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Abstract

In collaborative machine learning (CML), multiple agents pool their resources
(e.g., data) together for a common learning task. In realistic CML settings where
the agents are self-interested and not altruistic, they may be unwilling to share data
or model information without adequate rewards. Furthermore, as the data/model
information shared by the agents may differ in quality, designing rewards which are
fair to them is important so that they would not feel exploited nor discouraged from
sharing. In this paper, we adopt federated learning as the CML paradigm, propose
a novel cosine gradient Shapley value (CGSV) to fairly evaluate the expected
marginal contribution of each agent’s uploaded model parameter update/gradient
without needing an auxiliary validation dataset, and based on the CGSV, design
a novel training-time gradient reward mechanism with a fairness guarantee by
sparsifying the aggregated parameter update/gradient downloaded from the server
as reward to each agent such that its resulting quality is commensurate to that
of the agent’s uploaded parameter update/gradient. We empirically demonstrate
the effectiveness of our fair gradient reward mechanism on multiple benchmark
datasets in terms of fairness, predictive performance, and time overhead.

1 Introduction

In collaborative machine learning (CML), multiple agents (e.g., researchers, organizations, compa-
nies) pool their resources (e.g., data) together for a common learning task. It spans a wide variety
of real-world applications such as digital healthcare [49], clinical trial research [13, 23], wake word
detection for smart voice assistants [27], and next word prediction on mobile devices [15].

Federated learning (FL) provides a natural paradigm of CML [18, 29, 41, 43, 57, 62]. In FL, the
agents perform local model training (e.g., using stochastic gradient descent) and share their resulting
model parameter updates/gradients via a trusted server [40, 56, 59]. An important distinction of
our work here from the standard FL literature is that the agents are self-interested and hence not
necessarily cooperative like the worker nodes in distributed learning. The implication is that to
achieve competitive predictive performance for the learning task, it is imperative to incentivize/reward
the agents for contributing/sharing high-quality information in the form of model parameter up-
dates/gradients [47, 48, 52].
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Our work here adopts FL as the CML paradigm for designing a fair reward mechanism such
that the (self-interested) agents who contribute more would not feel exploited but be rewarded
commensurately. This is often regarded as fairness in cooperative game theory [42], mechanism
design [4], and computational social choice [11]. To design such a fair reward mechanism, we need
to address three main questions:

Firstly, what is a suitable notion of fairness? The Shapley value (SV) [50] from cooperative game
theory is an appealing choice and has been used in ML [14] and FL [54, 56]. However, existing
SV-based works [19, 37, 54, 56] typically require the availability of (and all agents to agree on) an
auxiliary validation dataset and significant time overhead from evaluating the agents’ contributions
in the form of SVs and the resulting model training. To overcome these difficulties, we propose to
instead exploit the alignment (specifically, cosine similarity) of an agent’s uploaded/contributed model
parameter update/gradient vector (or that aggregated over some agents) to that aggregated over all
agents (hence measuring its quality/value and circumventing the need for a validation dataset [12, 52])
for devising our proposed cosine gradient Shapley value (CGSV) (Sec. 3.2) which can be efficiently
approximated with a bounded error (Sec. 3.3).

Secondly, what is the choice of reward? Various choices such as monetary rewards from a pre-
allocated budget [65, 66] or the total revenue generated from the collaboration through FL [9, 10]
have been proposed. Though it may seem natural to consider monetary rewards, it is not obvious how
a common denomination between money and data/gradients [1, 46] can be readily established, which
makes it challenging to apply these works in practice. Instead, we propose to consider the aggregated
parameter updates/gradients downloaded from the server as rewards to the agents.

Finally, how can the gradient reward mechanism ensure fairness? Our proposed mechanism exploits
a sparsifying gradient trick (Sec. 3.4) for controlling the quality of the aggregated parameter up-
date/gradient downloaded from the server as reward to each agent at training time (rather than post
hoc [48, 52, 65]) such that its quality is commensurate to that of the agent’s uploaded/contributed
parameter update/gradient [2, 7]. Consequently, an agent who uploads/contributes higher-quality
parameter updates/gradients over the entire training process should eventually be rewarded with
converged model parameters whose resulting training loss (and hence predictive performance) is
closer to that of the server, as demonstrated in our fairness guarantee (Sec. 3.5) [52].

In summary, the contributions of our work here to CML and FL include the following:

• We propose a novel cosine gradient Shapley value (CGSV) (Sec. 3.2) to fairly evaluate the expected
marginal contribution of each agent’s uploaded model parameter update/gradient without needing
an auxiliary validation dataset and present an efficient approximation of CGSV with a bounded
error (Sec. 3.3).

• Based on the approximate CGSV, we design a novel training-time gradient reward mechanism
(Sec. 3.4) with a fairness guarantee (Sec. 3.5) by exploiting the trick of sparsifying the aggregated
parameter update/gradient downloaded from the server as reward to each agent such that its resulting
quality is commensurate to that of the agent’s uploaded/contributed parameter update/gradient.

• We empirically demonstrate the effectiveness of our fair gradient reward mechanism on multiple
benchmark datasets in terms of fairness, predictive performance, and time overhead (Sec. 4).

2 Related Work

Reward design and choice in CML. In related topics such as FL [30, 36, 38, 47, 59, 63, 66],
Bayesian CML [52], collaborative generative modeling [55], and data sharing [13, 23, 48], designing
appropriate rewards to encourage collaboration (e.g., sharing real or synthetic data, gradients, or other
information) is a non-trivial problem. A useful solution concept should provide a formal notion of
fairness, a suitable form/denomination of reward, and a principled way to guarantee fairness via a
carefully designed reward mechanism. Previous works have considered monetary rewards from a
pre-allocated budget [65, 66] or the total revenue generated from the collaboration [9, 10], or simply
an abstract yet quantifiable form of reward [47, 48]. Though it may seem natural to consider monetary
rewards, it is not obvious how a common denomination between money and data/gradients [1, 46]
can be readily established, which makes it challenging to apply these works in practice. The work
of [66] has explored a different avenue of using a reverse auction to guarantee truthfulness in its
mechanism instead of fairness.
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Fairness notions. The Shapley value (SV) [50] from cooperative game theory is widely regarded as
a principled notion of fairness [4, 11, 42] due to its several desirable properties such as symmetry
and null player. Existing SV-based works have considered fairness in the sense of rewarding agents
according to their contributions [19, 54, 56]. However, they typically require the availability of (and
all agents to agree on) an auxiliary validation dataset [37, 52] and significant time overhead from
evaluating the agents’ contributions in the form of SVs and the resulting model training [14, 19, 56].
In contrast, the work of [31] has adopted an egalitarian notion of fairness by aiming to equalize the
final individual performance among agents, which is fundamentally different from SV.

Different from the fairness definition in [31], we adopt a fairness notion formalized by SV [14, 19, 52,
54, 56]. Our proposed work is novel in the application of SV: While previous works use the validation
accuracy [14, 19, 54, 56], we exploit the cosine similarity between model parameter updates/gradient
vectors [12] for devising our proposed cosine gradient Shapley value (CGSV) (Sec. 3.2) to fairly
evaluate the expected marginal contribution of each agent’s uploaded model parameter update/gradient.
Based on the CGSV, we design a novel training-time gradient reward mechanism (Sec. 3.4) with a
fairness guarantee (Sec. 3.5) and empirically show that it outperforms several existing FL baselines
in terms of predictive performance, fairness, and time overhead (Sec. 4.2).

3 Fair Gradient Reward Mechanism

3.1 Vanilla Federated Learning (FL) Problem Setting and Notations

The vanilla FL problem [56, 59] involves a set N := {i}i=1,...,N of N honest agents learning a
D-dimensional vector w ∈ RD of model parameters to minimize a loss function F(w) that can
be additively decomposed into N local differentiable loss functions Fi(w) defined using the local
dataset Di of agent i ∈ N and weighted by its importance pi ≥ 0 (e.g., proportional to |Di|). That is,
F(w) :=

∑
i∈N pi Fi(w) where

∑
i∈N pi = 1. We call N the grand coalition; a coalition S ⊆ N

is then a subset of the grand coalition N of N agents. In iteration t = 0, every agent i ∈ N starts
with the same initialized parameter vector wi,0 := w0 as the server. In iteration t > 0, every agent
i ∈ N calculates a parameter update ∆wi,t := −ηt∇Fi(wi,t−1) with step size ηt and gradient
∇Fi(wi,t−1) w.r.t. parameter vector wi,t−1 and uploads it to a trusted server who normalizes and
aggregates all agents’ parameter updates as follows:

ui,t := Γ ∆wi,t/‖∆wi,t‖ , uN ,t :=
∑
i∈N ri,t−1 ui,t (1)

where Γ is a normalization coefficient used to prevent gradient explosion [33, 45] and the importance
coefficient ri,t−1 will be described later in Sec 3.4. So, we call (1) the gradient aggregation step.
The gradient download step then follows where every agent i ∈ N downloads the aggregated
parameter update/gradient uN ,t (1) from the server (as reward) for updating its model parameters
wi,t := wi,t−1 + uN ,t to the same wt := wt−1 + uN ,t as the server. That is, wi,t = wt for all
i ∈ N and t ∈ Z+ ∪ {0}. We define uS,t for any coalition S ⊆ N in a similar way as uN ,t (1). For
brevity, we omit t from our notations in Secs. 3.2 and 3.3 since we only refer to iteration t.

