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APPENDIX

A LOSS LANDSCAPE VISUALIZATION

To understand the underlying cause of the significant improvement in optimization brought by our
mapping network θ, we visualize in Fig. 8 the loss landscape for performing optimization in the
original input space X , and our projected space Z. To generate this visualization, we first perform 20
steps of optimization on the validation dataset to collect a set of recovered latents. We then perform
principle component analysis (PCA) on these recovered latents to obtain two principle directions.
Finally, for individual examples, we evaluate the loss for vertices on a meshgrid spanned by the two
principle directions where the center is the last step of optimization.

From the visualization, we can see that the loss landscapes of the baseline are highly non-convex
and contain points whose loss are significantly higher than its neighboring regions, while our loss
landscapes are significantly smoother, with the “spikes” removed. Besides, our loss landscapes also
tend to be steeper than the baseline ones. These two phenomena directly cause our method to perform
gradient descent faster and stabler.

Figure 8: Visualizing Loss Landscape (Uncurated). Visualizing the loss landscape of StyleGAN
inversion spanned by two principle directions. Top row shows 4 examples of the loss landscapes
corresponding to our space Z. Bottom row shows the loss landscapes corresponding to the original
input space X for the same 4 examples. Note that the top row and the bottom row have different
minimum loss values on the landscape because the minimas are obtained by performing independent
optimization runs in space Z and X respectively. Given a fixed number of optimization step,
optimization in Z reaches lower loss values than optimization in X .

B EQUIVALENCE TO EXPECTATION-MAXIMIZATION

We show that our algorithm in 1 is equivalent to hard Expectation-Maximization (McAllester). First
we rewrite the objective Eq. 2 as:

θ̂ = argmax
θ

max
zi

∏
i

Pθ(yi|F (Θ(zi))) (8)

To optimize objective Eq. 8, we perform the following algorithm:

1. Initialize θ with Gaussian distribution
2. Repeat the following until

∏
i lnPθ(yi|F (Θ(zi))) converges:

(a) Expectation: ρθ(zi) = δ(zi = z̃i), where z̃i = argmaxzi Pθ(yi|F (Θ(zi))))

(b) Maximization: θ̂ = argmaxθ Ez∼ρ[ln(Pθ(yi|F (Θ(zi))))]

where θ denotes the parameters of the mapping network Θ, and δ(·) denotes a Dirac delta distri-
bution. Since both expectation and maximization steps strictly increase or maintain the value of
Pθ(yi|F (Θ(zi))) under gradient ascent, and the function is bounded, the algorithm is guaranteed to
converge.
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C DIMENSION OF Z

As our method learns a mapping network Θ that maps a vector from a new latent space Z to a
vector in the original input space X . The dimension of Z becomes a hyperparameter. In table 3,
we perform ablation studies on the effect of the dimension of Z space on the performance of the
learned mapping network. From table 3, we can see a consistent improvement on performance as we
increase the number of dimension of Z. However, such improvement hits a diminishing return when
the dimension is in the same order of magnitudes as the dimension of X .

Dimension of Z 16 32 64 128 256 512 2048 Baseline

In-distribution 3.157 2.797 2.489 2.489 2.212 1.964 1.920 2.569

OOD 4.872 4.592 4.277 3.916 3.618 3.498 3.392 4.617

Table 3: Ablation studies on the dimension of Z. We trained variations of our full model with
different number of dimension of Z space, varying from 16 to 2048 given the dimension of input
space X is 512. Numbers correspond to loss values defined in Eq. 5.

D MORE EVALUATION ON OUT-OF-DISTRIBUTION GENERALIZATION

Since our proposed mapping network Θ is parameterized by a neural network, there’s no guarantee
that the learned mapping function is surjective. Therefore, we empirically study the generalization
performance by testing a mapping network trained on CelebA-HQ against a spectrum of datasets
from very similar ones (in-distribution) to completely different ones (OOD).

