
Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section 3.

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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A Parameter-Efficient Transfer Learning Definition

Definition 1 (Parameter-efficient Transfer Learning). Given a pre-trained model M parametrized
by ✓, and a specific downstream task D = {(xi, yi)}|D|

i=1, where (xi, yi) represents each ground-truth
input-output pair related to task D, parameter-efficient transfer learning seeks to adapt ✓ to task D,
where task-specific parameters increment �✓ is introduced with |�✓| ⌧ |✓|. The optimal parameters
are found by optimizing the losses L on task D:

min
�✓

E(xi,yi)2DL(M✓+�✓(ŷi|xi), yi). (2)

B Details of Datasets in V-PETL Bench

B.1 Image Recognition Tasks

In this section, we introduce all the image recognition datasets in the V-PETL Bench. For each
dataset, we select relevant examples, as illustrated in Figure 6. To download the datasets, please refer
to project page https://v-petl-bench.github.io/.

CUB-200-2011 This task represents the most widely-used benchmark for fine-grained visual
categorization. It includes 11,788 images across 200 subcategories of birds, with 5,994 images
designated for training and 5,794 for testing.

NABirds This task comprises a collection of 48,000 annotated photographs representing 400
species of birds commonly observed in North America. Each species is documented with over 100
photographs, which include separate annotations for males, females, and juveniles.

Oxford Flowers The task involves an image classification dataset comprising 102 flower categories,
featuring flowers commonly found in the United Kingdom. Each category contains between 40 and
258 images.

Stanford Dogs The task includes 20,580 images spanning 120 classes of dogs from around the
world, divided into 12,000 images for training and 8,580 for testing.

Stanford Cars The task features 196 classes of cars, totaling 16,185 images captured from the rear.
The categories are organized by Make, Model, and Year. Each image has a resolution of 360×240
pixels.

Caltech101 The task involves classifying images of objects across 101 categories, plus an additional
background clutter class. The objects include a diverse range such as animals, airplanes, chairs, and
scissors. Image sizes vary, typically ranging from 200 to 300 pixels per edge.

CIFAR-100 The task involves classifying natural images into 100 classes, with each class containing
500 training images. Examples of these classes include apples, bottles, dinosaurs, and bicycles. All
images are 32x32 pixels in size.

DTD The task involves classifying images of textural patterns across 47 classes, each containing
120 training images. The textures include varied patterns such as banded, bubbly, meshed, lined, and
porous. Image sizes range from 300x300 to 640x640 pixels.

Flowers102 The task involves classifying images of flowers found in the UK into 102 categories,
with each category containing between 40 and 248 training images. Examples of these flowers include
Azalea, Californian Poppy, Sunflower, and Petunia. All images have a minimum dimension of 500
pixels.
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Pets The task involves classifying images of cat and dog breeds into 37 classes, with approximately
200 images per class. Examples include Persian cats, Chihuahua dogs, English Setters, and Bengal
cats. The dimensions of the images are typically 200 pixels or larger.

Sun397 The Sun397 task is a scenery benchmark that includes 397 classes, each with at least 100
images. The classes are organized hierarchically and feature a variety of scenes such as cathedrals,
staircases, shelters, rivers, and archipelagos. All images are in color and measure at least 200x200
pixels.

SVHN This task involves classifying images from Google’s Street View of house numbers into 10
classes, each containing over 1,000 training images. Each image is 32x32 pixels in size.

EuroSAT The task involves classifying Sentinel-2 satellite images into 10 different land use
categories, such as Residential, Industrial, River, and Highway. Each image has a spatial resolution
of 10 meters per pixel and measures 64x64 pixels.

Resisc45 The Remote Sensing Image Scene Classification (RESISC) dataset is designed for scene
classification tasks using remote sensing images. It comprises 45 classes, each with 700 images,
featuring diverse scenes such as tennis courts, ships, islands, lakes, parking lots, sparse residential
areas, and stadiums. Each image is in RGB format with dimensions of 256x256 pixels.

Patch Camelyon The Patch Camelyon dataset includes 327,680 images from histopathologic scans
of lymph node sections. The classification task involves predicting the presence of metastatic tissue
within these images, dividing them into two classes. Each image has dimensions of 96x96 pixels.