3.2 Cosine Gradient Shapley Value (CGSV) for Fairness

In the gradient aggregation step (1), the quality/value of coalition S’s (normalized) aggre-
gated parameter update/gradient uS can be measured by its cosine similarity cos(uS ,uN ) :=
〈uS ,uN 〉/(‖uS‖‖uN ‖) to the grand coalition N ’s aggregated parameter update/gradient uN [12,
28, 35]. We use this cosine similarity measure as our gradient valuation function ν(S) :=
cos(uS ,uN ). Intuitively, if the direction of uS aligns more closely with that of uN , then its
quality/value ν(S) is higher. Using ν, the contribution φi of agent i ∈ N is defined based on the
notion of Shapley value (SV) [50] which measures its expected marginal contribution when joining
the other agents preceding it in any permutation and satisfies certain desirable fairness properties [5],
such as null player (i.e., an agent with no marginal contribution has zero SV), symmetry (i.e., agents
with identical marginal contributions have equal SVs), among others, as formally discussed in
Appendix A.1:

Definition 1 (Cosine gradient Shapley value (CGSV)). Let ΠN be a set of all possible permutations
of N and Sπ,i be the coalition of agents preceding agent i in permutation π ∈ ΠN . The CGSV of
agent i ∈ N is defined as

φi := (1/N !)
∑
π∈ΠN

[
ν(Sπ,i ∪ {i})− ν(Sπ,i)

]
. (2)
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If φi is negative, then it follows from the weighted sum of parameter updates/gradients in (1) that ui
points in an opposite direction to some other parameter updates/gradients and hence has negative
cosine similarities to them. In practice, due to the noisy training arising from the use of stochastic
gradient descent (SGD) and/or a highly non-convex loss function, φi may at times be negative even
for an honest agent i. When the number of such cases is limited, training via SGD can still converge
to yield a competitive predictive performance, as empirically validated in [12].

3.3 Efficient Approximation of CGSV

Since evaluating agent i’s CGSV φi (2) exactly incurs O(2ND) time and is thus costly, we propose
an efficient approximation by directly measuring the cosine similarity of its (normalized) parameter
update/gradient ui to the grand coalition N ’s aggregated parameter update/gradient uN , which
reduces the incurred time by a factor of 2N and has a bounded error from φi (Theorem 1):

φi ≈ ψi := cos(ui,uN ) . (3)

Theorem 1 (Approximation Error). Let I ∈ R+. Suppose that ‖ui‖ = Γ and |〈ui,uN 〉| ≥ 1/I
for all i ∈ N . Then, φi − Liψi ≤ IΓ2 where the multiplicative factor Li can be normalized away.

Its proof is in Appendix A.2. From Theorem 1, the approximation error is bounded and decreases
quadratically with normalization coefficient Γ. However, Γ cannot be reduced to be arbitrarily small,
which may cause |〈ui,uN 〉| ≥ 1/I not to hold. It also does not hold when ui is orthogonal to uN or
is close to the zero vector, hence implying the quality of that agent i’s parameter update/gradient is not
high enough. So, every agent is encouraged to contribute a parameter update/gradient of sufficiently
high quality in order to ensure the quality of the approximation ψi (Theorem 1).

We have performed a simple experiment to compare the quality of our approximation ψi with that of
a sampling-based (ε, δ)-approximation φ̄i [39], the latter of which is widely used by existing works
in data valuation and CML/FL [14, 19, 52, 56, 60]. In this experiment, we have drawn N random
D-dimensional vectors from a standard multivariate normal distribution to simulate u1, . . . ,uN
and calculated the resulting exact CGSVs φ := (φi)i=1,...,N , our approximation ψ := (ψi)i=1,...,N ,
and the sampling-based (0.1, 0.1)-approximation φ̄ := (φ̄i)i=1,...,N . Fig. 1 shows the results for `1
error, `2 error, and the incurred time averaged over 10 runs: Our approximation ψ performs better in
all three metrics with varying D (right figure) and the performance gap widens with an increasing
number N of agents (left figure).

Figure 1: Comparison of `1 error (blue), `2 er-
ror (orange), and incurred time (green) (i.e., av-
eraged over 10 runs) between our approximation
ψ (solid lines) vs. a sampling-based approxima-
tion φ̄ (dashed lines) [39] of the exact CGSVs
φ with (left) varying number N of agents and
D = 1024, and (right) varying vector dimension D
and N = 10. For all metrics, lower is better.

Figure 2: (Left) `2 distance between model pa-
rameters of agent i = 1, . . . , 5 (abbreviated to
Ai) vs. that of the server, and (right) correspond-
ing training loss for an FL problem with N = 5
agents using local MNIST datasets of 600 im-
ages each to collaboratively learn 2-layer CNN
parameters where the datasets of A1 (blue), A2
(orange), and A3 (green) have 20%, 40%, and
60% randomly corrupted labels, respectively.
The brown line denotes `2 distance betweenw0

(initialization) vs. server’s model parameters.

3.4 Server-Side Training-Time Gradient Reward Mechanism

We will now describe the exact details of the gradient aggregation and download steps performed by
the server to implement our proposed fair gradient reward mechanism:

4



Gradient Aggregation Step. With a specified normalization coefficient Γ and an initialized coeffi-
cient ri,0, the server performs normalization and aggregation of all agents’ parameter updates into
uN ,t using (1), as previously discussed in the FL problem setting (Sec. 3.1). Then, the server com-
putes our approximation ψi,t (3) of the CGSV φi,t (2) and updates (and normalizes) the importance
coefficient ri,t in iteration t via a moving average of ψi,t given the relative weight α on ri,t−1 from
previous iteration t− 1:

ri,t := α ri,t−1 + (1− α) ψi,t , ri,t ← ri,t/
∑
i′∈N ri′,t (4)

where ri,0 := 0. Note that ri,t (4) is used for deriving the sparsified gradient (5) in the gradient
download step as well as the aggregation of all agents’ parameter updates into uN ,t+1 (1) in iteration
t+ 1. The use of a moving average of ψi,t to compute ri,t (4) provides a smoothed estimate without
abrupt fluctuations and reduces the effect of noisy training due to the use of SGD in practice [31, 56].
It also allows a flexible weighting over the iterations of the entire training process: In particular,
setting α < 1 can effectively mitigate the noise from random initialization of model parametersw0

because the weight on ψi,t′ in earlier iteration t′ < t decays exponentially with t [54].

Gradient Download Step. Recall from the vanilla FL problem setting (Sec. 3.1) that in each iteration
t, this step involves all agents downloading an identical aggregated parameter update/gradientuN ,t (1)
from the server (as reward) for updating their model parameters to the samewt (as the server), which
is expected to converge to yield a competitive predictive performance [8, 32]. However, such equal
rewards to all agents is unfair and will discourage any agent from uploading/contributing a parameter
update/gradient of higher quality [37, 63] when it can afford to. To ensure fairness, each agent should
download some form of aggregated parameter update/gradient as reward that is commensurate to the
quality/value of its uploaded/contributed parameter update/gradient. Consequently, an agent who
uploads/contributes higher-quality parameter updates/gradients over the entire training process should
eventually be rewarded with converged model parameters whose resulting training loss (and hence
predictive performance) is closer to that of the server (Theorem 2).

