20)

Then, we can infer that:555

Row-Col-ArgmaxpxHjiq “ 1,

if maxttxHjkuLk“1 Y txHkiuLk“1u “ xHji,
(21)

As xH is a symmetric matrix, xHjk “ xHkj and xHki “ xHik. Thus, Row-Col-ArgmaxpxHjiq can be556

rewritten as:557

Row-Col-ArgmaxpxHjiq “ 1,

if maxttxHkjuLk“1 Y txHikuLk“1u “ xHij ,
(22)

It can be seen that only if maxttxHkjuLk“1 Y txHikuLk“1u “ xHij “ xHji, then xHij “ xHji “ 1.558

Thus, Row-Col-ArgmaxpxHq is also a symmetric matrix.559

C.2 Proof of Theorem 2560

Theorem 2. Given a symmetric matrix xH P RLˆL, the matrix Row-Col-SoftmaxpxHq is also a561

symmetric matrix.562

Proof: @i, j P t1, ..., Lu,563

Row-Col-SoftmaxpxHjiq

“1

2

ˆ
exppxHjiq∞L

k“1 exppxHjkq
` exppxHjiq∞L

k“1 exppxHkiq

˙

“1

2

ˆ
exppxHijq

∞L
k“1 exppxHkjq

` exppxHijq
∞L

k“1 exppxHikq

˙

“ Row-Col-SoftmaxpxHijq.

(23)
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D Visualization564

RFoldTrue UFold

Figure 7: Visualization of the true and predicted structures.
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