Retinopathy The Diabetic Retinopathy dataset consists of image-label pairs with high-resolution
retina images, and labels that indicate the presence of Diabetic Retinopahy (DR) in a 0-4 scale (No
DR, Mild, Moderate, Severe, or Proliferative DR).

Clevr/count CLEVR is a visual question and answer dataset designed to evaluate algorithmic
visual reasoning. We use just the images from this dataset, and create a synthetic task by setting the
label equal to the number of objects in the images.

Clevr/distance Another synthetic task we create from CLEVR consists of predicting the depth of
the closest object in the image from the camera. The depths are bucketed into size bins.

dSprites/location The dSprites dataset was originally designed to asses disentanglement properties
of unsupervised learning algorithms. In particular, each image is a 2D shape where six factors are
controlled: color, shape, scale, rotation, and (x,y) center coordinates. Images have 64x64 black-and-
white pixels. This task consists in predicting the x (horizontal) coordinate of the object. The locations
are bucketed into 16 bins.

dSprites/orientation We create another task from dSprites consists in predicting the orientation of
each object, bucketed into 16 bins.

SmallNORB/azimuth The Small NORB dataset features images of 3D toys from 50 classes,
including animals, human figures, airplanes, trucks, and cars, each captured in a resolution of
640x480 pixels. In this specific task, we assign labels based on the azimuth—the angle of horizontal
deviation—using intervals of 20 degrees, resulting in 18 distinct classes.

SmallNORB/elevation Another synthetic task from the Small NORB dataset involves predicting
the elevation depicted in the images. This task is divided into 9 classes, each corresponding to a
different elevation ranging from 30 to 70 degrees, with intervals of 5 degrees between each class.
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DMLab The DMLab (DeepMind Lab) is a set of control environments focused on 3D navigation
and puzzle-solving tasks. The Dmlab dataset contains frames observed by the agent acting in the
DeepMind Lab environment, which are annotated by the distance between the agent and various
objects present in the environment. The goal is to evaluate the ability of a visual model to reason
about distances from the visual input in 3D environments. The Dmlab dataset consists of 360x480
color images in 6 classes.The classes are {close, far, very far} ⇥ {positive reward, negative reward}
respectively.

KITTI-Dist The KITTI task involves predicting the binned depth to vehicles, such as cars, vans, or
trucks, in images. The prediction is categorized into four distinct bins or classes.

B.2 Video Action Recognition Tasks

SSv2 The SSv2 dataset currently contains 168,913 videos, which are categorized under 174 different
labels. These videos vary in length from 2 to 6 seconds. The labels are textual descriptions created
from templates like “Dropping [something] into [something],” where the “[something]” acts as
placeholders for various objects.

HMDB51 The HMDB51 dataset comprises a diverse array of realistic videos sourced from movies
and web videos. It contains 6,766 video clips, spread across 51 action categories such as "jump,"
"kiss," and "laugh." Each category includes at least 101 clips, providing a broad spectrum of human
actions.

B.3 Dense Prediction Tasks

MS COCO The MS COCO dataset is a widely used benchmark for instance segmentation, featuring
80 object categories. Each image in MS COCO is accompanied by high-quality annotations. For
instance segmentation, these annotations consist of pixel-wise masks for each object instance, enabling
precise identification and localization of objects within the images.

ADE20K The ADE20K semantic segmentation dataset includes over 20,000 scene-centric images,
each exhaustively annotated with pixel-level labels for objects and object parts. It encompasses a
total of 150 semantic categories, which range from expansive elements like sky, road, and grass, to
discrete objects such as person, car, and bed.

PASCAL VOC The PASCAL VOC dataset features 20 object categories, encompassing vehicles,
household items, animals, and more. Each image in this dataset is equipped with bounding box
annotations and object class annotations, making it a widely used benchmark for object detection.

C Taxonomy of PETL Algorithms

In visual PETL survey [19], existing PETL methods can be divided into 7 basic categories, including:

Adapter Tuning methods inject small-scale neural modules (adapters) to the Transformer layers
and only tune these adapters for model adaptation, as showin in Figure 4b. Specifically, one adapter
module contains a down-projection and an up-projection. Additionally, there is a nonlinear layer
between the two layers for non-linear projection.