To achieve this, we adopt the trick of sparsifying2 the aggregated parameter update/gradient uN ,t
downloaded from the server as reward to agent i in each iteration t. Specifically, we zero out fewer
of its smallest components (hence higher-quality gradient reward) when the importance coefficient
ri,t (4) (i.e., moving average of the approximate CGSV ψi,t) is larger:

vi,t := mask(uN ,t, qi,t) , qi,t := bD tanh(β ri,t)/maxi′∈N tanh(β ri′,t)c (5)
where mask(u, q) retains the largest max(0, q) components (in magnitude) of u and zeros out all
of its other components [2, 61], and β ≥ 1 specifies the degree of altruism: Greater altruism β
gives any agent with a smaller ri,t a larger improvement in the quality of its gradient reward, i.e.,
a larger reduction in the sparsity of its downloaded vi,t as reward. In the extreme case of β = ∞,
we recover the vanilla FL problem setting (Sec. 3.1) where all agents are rewarded equally with
uN ,t (i.e., best-quality gradient reward vi,t = uN ,t for all i ∈ N with no sparsification), albeit with
importance coefficients ri,t possibly differing across agents i ∈ N and dynamically updated over
iteration t ∈ Z+. Hence, increasing β from 1 to∞ trades off fairness for equality in gradient rewards
by being more altruistic to any agent with a smaller ri,t; we empirically show the effect of varying β
on training loss in Fig. 7 of Sec. 4.2. Note the agent i∗ := argmaxi′∈N tanh(β ri′,t) with the largest
possible ri∗,t does not benefit from such altruism since it already downloads the best-quality gradient
reward (i.e., uN ,t) according to (5).

Suppose that there exists a known threshold r > 0 s.t. ri,t ≥ r for all i ∈ N and t ∈ Z+

and we want to limit the sparsity of any downloaded vi,t or, equivalently, ensure the minimum
quality of any gradient reward: Specifically, given a predefined threshold c ∈ (0, 1], we want to
guarantee qi,t ≥ bD × cc holds for all i ∈ N and t ∈ Z+. By setting β s.t. tanh(β r) ≥ c,
it follows from (5) and maxi′∈N tanh(β ri′,t) ≤ 1 that tanh(β ri,t)/maxi′∈N tanh(β ri′,t) ≥
tanh(β ri,t) ≥ tanh(β r) ≥ c and hence qi,t ≥ bD × cc ensues. By using the property that
tanh(β r) = (exp(2β r) − 1)/(exp(2β r) + 1), β ≥ ln((1 + c)/(1 − c))/(2r) can be derived
and used for setting β. It further informs us that reducing the sparsity of any downloaded vi,t or,
equivalently, improving the minimum quality of any gradient reward (i.e., by increasing c) requires
greater altruism β to be introduced, while improving the minimum quality of uploaded/contributed
parameter updates/gradients by any agent over the entire training process (hence larger r) eases the
need of introducing greater altruism β.

2Sparsifying a parameter update/gradient vector means zeroing out some of its components and leaving the
others unchanged [7, 33].
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To see why the sparsifying gradient trick (5) can ensure fairness, we illustrate its effect in an FL
problem with N = 5 agents using local MNIST datasets of 600 images each to collaboratively learn
the parameters of a 2-layer convolutional neural network (CNN) where the datasets of agents 1, 2,
and 3 have 20%, 40%, and 60% randomly corrupted labels, respectively. The uploaded/contributed
parameter updates/gradients thus decrease in quality from agents 1 to 3 (i.e., ψ1,t = 0.194, ψ2,t =
0.088, and ψ3,t = 0.043 on average) due to increasingly noisy labels in their datasets, while agents
4 and 5 upload/contribute parameter updates/gradients of high quality (i.e., ψ4,t = 0.331 and
ψ5,t = 0.342 on average) due to uncorrupted labels in their datasets. Consequently, agents 1 to 3
have increasing sparsity (resp., 34.9%, 67.6%, and 83.0% on average) while agents 4 and 5 have
little/no sparsity (resp., 3.5% and 1.1% on average) in their downloaded vi,t as rewards (β = 1).
Fig. 2 shows that the converged model parameters of agents 1 to 3 grow in `2 distance from that of
the server (hence increasing training loss) while agents 4 and 5 have the closest converged model
parameters (hence lowest training loss).

We provide the pseudocodes performed by the server and agent i ∈ N in each iteration t below.
We will discuss in Sec 4.2 how the hyperparameters Γ in (1), α in (4), and β in (5) are set in our
experiments.

Server (t)

1: for all i ∈ N do
2: Download ∆wi,t from agent i
3: . Gradient Aggregation Step
4: Compute ui,t and uN ,t (1)
5: for all i ∈ N do
6: Compute ψi,t (3) and ri,t (4)
7: . Gradient Download Step
8: for all i ∈ N do
9: Compute vi,t (5) for download by agent i

Agent (i, t)

1: Upload ∆wi,t = −ηt∇Fi(wi,t−1) to server
2: Download vi,t from server
3: Update wi,t = wi,t−1 + vi,t

3.5 Fairness Guarantee

We have previously discussed the intuition underlying our notion of fairness in Sec. 3.4 that an agent
who uploads/contributes higher-quality parameter updates/gradients over the entire training process
should eventually be rewarded with converged model parameters whose resulting training loss (and
hence predictive performance) is closer to that of the server. Note that the importance coefficient
ri,t (4) measures the overall quality of the parameter updates/gradients uploaded/contributed by agent
i over the entire training process till iteration t. Our main result below guarantees a notion of fairness
that under some conditions on loss function F and the server’s model parameters wt, if an agent
i has a larger importance coefficient ri,t and model parameters wi,t−1 closer to that of the server
(i.e., wt−1) than another agent by at least 2‖vi,t‖ in previous iteration t− 1, then it is rewarded with
model parameters wi,t incurring smaller training loss F(wi,t) in iteration t:
Theorem 2 (Fairness in Training Loss). Let δi,t := ‖wt − wi,t‖. Suppose that wt is near to a
stationary point of F for t ≥ t∗ ∈ Z+ and some regularity conditions on F hold. For all i, i′ ∈ N
and t ≥ t∗, if ri,t ≥ ri′,t and δi′,t−1 − δi,t−1 ≥ 2‖vi,t‖, then F(wi,t) ≤ F(wi′,t).

Its proof is in Appendix A.3. Our experiments in Appendix B.3 will empirically verify the fairness
guarantee in Theorem 2 (and fairness in test accuracy) without needing to impose its conditions.

4 Experiments and Discussion

4.1 Experimental Settings

Datasets. We perform extensive experiments on image classification datasets like MNIST [26] and
CIFAR-10 [21] and text classification datasets like movie review (MR) [44] and Stanford sentiment
treebank (SST) [20]. We use a 2-layer convolutional neural network (CNN) for MNIST [25], a
3-layer CNN for CIFAR-10 [22], and a text embedding CNN for MR and SST [20].

Baselines. We consider several existing FL baselines such as FedAvg [40], q-FFL[31], CFFL [37],
and an extended contribution index (ECI) method from [54] utilizing validation accuracy-based SV
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Table 1: Average test accuracy (%) achieved by the agents collaborating via our fair gradient reward
mechanism with varying degrees of altruism β vs. tested baselines on all datasets. Each value in
brackets denotes the highest test accuracy achieved by any agent.

MNIST CIFAR-10 MR SST
No. Agents 10 20 10 5 5
Data Partition UNI POW CLA UNI POW CLA UNI POW CLA POW POW
Standalone 91 (91) 88 (92) 53 (92) 91 (91) 89 (92) 48 (90) 46 (47) 43 (49) 31 (44) 47(56) 31(34)
FedAvg 93 (94) 92 (94) 53 (93) 93 (93) 92 (94) 49 (92) 48 (48) 47 (50) 32 (47) 51(63) 33(35)
q-FFL 85 (91) 27 (45) 44 (64) 88 (91) 48 (53) 40 (59) 41 (46) 36 (36) 22 (28) 12(18) 23(25)
CFFL 90 (92) 85 (90) 34 (44) 91 (93) 88 (91) 39 (46) 39 (41) 35 (45) 22 (40) 44(53) 31(32)
ECI 94 (94) 92 (94) 53 (94) 94 (94) 92 (94) 49 (92) 49 (49) 47 (51) 31 (46) 56(61) 33(34)
DW 93 (94) 92 (94) 53 (93) 93 (93) 92 (94) 49 (92) 48 (48) 47 (50) 32 (47) 51(62) 33(35)
RR 94 (95) 95 (95) 64 (72) 94 (95) 94 (95) 50 (56) 47 (59) 49 (51) 26 (29) 63(65) 36(36)
Ours (EU) 94 (94) 94 (94) 54 (94) 94 (94) 94 (94) 49 (92) 49 (49) 49 (51) 32 (46) 54(59) 34(36)
Ours (β = 1) 96 (97) 94 (95) 74 (95) 95 (96) 96 (97) 65 (93) 61 (62) 60 (62) 35 (54) 62(76) 35(36)
Ours (β = 1.2) 94 (95) 95 (95) 75 (95) 96 (96) 96 (97) 65 (93) 61 (62) 60 (62) 35 (54) 62(75) 34(37)
Ours (β = 1.5) 97 (97) 95 (95) 75 (95) 96 (97) 94 (95) 65 (93) 61 (62) 59 (62) 35 (54) 62(74) 35(37)
Ours (β = 2) 96 (96) 95 (96) 73 (94) 97 (97) 95 (96) 66 (95) 62 (62) 61 (62) 36 (54) 62(75) 35(37)