D.1 SYNTHETIC SPECTRUM

We first created a synthetic version of this spectrum of datasets by varying the level of Gaussian
noise injected into the images of CelebA-HQ. With a higher level of Gaussian noise injected into the
original images, more of the original image content is corrupted, creating a distribution of images
further away from the original test images.

level of Corruption N (0, 0.02) N (0, 0.12) N (0, 0.22) N (0, 0.32) N (0, 0.42)

Improvement 29.53% 18.95% 12.57% 6.30% 6.72%

Table 4: Evaluation of a mapping network trained with Celeba-HQ trainset and tested on the Celeba-
HQ testset corrupted with different levels of Gaussian noise. The improvement is calculated by the
percentage improvement of loss defined by Eq. 5 from baseline (no mapping network) to ours (with
mapping network) after 200 steps of optimization.

D.2 NATURAL IMAGE SPECTRUM

We then created a natural image version of this spectrum of datasets containing: CelebA-HQ (original
in-distribution testset), AFHQ-Cat (center-aligned cat faces), LSUN-Cat (unaligned cat images),
Container-Ship ("Container Ship" class from ImageNet), and Gaussian noise with individual pixel
sampled from N (0.5, 0.52). From left to right, images in the datasets vary from very similar to
human faces to very different.

From results evaluated on both synthetic spectrum and real spectrum, we observed consistent
improvements of our method over the baseline, which shows the generalization performance of
our method when applied to OOD data. From table 4 and 5, we see the improvements drop as the
evaluation data is less and less in-distribution with the training data, which indicates that the mapping
network does learn a prior from the training data.
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dataset CelebA-HQ AFHQ-Cat LSUN-Cat Container-Ship N (0.5, 0.52)

Improvement 29.53% 35.99% 24.36% 16.87% 6.60%

Table 5: Evaluation of a mapping network trained with Celeba-HQ trainset and tested on a spectrum
of datasets from the original CelebA-HQ (in-distribution) to Gaussian noise (OOD). AFHQ-Cat Choi
et al. (2020) is a dataset with aligned cat faces. LSUN-Cat Yu et al. (2015) is a dataset with unaligned
cat images. Container-Ship is 200 images sampled from "Container Ship" class of ImageNet Deng
et al. (2009). The improvement is calculated the same way as table 4

E DEPENDENCE ON TRAINING DATASET

From previous section, we know that the learned mapping network contains priors learned from the
training data. To exclude such influence, we train our mapping network using randomly generated
images made of Gaussian noise and evaluate on testset of CelebA-HQ. From table 6, we see that
even trained with the task of reconstructing images of Gaussian noise, our mapping network still
bring some improvement over the baseline model, though much less significant. Interestingly, this
improvement number is consistent with the last columnes of table 4 and 5, where a mapping network
is trained with CelebA-HQ and tested on images with Gaussian noise.

Baseline Ours (trained on Gaussian noise) Improvement

CelebA-HQ 2.569 2.396 6.72%
LSUN-Cat 4.617 3.717 19.49%

Table 6: Evaluation of a mapping network trained with images of Gaussian noise sampled from
N (0.5, 0.52) clipped to [0, 1]. Numbers show the average loss defined in Eq. 5 evaluated on testset
of CelebA-HQ and LSUN-Cat.

F LIMITATIONS

Optimization-based inference has intrinsic advantages to robustness, accuracy, and flexibility, which
comes at the cost of additional computation time during inference. Encoder-based methods will
usually perform faster because they only require a single forward pass of a neural network, while our
approach requires several computational passes in both the forward and backward (gradient) direction.
We believe that for many applications this trade-off will be desirable, especially in cases where
accuracy is more important than speed. Our approach aims to minimize this additional computational
overhead brought by optimization-based inference, and our experiments on multiple datasets show
the significant computational savings compared to other optimization-based inference methods.

Unlike many other optimization-based inference algorithms, our approach also requires a training
step in order to fit a suitable landscape, which requires both training time and training data. However,
we believe this overhead is insignificant for most applications and we have designed our neural
networks to be efficient. For example, Θ is relatively lightweight, making its training time fairly
marginal compared to the training of the forward model F . In all our experiments, we found that the
training time of Θ is orders of magnitudes faster than the training time for F .
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Partial GT Reconstruction from Random Initializations

Figure 9: Diversity of Masked Reconstructions.(Uncurated) We visualize reconstructions for
partially observable inputs from random initialization. The masked regions are not considered for
loss computation, i.e., the gradient is set to be zero. By optimizing only on the partial observation,
we obtain diverse, feasible solutions for the hidden regions. All reconstruction results presented are
randomly sampled.
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