Prompt Tuning methods wrap the original input with additional visual prompts. These prompts
consist of trainable parameters or perturbations, as shown in Figure 4c. Given an input x0 2 Rd and
prompts P = [P1], [P2], ...[Pl] 2 Rl⇥d, the final input can be expressed as follows:

x0 = concat(P, x0) = [P, x0] 2 R(l+N)⇥d. (3)

Side Tuning employs a smaller and separate network that operates in parallel with the Transformer,
as shown in Figure 4d. While ensuring parameter-efficient, this separation completely obviates the
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need for costly backpropagation through a large backbone network, resulting in significant GPU
memory savings.

Prefix Tuning introduces learnable prefix matrices to the Multi-Head Attention (MHA) module of
the Transformer layers, as shown in Figure 4e. It involves prepending two randomly initialized prefix
matrices Pk, Pv 2 Rl⇥d to the keys and values in the MHA, leading the attention calculation to:

Attention(Q,K, V ) = softmax(
Q[Pk,K]Tp

d
)[Pv, V ]. (4)

Specification Tuning is an efficient approach that directly modifies a specific subset of parameters in
Transformers, such as bias and LayerNorm, which are crucial for downstream tasks. This method
concentrate on important parameters while discarding those deemed less relevant. The concept, while
straightforward, has proven to be surprisingly effective.

Reparameter Tuning methods introduce new learnable parameters during the training stage, while
these parameters can be integrated into the original Transformer layers through reparameterization
during the inference phase, as shown in Figure 4f.

Unified-based Tuning methods offer a unified framework to integrate various fine-tuning methods
into a single, harmonized architecture. This approach streamlines the process and enhances the
overall efficiency and effectiveness of the fine-tuning.

D Details of Implemented PETL Algorithms in V-PETL Bench

For each category of PETL algorithms outlined in Section C, we select multiple algorithms for
implementation within the V-PETL Bench. These are briefly introduced in Section 5 of the paper,
with a detailed introduction provided below:

D.1 Adapter Tuning

(1) Adapter [15] incorporates a bottleneck module (Adapter) into each Transformer layer, positioned
after both the Multi-Head Attention (MHA) and the Feed-Forward Networks (FFN). (2) Adapt-
Former [48] embeds the adapter module parallel to the FFN in each encoder of a Vision Transformer.
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(3) SNF [68] integrates and fine-tunes Normalizing Flows modules within the residual connections
of each encoder block in the pre-trained ViT. (4) Hydra [62] includes both a parallel and a sequential
adapter in the final linear layer of the FFN in each encoder block. (5) LoRand [70] introduces
low-rank adapters into each SwinBlock of the Swin Transformer, positioned after the MHA and FFN
for enhanced dense predictions. (6) Mona [72] integrates a multi-cognitive convolutional filter group
(Depthwise Convolution) along with an aggregation filter (1⇥ 1 Convolution) following the down
projection of the standard adapter.

D.2 Prompt Tuning and Prefix Tuning

(1) VPT [20] enhances vision transformers by appending learnable visual prompts to the input
sequences (VPT-Shallow) or to the input of each transformer encoder layer (VPT-Deep). (2) Prefix
Tuning [74] incorporates trainable prefix tokens into each layer of the Transformer model, allowing
for task-specific adaptation of the pre-trained model without altering the original parameters.

D.3 Side Tuning

(1) LST [63] employs a small ladder-side network that operates outside the pre-trained network,
receiving intermediate activations via shortcut connections. (2) DTL [64] integrates a Compact Side
Network (CSN) alongside each encoder block within the ViT, extracting task-specific information
progressively throughout the forward pass and reintegrating it into the pre-trained ViT. (3) HST
[65] constructs a lightweight Hierarchical Side Network (HSN) separate from the pre-trained ViT to
generate multi-scale features from intermediate activations. (4) LAST [67] adds a lightweight side
network consisting of low-rank self-attention (LSA) modules after each Transformer block in the
pre-trained ViT. (5) E3VA [71] introduces a highway system parallel to the SwinBlock in the Swin
Transformer, featuring trainable low-rank adapters (E3VA) that isolate the pre-trained model from
gradient backpropagation.