and setting qi,t for i ∈ N in (5) to be proportional to the agents’ CIs. CFFL also utilizes the validation
accuracy but is more efficient by using a leave-one-out approach instead of SV, while q-FFL aims at
achieving egalitarian fairness by equalizing the local training losses of the agents. Furthermore, we
implement simple FL baselines based on round robin (RR), dataset weighted download (DW), and
Euclidean distance (EU). RR is commonly adopted in mechanism design to ensure fairness [6, 34]
and also used in FL to schedule gradient downloads [51, 67]. For DW (EU), qi,t for i ∈ N in (5)
are set to be proportional to the agents’ local dataset sizes (negative Euclidean distance of their
unnormalized parameter updates from that of the server). We also include standalone agents as a
baseline, i.e., each agent trains its CNN using only its local dataset without involving FL.

Performance Metrics. To measure fairness, we consider the scaled Pearson correlation coefficient3

ρ := 100×pearsonr(ϕ, ξ) ∈ [−100, 100] between the test accuracies ϕ achieved by the agents when
standalone [37] vs. that ξ achieved by them when collaborating via a gradient reward mechanism in
FL after the entire training process has ended at iteration t = T . The corresponding experimental
results will be reported in Sec. 4.2. To empirically verify the fairness guarantee in Theorem 2, we
have also reported in Appendix B.3 results on the fairness metric ρ between the importance coeffi-
cients ϕ := (ri,T )i=1,...,N (4) (i.e., measuring overall qualities of the parameter updates/gradients
uploaded/contributed by the agents) vs. test accuracies (or negative training losses) ξ achieved by
them. We consider other performance metrics like predictive performance (i.e., average and highest
test accuracies achieved by the agents) and time overhead of the tested gradient reward mechanisms.

Data Partitions among Agents. We carefully construct two heterogeneous data partitions by varying
the agents’ local dataset sizes and corresponding numbers of distinct classes. For imbalanced dataset
sizes (POW), we follow a power law to partition the entire dataset among the agents. For MNIST,
we partition the entire dataset of size {3000, 6000, 12000}, respectively, among {5, 10, 20} agents
s.t. each agent has a randomly sampled local dataset of size 600 on average [40]. The size of the local
dataset increases from the first to the last agent. Since the local dataset sizes vary significantly (i.e.,
superlinearly) among the agents, the agents with larger local datasets are expected to achieve better
predictive performance. For imbalanced class numbers (CLA), we vary the number of distinct
classes in the local datasets of the agents, while keeping their sizes fixed at 600. For this setting, we
only consider MNIST and CIFAR-10 datasets and partition classes in a “linspace” manner as both
contain 10 classes. To illustrate, for MNIST with 5 agents, agents 1, 2, 3, 4, 5 own local datasets with
1, 3, 5, 7, 10 classes, respectively; so, agent 1 (5) has a local dataset with 1 (10) class(es). Similarly,
the agents with local datasets containing more classes are expected to achieve better predictive
performance. We also include the simplest setting of the uniform/homogeneous data partition (UNI)
where the agents are expected to achieve comparable predictive performance.

Additional details of the experimental settings are described in Appendix B.1.

4.2 Experimental Results

Predictive Performance. Table 1 shows results of the average and highest test accuracies achieved
by the agents collaborating via our fair gradient reward mechanism vs. tested baselines on all

3The Pearson correlation coefficient has been applied to a similar use case in [19].
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Table 2: Fairness metric ρ ∈ [−100, 100] achieved by our fair gradient reward mechanism with
varying degrees of altruism β vs. tested baselines on all datasets. Higher value means greater fairness.

MNIST CIFAR-10 MR SST
No. Agents 10 20 10 5 5
Data Partition UNI POW CLA UNI POW CLA UNI POW CLA POW POW
FedAvg -45.60 55.24 24.12 0.85 -32.58 40.83 18.47 97.48 98.75 48.68 57.50
q-FFL -44.73 39.00 22.38 -22.01 38.71 48.07 -17.64 51.33 94.06 56.43 -75.92
CFFL 83.57 91.80 81.24 82.52 94.70 85.71 78.25 72.55 81.31 96.85 93.34
ECI 85.26 99.83 99.98 80.95 99.41 95.21 75.85 79.50 99.55 97.69 95.00
DW 89.15 98.93 65.34 86.94 99.63 35.21 -23.14 91.97 45.45 99.20 97.12
RR 83.77 71.17 -26.75 -18.64 25.47 95.86 30.67 0.70 90.67 44.16 -25.11
Ours (EU) 84.25 98.25 99.82 80.55 97.77 99.97 78.25 94.24 94.95 97.58 93.21
Ours (β = 1) 94.03 95.74 94.54 84.47 96.39 97.23 98.80 98.78 99.89 96.01 98.20
Ours (β = 1.2) 94.75 97.28 96.23 90.52 97.72 95.21 91.07 91.59 99.82 96.12 98.47
Ours (β = 1.5) 96.34 86.99 95.37 82.68 90.94 98.75 93.55 93.78 95.89 95.32 97.88
Ours (β = 2) 94.66 91.20 95.38 96.90 91.33 94.32 89.80 88.78 93.39 92.22 95.74

datasets. Our fair gradient reward mechanism generally outperforms the tested baselines on both
metrics, especially for heterogeneous data partitions and on the MR dataset. On MNIST, for the
CLA data partition among 10 agents, our fair gradient reward mechanism achieves average (highest)
test accuracy of 75% (95%) at β = 1.5, while the best-performing ECI baseline achieves only
that of 53% (94%). On CIFAR-10, for the CLA data partition among 10 agents, our fair gradient
reward mechanism achieves average (highest) test accuracy of 36% (54%) at β = 2, while the
best-performing DW baseline achieves only that of 32% (47%). On the MR dataset, our fair gradient
reward mechanism achieves average (highest) test accuracy of 62% (76%) at β = 1, while the
best-performing RR baseline achieves that of 63% (65%). Its better performance may be attributed
to the adaptive re-weighting in the gradient aggregation step (1) via ri,t, which can dynamically
account for the heterogeneity in the agents’ local datasets [32]. While EU performs comparably to
both FedAvg and ECI (i.e., difference in average test accuracies between EU vs. FedAvg/ECI is less
than 3%), it does not perform better than our fair gradient reward mechanism (e.g., on MNIST, for the
CLA data partition among 10 agents, the difference in average test accuracies between EU vs. our fair
gradient reward mechanism at β = 1.5 is more than 20%) because unlike cosine similarity, Euclidean
distance fails to capture the directional difference between gradients, which is important since the
negative gradients are pointing in the direction of lower loss. Importantly, q-FFL aims to equalize the
local training losses w.r.t. the agent’s local datasets, which may be suboptimal for heterogeneous data
partitions like POW and CLA. We provide further results in Appendix B.5 empirically comparing the
predictive performances of our fair gradient reward mechanism vs. q-FFL.

Fairness. To empirically verify the fairness guarantee in Theorem 2, Table 2 shows results on the
fairness metric ρ achieved by our fair gradient reward mechanism vs. tested baselines on all datasets.
From Table 2, our fair gradient reward mechanism achieves a high degree of fairness of above 80,
while the commonly used FedAvg performs suboptimally s.t. it produces the lowest degree of fairness
of −45.6. On MNIST, for the POW data partition among 10/20 agents and the CLA data partition
among 10 agents, ECI outperforms our fair gradient reward mechanism, albeit at a much higher
time overhead of over 100 times and with additional information from an auxiliary dataset. CFFL
underperforms our fair gradient reward mechanism and ECI as it adopts the leave-one-out approach
which seems less accurate than SV in valuing the contributions of the agents [19]. Both q-FFL and
RR promote egalitarian fairness instead of our notion of fairness via SV and hence do not perform
optimally. DW achieves high degrees of fairness only for the POW data partition because it uses
the agents’ local dataset sizes to determine their gradient rewards. Fig. 3 illustrates an intuitive
trend of the predictive performances achieved by 10 agents collaborating via our fair gradient reward
mechanism for homogeneous and heterogeneous data partitions among the agents on MNIST and
CIFAR-10: For the UNI data partition, all agents achieve comparable predictive performance. Their
predictive performances vary more (most) for the POW (CLA) data partition, hence demonstrating
that our fair gradient reward mechanism can distinguish the contributions of the agents and reward
them with sparsified gradients fairly.

We have performed an additional experiment to understand our fair gradient reward mechanism for
homogeneous and heterogeneous data partitions among 3 agents on MNIST and CIFAR-10 where
for POW and CLA, agent 1 (3) uploads/contributes parameter updates/gradients of lowest (highest)
quality over the entire training process. Fig. 4 shows how ri,t for agent i = 1, 3 varies over iterations
t: Interestingly, for the CLA data partition, though agent 3 (brown solid line) is initially mistaken to
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Figure 3: Test accuracy achieved by agent i = 1, . . . , 10 (abbreviated to
Ai) collaborating via our fair gradient reward mechanism at β = 2 for
the UNI (left), POW (middle), and CLA (right) data partitions among
the 10 agents on MNIST (top) and CIFAR-10 (bottom). Their predictive
performances vary least, more, and most for the respective UNI, POW, and
CLA data partitions.

Figure 4: Graphs of
ri,t (4) for agent i = 1, 3
vs. iteration t for UNI,
POW, and CLA data par-
titions among 3 agents on
MNIST and CIFAR-10.

Figure 5: Graphs of `2 distance between down-
loaded vi,t (5) of agent i = 1, 3 and aggregated
uN ,t (1) vs. iteration t for UNI, POW, and CLA
data partitions among 3 agents on MNIST (left)
and CIFAR-10 (right).

Figure 6: Graphs of `2 distance between last
layer’s model parameters of agent i = 1, 3
and that of the server vs. iteration t for UNI,
POW, and CLA data partitions among 3 agents
on MNIST (left) and CIFAR-10 (right).

provide a low contribution, the dynamic update of r3,t (4) allows its true contribution to be recognized
quickly. Fig. 5 (Fig. 6) shows how the `2 distance between the downloaded sparsified gradient vi,t (5)
of agent i = 1, 3 and aggregated parameter update/gradient uN ,t (1) (last layer’s model parameters of
agent i = 1, 3 and that of the server) varies over iterations t: In particular, for the CLA data partition,
agent i = 1 (i = 3) who uploads/contributes parameter updates/gradients of lowest (highest) quality
over the entire training process downloads vi,t as reward that is further from (closer to) uN ,t, hence
training last layer’s model parameters to be further from (closer to) that of the server. Such results
further validate that in Fig. 2 previously.

Lastly, Fig. 7 confirms that for the CLA data partition among 10 agents on MNIST, increasing the
degree of altruism β leads to all agents downloading higher-quality gradient rewards vi,t (5) and
thus incurring smaller training loss. In particular, agent 1 (abbreviated to A1 and represented by a
blue solid line) who uploads/contributes parameter updates/gradients of lowest quality over the entire
training process benefits most as β increases, as explained previously in Sec. 3.4. Additional results
w.r.t. test loss are reported in Appendix B.4.

Time Overhead. Table 3 compares the time overhead (seconds) of our fair gradient reward mecha-
nism vs. tested baselines on all datasets; the ratio between the time overhead vs. training time is given
in brackets. Our fair gradient reward mechanism is much more efficient than ECI and CFFL which
also consistently achieve fairness. In particular, our fair gradient reward mechanism incurs a small
time overhead of at most 0.4× of the training time, while ECI incurs a significant time overhead of
up to 140× of the training time due to the calculation of the CI incurring O(2N ) time, even with the
permutation sampling-based approximation [39, 56] for 10/20 agents. CFFL incurs at most 2× of the
training time (i.e., 5-6 times longer than ours) from the additional validation in each iteration.
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Figure 7: Training losses incurred by agent i = 1, . . . , 10 (abbreviated to Ai) collaborating via our
fair gradient reward mechanism with varying degrees of altruism β = 1.0, 1.2, 1.5, 2 for the CLA
data partition on MNIST.

Table 3: Time overhead (seconds) of our fair gradient reward mechanism vs. tested baselines on all
datasets. Each value in brackets denotes the ratio between the time overhead vs. training time.

MNIST CIFAR-10 MR SST
No. Agents 5 10 20 5 10 5 5
FedAvg 1.17 (7e-3) 1.05 (1e-2) 4.29 (1e-2) 1.66 (7e-3) 7.41 (1e-2) 1.3 (1e-4) 1.31 (6e-4)
q-FFL 6.14 (4e-2) 4.97 (5e-2) 91.20 (0.3) 97.28 (0.4) 58.94 (7e-2) 90.01 (8e-3) 82.85 (4e-2)
CFFL 32.15 (0.2) 21.79 (0.3) 500.03 (1.6) 570.12 (2.0) 302.44 (0.4) 479.12 (0.2) 487.71 (2e-1)
ECI 2377.33 (16) 11937.80 (141) 23749.06 (74) 3571.75 (15) 58835.83 (84) 422.85 (4e-2) 801.20 (0.4)
DW 0.89 (6e-3) 0.79 (9e-3) 1.60 (5e-3) 1.21 (5e-3) 5.29 (7e-3) 0.99 (1e-5) 0.98 (5e-4)
RR 0.89 (6e-3) 0.82 (9e-3) 1.60 (5e-3) 3.31 (1e-2) 5.41 (7e-3) 1.01 (5e-4) 0.99 (5e-4)
Ours (EU) 0.89 (6e-3) 0.81 (9e-3) 1.61 (5e-3) 1.22 (5e-3) 5.33 (7e-3) 1.01 (5e-4) 0.99 (5e-4)
Ours (Cosine) 6.34 (4e-2) 4.94 (5e-2) 94.30 (0.3) 98.39 (0.4) 54.94 (7e-2) 89.81 (8e-3) 82.87 (4e-2)

Hyperparameters. We find that α ∈ [0.8, 1)(i.e., relative weight on ri,t−1 in (4)), β ∈ [1, 2] (i.e.,
degree of altruism in (5)) and Γ ∈ [0.1, 1] (i.e., normalization coefficient in (1)) are effective in
achieving competitive predictive performance and fairness. In our experiments, we set α = 0.95,
β = [1, 1.2, 1.5, 2], and Γ = 0.5 for MNIST, Γ = 0.15 for CIFAR-10, and Γ = 1 for SST and MR.

5 Conclusion and Future Work

In this paper, we have described a novel cosine gradient Shapley value (CGSV) (Sec. 3.2) to fairly
evaluate the expected marginal contribution of each agent’s uploaded model parameter update/gradient
in FL without needing an auxiliary validation dataset and present an efficient approximation of CGSV
with a bounded error (Sec. 3.3). Based on the approximate CGSV, we have designed a novel training-
time fair gradient reward mechanism (Sec. 3.4) by exploiting the trick of sparsifying the aggregated
parameter update/gradient downloaded from the server as reward to each agent such that its resulting
quality is commensurate to that of the agent’s uploaded/contributed parameter update/gradient. Conse-
quently, an agent who uploads/contributes higher-quality parameter updates/gradients over the entire
training process should eventually be rewarded with converged model parameters whose resulting
training loss (and hence predictive performance) is closer to that of the server, as demonstrated in our
fairness guarantee (Sec. 3.5). We have empirically demonstrated the effectiveness of our fair gradient
reward mechanism on multiple benchmark datasets in terms of fairness, predictive performance, and
time overhead (Sec. 4). In particular, our fair gradient reward mechanism is much more efficient than
several existing FL baselines since it requires only slight calculations by the server.

Our proposed fair gradient reward mechanism also provides practitioners the flexibility to trade off
between fairness and equality in gradient rewards via a hyperparameter β controlling the degree of
altruism (Sec. 3.4). For future work, it would be interesting to consider the notion of fairness when
there are some adversaries. We would also consider generalizing our work and fairness guarantee to
other types of CML (e.g., model fusion [16, 17, 24]) and collaborative Bayesian optimization [53].
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A Theoretical Results

A.1 Fairness Properties of CGSV

For S ⊆ N \ {i}, let ∆S,i := ν(S ∪ i)− ν(S), the following properties are satisfied by CGSV:

(P1) Null Player [58]: ∆S,i = 0,∀S ⊆ N \ {i} =⇒ φi = 0.