D.4 Specification Tuning

(1) BitFit [17] exclusively fine-tunes the bias terms of the pre-trained model while keeping the
rest of the parameters unchanged. (2) GPS [66] fine-tunes a small, crucial subset of parameters
(sub-network) from the original pre-trained model using a gradient-based approach. (3) SCT [55]
incorporates Salient Channel Tuning Modules (SCTM) after the MHA or FFN to target and fine-tune a
select group of channels (salient channels). (4) LN TUNE [69] specifically fine-tunes the LayerNorm
parameters, leaving other components untouched. (5) Partial-1 [75] focuses on fine-tuning only the
last encoder layer of the pre-trained ViT.

D.5 Reparameter Tuning

(1) LoRA integrates a tunable pair of low-rank decomposed weight matrices into each encoder layer
of the pretrained ViT. (2) FacT incorporates tunable factorized weight matrices into each layer of
the pretrained ViT. (3) RepAdapter introduces a reparameterizable linear adapter before the MHA
and FFN of each encoder block of the pre-trained ViT. (4) SSF adds a tunable scaling and shifting
module (SSF-ADA) behind the MHA and FFN of the pre-trained ViT.

D.6 Unified-based Tuning

(1) NOAH [59] integrates a tunable Neural Operator Adaptation Head (NOAH) module, which
includes a lightweight MLP and a gating mechanism, into the MHA and FFN of each encoder block
in the pre-trained ViT. (2) U-Tuning [56] incorporates a unified tuner (U-Tuner) consisting of Prefix,
Adapter, and Prompt elements into the MHA and FFN of each encoder block in the pre-trained ViT.
(3) BAPAT [57] introduces the Parallel Attention (PATT), which adds trainable query, key, and value
matrices to the MHA, and incorporates bottleneck layers into the FFN of each Transformer block in
the pre-trained ViT.
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E Performance-Parameter Trade-off Metric

For the evaluation of PETL algorithms, to compare different methods with a single number that
considers both task performance and parameter-efficiency, we define the Performance-Parameter
Trade-off (PPT) metric:

PPT = performance⇥ exp(�log10(
#parameters

C
+ 1)). (5)

The performance quantifies prediction accuracy, ranging from 0 to 1. The term # parameters refers to
the count of updated parameters during the model adaptation phase. C is a normalization constant set
at 107, aligns with the typical parameter sizes of existing PETL algorithms, ensuring that the ratio
#parameters

C falls within the [0, 1) range. To prevent log values from reaching negative infinity, we
introduce an additive constant of 1. As PETL evolves, considerations such as GPU memory might be
incorporated, potentially leading to further refinements of the PPT metric.

E.1 Attention Map

Attention map visualization is a crucial tool for analyzing PETL algorithms. In the V-PETL Bench,
we have included an attention map visualization module. We randomly select several examples of
attention map visualizations, as illustrated in Figure 5. We can find that the SCT method focuses
more intently on the cat, while Full Finetuning directs more concentrated attention towards the flower.
In the V-PETL Bench, we offer a convenient interface that allows researchers to easily utilize the
attention map visualization tool.

Image Full Fine-Tuning SCTAdaptFormerBitFitFrozen VPT-shallowLoRA

Figure 5: Visualization of attention maps.

F Broader Impacts

Efficient usability. The V-PETL Bench provides a user-friendly calling interface and comprehensive
documentation, enabling researchers from various fields to quickly get started with efficient usability.
Additionally, V-PETL Bench provides checkpoints for all tasks, allowing researchers to directly load
and utilize these models without the need for retraining.

Environmental-friendly consumption. The V-PETL Bench has standardized common computer
vision tasks and offers evaluation results for various PETL algorithms. It eliminates the need for
additional training unless absolutely necessary, which positively impacts carbon emissions reduction
and environmental protection.

Ethical Considerations. The PETL algorithms capitalize on the representation and generaliza-
tion abilities acquired from large-scale pre-trained datasets and models. However, it’s crucial to
acknowledge the potential risks if these pre-training datasets contain bias or illegal information.
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G Future Work

In this work, our primary focus is on traditional computer vision (CV) tasks. However, there are
additional CV tasks that should not be overlooked by the PETL community. Currently, the V-PETL
Bench does not encompass tasks such as text-to-image generation, point cloud analysis, or robotic
manipulation. Moreover, it supports only a limited selection of pre-trained models. Expanding our
repository to include self-supervised and multimodal pre-trained models is essential. We plan to
continue updating the benchmark to include these enhancements in the future.
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Figure 6: Dataset examples for all classification tasks evaluated.
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