(P2) Symmetry [58]: ∆S,i = ∆S,i′ ,∀S ⊆ N \ {i, i′} =⇒ φi = φi′ .
(P3) Strict Desirability [3]: ∆S,i ≥ ∆S,i′ ,∀S ⊆ N \ {i, i′} and ∃S ′ ⊆ N \ {i, i′} s.t. ∆S′,i >

∆S′,i′ =⇒ φi > φi′ .
(P4) Coalitional Monotonicity [64, Equ.(4)]: ν(S) ≥ ν′(S) for some S ⊆ N and ν(S ′) =

ν′(S ′) ∀S ′ ⊆ N S ′ 6= S =⇒ φi(ν) ≥ φi(ν′) ∀i ∈ S.
(P5) Individual Monotonicity [64, Equ.(5)]: ∀i, ν(), ν′(),

ν(S) ≥ ν′(S) ∀S containing i and ν(S ′) = ν′(S ′) ∀S ′ not containing i =⇒ φi(ν) ≥
φi(ν

′).

(P1) can be intuitively understood as if i adds zero value to the group, then the corresponding CGSV
will be zero. This is to prevent agents who wish to exploit the system by uploading randomly
generated gradients instead of actual gradients. Note that in a high-dimensional space, the cosine
similarity between a random gradient and an actual gradient is likely to be close to zero.

(P2) and (P3) provide a comparative relationship between any pair of agents i, i′. In the simplest case
as in (P2), i, i′ provide exactly identical contributions, then their corresponding CGSVs are equal.
On the other hand, if i consistently provides more than i′ as in (P3), then the CGSV for i is higher
to correctly reflect this relation. Therefore, these two properties ensure the agents who contribute
more by uploading better gradients are properly recognized (with higher CGSV). This is crucial in
our designed reward mechanism which follows such relations in the CGSV.

(P4) states that if a group of agents in S collectively do better, while all other groups S ′ 6= S stay the
same, then the agents in S do not lose. In particular, applying (P4) repeatedly gives an equivalent
result regarding a single agent i, which we call individual monotonicity as in (P5).

(P5) takes the perspective of agent i while all other agents do not change, and agent i makes better
contributions and improves (or at least does not hurt) all the coalitions i is in, then agent i does not
lose. Consequently, it implies an incentive for the agents to make better contributions which could
increase their CGSVs, which in turn correspond to better rewards in our mechanism.

A.2 Proof of Theorem 1

Theorem 1 relies on the following equivalent formulation of φi,

φi =
∑

S⊆N\{i}

ASν(S)

︸ ︷︷ ︸
additive error

+ [
∑

S⊆N\{i}

BS ]

︸ ︷︷ ︸
multiplicative factor Li

ψi (6)

where AS , BS are constants specific to S. Note that Theorem 1 provides an upper bound for the
additive error in (6) so we approximate φi ≈ Liψi. Further, by recalling a property of CGSV (invari-
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ance under linear transformation), we can avoid explicitly calculating the multiplicative factor Li via
normalization of ψi if all Li are approximately equal, as we show in Lemma 1.

φi =
∑

S⊆N\{i}

ASν(S)

︸ ︷︷ ︸
additive error

+

 ∑
S⊆N\{i}

BS


︸ ︷︷ ︸

multiplicative factor Li

ψi

Before the proof, we first show the derivation (reproduced above). The intuitive idea is that the
approximation ψi := cos(ui,uN ) appears in the summation of φi repeatedly, so we collect all its
coefficients into the multiplicative factor Li and collect everything else as the additive error.

φi =
1

N

∑
S⊆N\{i}

1(
N−1
|S|
)ν(S ∪ {i})− ν(S)

=
1

N

∑
S⊆N\{i}

1(
N−1
|S|
) (cos(uS∪{i},uN )− cos(uS ,uN ))︸ ︷︷ ︸

A

We focus on A and leave the rest unchanged.

A =
〈uS∪{i},uN 〉

‖uS∪{i}‖ × ‖uN ‖
− 〈uS ,uN 〉
‖uS‖ × ‖uN ‖

=
〈uS∪{i},uN 〉

Γ1ΓN
− 〈uS ,uN 〉

Γ2ΓN

=
1

Γ1Γ2ΓN
〈Γ2uS∪{i} − Γ1uS ,uN 〉

=
(Γ2 − Γ1)〈uS ,uN 〉

Γ1Γ2ΓN
− riΓ2〈ui,uN 〉

Γ1Γ2ΓN

=
Γ2 − Γ1

Γ1
ν(S)− riΓ

Γ1
cos(ui,uN )

where Γ1 := ‖uS∪{i}‖, Γ2 := ‖uS‖ and ΓN = ‖uN ‖. Substitute this back with AS =
1
N

1

(N−1
|S| )

Γ2−Γ1

Γ1
and BS = 1

N
1

(N−1
|S| )

riΓ
Γ1

to complete the derivation.

Proof Sketch of Theorem 1. The high-level idea is that, with cosine similarity, the approximation
ψi := cos(ui,uN ) is a significant component of the actual CGSV φi by a multiplicative factor.
Because the multiplicative coefficient 1

(N−1
|S| )

becomes very small with a large N , so it reduces the

effect of the terms not involving ui. While it also reduces the effect of the terms involving ui, the
idea is that if the actual contribution from ui is relatively large (by the assumption |〈riui,uN 〉| ≥ 1

I ),
then we ensure the error is small relatively. Note in the theorem, we have absorbed ri into the constant
1
I .

Proof of Theorem 1. Notice the summation enumerates the same list of terms for both, so we min-
imize ASν(S) relative to BSψi. Specifically, we examine the pairwise ratio between the two
corresponding terms Γ2−Γ1

Γ1
cos(uS ,uN ) and riΓ

Γ1
cos(ui,uN ) in the summation as follows:

(|Γ2 − Γ1)cos(uS ,uN )|
|riΓcos(ui,uN )|

=
|Γ2 − Γ1|
|Γ2|

|〈uS ,uN 〉|
|ri〈ui,uN 〉|

= |Γ2 − Γ1|
|〈uS ,uN 〉|
|Γ2|

1

|ri〈ui,uN 〉|

≤ Γ

√
‖uS

Γ2
‖2‖uN ‖2

1

ri|〈ui,uN 〉|

≤ ΓΓN
1

ri|〈ui,uN 〉|
≤ IΓ2
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We bound |Γ2 − Γ1| ≤ Γ with the gradient normalization constant Γ by triangle inequality.

We bound 〈uS ,uN 〉/Γ2 using Cauchy-Schwarz inequality, bound ΓN with Γ as uN is a convex sum
of vectors each with norm Γ, and use the assumption to bound 1/ri|〈ui,uN 〉|.
The above inequality bounds error-to-approximation ratio, i.e., |ASν(S)|/|BSψi| is bounded by IΓ2

for every coalition S in the summation, which implies

|
∑
S⊆N\{i}ASν(S)|
|
∑
S⊆N\{i}BSψi|

≤ IΓ2.

This result is useful because the error-to-approximation ratio is consistently bounded regardless of
the normalization on Liψi, such as linear scaling we conduct subsequently.

If we additionally assume,

riΓ

Γ1
=

ri‖ui‖
‖
∑
i′∈S∪{i} ri′ui′‖

≤ 1,

then the error term φi − Liψi ≤ IΓ2 before normalization. Its proof is by showing
|
∑
S⊆N\{i}BSψi ≤ 1| and rearranging the terms in the previous inequality.

Note |ψi| ≤ 1 and by the assumption riΓ/Γ1 ≤ 1, we first have |riΓψi/Γ1| ≤ 1, so∑
S⊆N\{i} riΓψi/Γ1 ≤

∑
S⊆N\{i} 1 = number of terms in the summation. Putting back in the co-

efficients we can show that
∑
S⊆N\{i} 1/N × 1/

(
N−1
|S|
)
< 1 because the enumeration S ⊆ N \ {i}

is not exhaustive while the coefficients are specified to have sum is 1 when the enumeration is
exhaustive.

This additional assumption excludes degenerate cases where multiple agents (with approximately
equal ri’s) upload gradients in opposite directions and counteract each other which results in a net
gradient vector approximately equal to a zero vector. Such cases are unlikely as the gradient vectors
are calculated based on on randomly selected mini-batches, and these gradient vectors are in a high
dimension.

In order to recall the property that CGSV is invariant under linear transformation, we require that
all Li’s are approximately equal. To show this, we specify an assumption to exclude the degenerate
cases by requiring uS∪{i} and uS∪{j} are lower bounded linearly in Γ. This assumption stipulates
that uS∪{i} and uS∪{j} are away from zero vectors, and have norms of the same magnitude of ui
and uj .

Lemma 1 (Closeness of Li). Assume ∃M > 0, s.t.∀S ⊆ N \{i, i′},min(‖uS∪{i}‖, ‖uS∪{i′}‖) ≥
MΓ, then

max
i,i′∈N

Li − Li′ ≤
∑

s∈N\{i,i′}

1(
N−1
|S|
) 2

M2Γ
.

Proof of Lemma 1. Due to symmetry, ui = ui′ =⇒ Li = Li′ . We only need to consider ui 6= ui′ .

We consider the terms by grouping the coalitions S into three types: 1) i /∈ S ∧ i′ /∈ S; 2) i ∈
S ⊕ i′ ∈ S; 3) i ∈ S ∧ i′ ∈ S . We need not consider 3) as the summation for i is over S ⊆ N \ {i}.
For 2), let S ⊆ N \ {i, i′} and Si = S ∪ {i},Sj = S ∪ {i′}. We can see that Si,Si′ constitute a
pair of symmetric case for two terms in the summation of Li and Li′ respectively. In particular, for
Li, the term in summation is 1/

(
N−1
|Si′ |

)
× 1/‖uSi′∪{i}‖. Since uSi∪{i′} = uS∪{i,i′} = uSi′∪{i} and

|Si| = |S|+ 1 = |Si′ |, these two symmetric terms cancel out and the 2) type coalitions contribute
exactly 0 to Li − Li′ .
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Now for 1) the coalitions S ⊆ N \ {i, i′}, we bound the sum of terms as follows,

Li − Lj =
∑

S⊆N\{i,i′}

1(
N−1
|S|
) [ 1

‖uS∪{i}‖
− 1

‖uS∪{i′}‖

]

=
∑

S⊆N\{i,i′}

1(
N−1
|S|
) ‖uS∪{i′}‖ − ‖uS∪{i}‖
‖uS∪{i}‖ × ‖uS∪{i′}‖

≤
∑

S⊆N\{i,i′}

1(
N−1
|S|
) 2Γ

M2Γ2

≤
∑

S⊆N\{i,i′}

1(
N−1
|S|
) 2

M2Γ
.

The first inequality is because the numerator is upper bounded by 2Γ due to triangle inequality, and
the denominator is lower bounded by M2Γ2 using the assumption. This error decreases quickly with
more agents due to the coefficient

(
N−1
|S|
)−1

.

A.3 Proof of Theorem 2

This proof includes an intermediate step of showing δi′,t ≥ δi,t. First observe the following
inequalities using the triangle inequality:

δi,t ≤ δi,t−1 + ‖vi,t‖ and δi′,t ≥ δi′,t−1 − ‖vi′,t‖. (7)

From the condition
δi′,t−1 − δi,t−1 ≥ 2‖vi,t‖,

we have
δi′,t−1 − δi,t−1 ≥ 2‖vi,t‖ ≥ ‖vi,t‖+ ‖vi′,t‖ (8)

The inequality ‖vi,t‖ ≥ ‖vi′,t‖ follows directly by applying ri,t ≥ ri′,t to (5) and observing mask(·)
retains the largest components in magnitude and making the rest zeros.

Rearranging (8) gives
δi′,t−1 − ‖vi′,t‖ ≥ δi,t−1 + ‖vi,t‖.

Connecting both inequalities in (7) gives

δi′,t ≥ δi′,t−1 − ‖vi′,t‖ ≥ δi,t−1 + ‖vi,t‖ ≥ δi,t.

Subsequently, we use δi′,t ≥ δi,t and some regularity conditions of F() to establish F(wi,t) ≤
F(wi′,t). Specifically, we assume F() is both L-smooth and µ-strongly convex with L ≤ µ.

We first recall the respective definitions for µ-strongly convex and L-smooth functions.
Definition 2 (L-Smooth F). If F is L-smooth, then ∀w,w′ ∈ W ,

F(w) ≤ F(w′) +∇F(w′)T (w −w′) +
L

2
‖w −w′‖2.

Definition 3 (µ-Strongly Convex F). If F is µ-strongly convex, then ∀w,w′ ∈ W ,

F(w) ≥ F(w′) +∇F(w′)T (w −w′) +
µ

2
‖w −w′‖2.

From L-smoothness, we have

F(wi,t) ≤ F(wN ,t) +∇F(wN ,t)
>(wi,t −wN ,t) +

L

2
δ2
i,t︸ ︷︷ ︸

RL

.

From µ-strong convexity, we have

F(wi′,t) ≥ F(wN ,t) +∇F(wN ,t)
>(wi′,t −wN ,t) +

µ

2
δ2
i′,t︸ ︷︷ ︸

Rµ

.
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In order to prove F(wi,t) ≤ F(wi′,t), it suffices to prove RL ≤ Rµ or equivalently RL −Rµ ≤ 0.

RL −Rµ = ∇F(wN ,t)
>(wi,t −wi′,t)︸ ︷︷ ︸
R1

+
1

2
(Lδ2

i,t − µδ2
i′,t)︸ ︷︷ ︸

R2

.

With L ≤ µ and δi,t ≤ δi′,t, we have

R2 =
1

2
(Lδ2

i,t − µδ2
i′,t) ≤

L

2
(δ2
i,t − δ2

i′,t) ≤ 0.

We formalize wN ,t being near to a stationary point by specifying an upper bound on the gradient:

‖∇F(wN ,t)‖ ≤
L|δ2

i,t − δ2
i′,t|

2‖wi,t −wi′,t‖
.

We have the following:

|R1| , |∇F(wN ,t)
>(wi,t −wi′,t)| ≤ ‖∇F(wN ,t)‖ × ‖(wi,t −wi′,t)‖

≤
L|δ2

i,t − δ2
i′,t|

2
≤ |R2|

where the first inequality is by Cauchy-Schwarz, the second inequality is by substituting the above
upper bound and the last inequality is due to taking absolute values of two negative values.

Finally, since |R1| ≤ |R2| and R2 ≤ 0, we get R1 +R2 ≤ 0 and hence RL +Rµ , R1 +R2 ≤ 0.

B Experimental Results

B.1 Experimental Settings

Additional Details. For CIFAR-10, we follow power law to randomly partition total {10000, 20000}
examples among {5, 10} agents respectively. For MR (SST), we follow power law to randomly
partition 9596 (8544) examples among 5 agents. We provide the training hyper-parameters used for
different datasets in Table 4.

Table 4: Framework-independent hyper-parameters. Batch size B, initial step-size η, step-size
exponential decay γ, total iterations T . Note for experiments with more than 5 agents for MNIST
and CIFAR-10, η is 0.25 and 0.025, respectively.

Dataset B η (γ) T
MNIST 32 0.15 (0.977) 60
CIFAR-10 128 0.015 (0.977) 200
MR 128 5e-5 (0.977) 100
SST 256 1e-5 (0.977) 100

Experiment Hardware and Software. All experiments are conducted on a server with 16 cores (In-
tel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz), 256 GB RAM and 4 GPUs (GeForce GTX 1080
Ti). Our implementation mainly uses PyTorch, torchtext, torchvision and some auxiliary packages
such as Numpy, Pandas and Matplotlib. The specific versions and package requirements are provided
together with the source code. To reduce the impact of randomness in the experiments, we adopt
several measures: fix the model initilizations (we initialize model weights and save them for future
experiments); fix all the random seeds; and invoke the deterministic behavior of PyTorch. As a result,
given the same model initialization, our implementation is expected to produce consistent results on
the same machine over experimental runs.

B.2 5-Agent Case for MNIST and CIFAR-10

For completion, we include the accuracy and fairness results under the consistent setting as the main
paper for the 5-agent case for MNIST and CIFAR-10 for the three data partitions in Table 5 and
Table 6, respectively.
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Table 5: Average test accuracies (%) of all the agents for all baselines and our method with varying
degrees of altruism β, on all four datasets. Values in the bracket denote the highest test accuracies
among all the agents.

MNISTN = 5 CIFAR-10N = 5
Data Partition UNI POW CLA UNI POW CLA
Standalone 91(91) 87(94) 50(91) 44(46) 42(52) 29(44)
FedAvg 93(93) 91(95) 50(92) 46(47) 46(52) 30(45)
q-FFL 82(85) 59(78) 49(84) 31(32) 31(34) 19(24)
CFFL 24(39) 21(37) 27(28) 44(45) 40(49) 26(43)
ECI 93(94) 94(95) 52(92) 46(47) 44(44) 30(41)
DW 93(93) 91(95) 50(92) 46(47) 46(52) 30(45)
RR 94(95) 95(95) 67(73) 40(45) 49(57) 23(32)
Ours (EU) 94(94) 93(95) 50(92) 47(48) 48(52) 30(45)
Ours (β = 1) 96(97) 96(97) 72(93) 57(57) 56(57) 31(48)
Ours (β = 1.2) 96(97) 96(97) 73(94) 57(57) 56(57) 31(48)
Ours (β = 1.5) 96(97) 96(97) 76(94) 57(57) 56(57) 31(48)
Ours (β = 2) 97(97) 96(97) 79(94) 57(57) 56(58) 31(48)

Table 6: Fairness metric ρ for all baselines and our method with varying degrees of altruism β, on
MNIST and CIFAR-10 with 5 agents. ρ is computed between standalone test accuracies and final
test accuracies. The higher the values, the better in terms of fairness in rewards.

MNISTN = 5 CIFAR-10N = 5
Data Partition UNI POW CLA UNI POW CLA
FedAvg −18.6 25.47 95.01 18.47 97.48 98.75
q-FFL 26.46 47.26 96.07 5.53 33.25 97.60
CFFL 30.76 18.06 -23.04 66.21 63.35 -13.94
ECI 37.18 62.13 96.41 85.43 97.86 98.45
DW −33.1 99.35 12.11 80.64 99.17 99.90
RR −47.5 94.84 81.36 74.43 −23.7 97.17
Ours (EU) 71.63 70.15 91.57 96.36 99.71 99.91
Ours (β = 1) 83.53 99.57 98.62 85.32 95.04 99.70
Ours (β = 1.2) 75.84 99.46 97.67 78.35 95.81 99.73
Ours (β = 1.5) 76.92 99.57 95.37 81.05 95.56 99.72
Ours (β = 2) 21.16 -33.99 97.72 99.22 99.89 99.97

B.3 Fairness Comparison Based on CGSV

As these FL-based variants all use gradients as the communication medium, we can accordingly adapt
our CGSV approximation and the moving averaging formulation as in (4). Specifically, we compute
the moving average ri,t for each framework respectively as the (cumulative) contribution of i and use
it for fairness evaluation. We calculate the fairness metric ρ by considering two types of reward ξ’s:
final test accuracies in Table 7, and negative training losses in Table 8. In comparison, the fairness
results in Table 2 are computed between the standalone test accuracies and final test accuracies.

Table 7: Fairness metric ρ for all baselines and our method with varying degrees of altruism β, on all
four datasets. ρ is computed between (ri,T )i=1,...,N and final test accuracies where T denotes the
last iteration as in Table 4. The higher the values, the better in terms of fairness in rewards.

MNIST CIFAR-10 MR SST
No. Agents 10 20 10 5 5
Data Partition UNI POW CLA UNI POW CLA UNI POW CLA POW POW
FedAvg -10.54 45.13 33.89 77.80 62.19 55.45 56.21 45.77 77.18 45.54 −7.05
q-FFL -86.23 -15.75 67.98 -54.10 -35.45 12.54 61.78 36.55 -58.45 49.53 -93.94
CFFL 85.89 38.64 15.80 -44.25 5.62 -16.38 41.76 -54.63 45.32 19.00 19.45
ECI 44.17 85.74 91.15 79.03 89.69 91.81 80.67 89.57 97.30 84.58 93.12
DW 0.22 88.64 -40.55 65.21 91.77 73.14 -10.25 87.25 9.27 73.53 72.07
RR 3.17 75.12 78.15 -3.33 86.43 91.88 43.04 -17.31 84.95 -15.5 -6.43
Ours (EU) 49.44 79.85 83.78 55.27 91.63 85.35 89.89 93.02 87.19 87.88 93.21
Ours (β = 1) 90.49 94.68 77.27 93.20 92.89 94.58 82.66 92.75 94.89 96.01 94.31
Ours (β = 1.2) 89.74 96.28 82.95 90.65 96.99 93.42 78.99 93.41 95.96 96.12 90.00
Ours (β = 1.5) 80.23 91.40 93.60 90.89 90.31 93.66 76.42 92.89 89.52 95.32 95.11
Ours (β = 2) 82.36 91.03 88.45 74.88 87.44 91.20 72.71 89.63 84.92 85.01 97.49

B.4 Empirical Validation of Theorem 2 via Test Loss

In addition to the results from Appendix B.3, we perform experiments to further validate Theorem 2
by considering the test loss (instead of training loss) as the reward, i.e., a lower test loss corresponds
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Table 8: Fairness metric ρ for all baselines and our method with varying degrees of altruism β, on all
four datasets. ρ is computed between (ri,T )i=1,...,N and negative training losses where T denotes
the last iteration as in Table 4. The higher the values, the better in terms of fairness in rewards.

MNIST CIFAR-10 MR SST
No. Agents 10 20 10 5 5
Data Partition UNI POW CLA UNI POW CLA UNI POW CLA POW POW
FedAvg 68.68 86.73 96.01 83.05 87.35 84.03 55.84 83.57 95.33 87.26 73.53
q-FFL 48.04 60.71 48.68 5.78 30.44 -10.48 12.65 88.00 -55.00 99.39 94.39
CFFL -52.81 -6.07 -57.21 -48.42 13.13 -7.90 3.55 -11.76 41.22 33.30 44.33
ECI 71.79 92.97 82.10 82.10 78.01 58.35 84.90 85.81 93.81 95.10 82.75
DW 68.12 95.13 95.59 59.05 72.13 85.23 49.31 90.17 95.36 88.87 73.12
RR 46.52 87.84 96.65 31.99 92.73 91.20 16.13 85.28 97.02 87.97 73.56
Ours (EU) 71.59 87.32 96.11 82.14 86.08 84.00 61.53 83.31 95.12 88.73 73.23
Ours (β = 1) 91.64 92.26 96.84 89.47 94.78 96.82 84.85 94.59 90.13 90.44 91.92
Ours (β = 1.2) 90.36 91.94 91.19 88.87 93.28 96.41 83.84 90.94 90.16 90.05 97.54
Ours (β = 1.5) 91.03 93.33 92.27 88.21 92.11 91.39 84.43 90.51 90.33 89.54 89.84
Ours (β = 2) 85.02 88.61 94.88 87.51 90.09 92.36 78.95 88.84 90.65 88.72 94.64

to a better reward. Figure 8 demonstrates the same consistent trend as with training losses. This
demonstrates the generalizability of Theorem 2 that the agents who upload better gradients have
receive better models (i.e., with lower test losses).

Figure 8: Test losses (first row) and test accuracies (second row) of the final models vs. the altruism
degree β for MNIST CLA. From left to right, β = [1.0, 1.2, 1.5, 2]. A higher β leads to better
performance for agents with lower contributions.

B.5 Additional Comparison with q-FFL

Since q-FFL sets out to achieve a different notion of fairness than ours, we perform more in-depth
comparison to examine the effects these two algorithms have on the agents’ final models. We plot the
final performance in terms of test accuracy, test loss and train loss of all 5 agents for MNIST and
CIFAR-10 under the three types of data partitions in Figures 9 and 10. And Figures 11 and 12 show
the corresponding results for 10 agents.

We observe that in all scenarios, our algorithm performs noticeably better in terms of the final test
accuracy. However, it may be due to that in q-FFL each agent is interested in performing well
on their own local/private test sets (of the same distribution of their local train set). We do not
investigate that use case. Instead, our scenario is that all the agent are interested in one common
objective (represented by the same test set on which the test accuracy and test loss is computed).

Specifically, we observe from the second row of Figure 9, q-FFL ‘under’-optimizes agent 4 while
our algorithm fairly evaluates and rewards all the agents (the increasing trend of test accuracy and
decreasing trend of train loss). Moreover, we observe from the second row of Figure 10, q-FFL
‘equalizes’ the performance of the agents in terms of test accuracy and test loss, while our algorithm
fairly rewards the agents (the increasing trend of test accuracy and decreasing trend of test and train
losses).
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In summary, despite the similarity in the keyword terminology, namely fairness, our algorithm is
fundamentally different from q-FFL in that in our setting, all agents share one learning objective
while in q-FFL each agent has their own learning objective (which may differ considerably from
others’).

Figure 9: Comparison of final performance across agents between our method and q-FFL.
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Figure 10: Comparison of final performance across agents between our method and q-FFL.
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Figure 11: Comparison of final performance across agents between our method and q-FFL.
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Figure 12: Comparison of final performance across agents between our method and q-FFL.
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