
A Details on Structured VAE

The variational free energy for VAE takes a similar formulation as the non-amortised version:

F(θ, ϕ) =
〈
log p(y, z|Θ)− log q(z|y, ϕ)

〉
q(z|y,ϕ) (15)

where we utilise a variational distribution parametrised by a recognition network, q(z|y, ϕ). The
parametric assumptions in standard VAE formulation limits the expressiveness of the latent space
modelling, hence leading sub-optimal training and variational inference. In order to improve the
flexibility of both the generative modelling and the variational approximation, Johnson et al. [7]
proposed structured VAE, combining PGM-parametrised latent prior distribution with amortised
inference such that the flexibility of neural network modelling and the conditional dependence
structure can be integrated to derive the variational distribution.

Specifically, the structured autoencoding framework considers the following free energy:

F(Θ, λ) =
〈
log

p(y|z, γ)p(z|θPGM)

q(z|λ)
〉
q(z|λ)

(16)

It is clear to see that the partial optimisation on q(z|λ) yields the following (partially) optimal
variational approximation:

q(z|λ∗) ∝ p(y|z, γ)p(z|θPGM) (17)
Due to the apparent intractability, a recognition network is used to generate amortised approximation
of the generative likelihood:

q(z|λ∗) ∝ p(y|z, γ)p(z|θPGM) ≈ r(z|y, ϕ)p(z|θPGM) (18)

where r(z|y, ϕ) is the recognition potential parametrised by ϕ. With conjugate mean-field recognition
potential, the resulting q(z|λ∗) can hence be computed analytically via VMP, and thus contains
the factored structure inherent in the prior PGM, whilst exhibits flexibility due to the neural net-
work parametrised recognition potential. The generative and recognition parameters can be trained
following standard stochastic optimisation by maximising the surrogate variational free energy:

FSVAE(Θ, ϕ) =
〈
log

p(y|z, γ)p(z|θPGM)

q(z|λ∗)
〉
q(z|λ∗)

(19)

Note that in the original SVAE formulation, Johnson et al. [7] consider hyperpriors on θPGM, and are
updated given natural gradient descent. Here we assume deterministic θPGM for simplicity (except
for the SRVAE-GMM model), and the structured amortisation framework can be easily extended to
adapt to the variational Bayes setting.

B More Instantiations of Structured Recognition Framework with Latent
Variable Models

Here we provide two additional instantiations of the SRVAE framework. The corresponding empirical
evaluations can be found in Appendix F.

B.1 Tree-Structured Latent PGM

We instantiate the SRVAE framework with discrete tree-structured PGM (Figure 4a), which we term
as TreeSRVAE. A general tree-structured PGM takes the following density function.

p(z) =
1

Z

∏
i

ψi(zi)
∏

(i,j)∈E

ψij(zi, zj) (20)

Non-linear generative likelihood functions introduces joint factors that does not exist a prior, known
as “explaining away" (Section 3). Below we provide two potential solutions

The optimal variational distribution should have the same PGM structure as the posterior, which
often contains joint factors over many (possibly all) latent variables. However, as the number of
states grows exponentially with the number of latent variables, in practice it is usually not scalable
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to have amortised inference output a joint factor that approximates the exact posterior joint factor
potentials. We hence seek scalable alternatives. Here we design the recognition network to output the
amortised factor potential to be of the same structure as the prior PGM; in this case, a tree-structured
distribution with the same set of nodes and pairwise connections (Figure 4b).

r(z|y;ϕ) =
∏
i

ξi(zi)
∏

(i,j)∈E

ξij(zi, zj)

Note that we do not require the recognition network to output a “proper" density function, but only
the factored potentials up to some normalising constant (singleton and pairwise in TreeSRVAE).
By utilising a amortised potential of the same structure of the prior distribution, we could easily
perform the partial optimisation step of combining the recognition output with the prior distribution,
by performing updates only on the existing factored structures.

q∗(z|x, θ, ϕ) ∝
∏
i

ψ′
i(zi)

∏
i,j

ψ′
ij(zi, zj)

where ψ′
i(zi) = ψi(zi)ξi(zi),∀i, and ψ′

i,j(zi, zj) = ψi,j(zi, zj)ξi,j(zi, zj),∀(i, j)
(21)

The training procedure follows the general VAE formulation, i.e., we need to generate reparametrised
samples from the variational distribution to compute the Monte Carlo estimate of the free energy
objective. Thus far we only have the density function up to the normalising constant. Given the
tree-structured posterior latent variables, the normalising constant can be computed exactly with
Belief Propogation (BP; [6]). At each iteration k, the message propagation between variable i and
factor a are given by

µ
(k)
i→a(zi) =

∏
c∈N (i)\a

µ
(k−1)
c→i (zi)

µ
(k)
a→i(zi) =

∑
xa\xi

ψa(za)
∏

j∈N (a)\i

µ
(k−1)
j→a (zj)

(22)

Due to the tree structure (i.e., no loops), belief propagation converges after a single inward-outward
pass (similar to forward-backward propagation in HMM models). Upon convergence, we can compute
the marginal distributions of the variables and factors as products of messages and factor potentials.

bi(zi)
+c
=

∏
c∈N (i)

µ∗
c→i(zi)

ba(za)
+c
= ψa(za)

∏
i∈N (a)

µ∗
i→a(zi)

(23)

The singleton and pairwise marginal beliefs can be used to sample from the relevant components of
q∗(z|x, θ, ϕ). Due to the tree-structure, the order of sampling the latent variables is irrelevant. That
is, we can initiate ancestral sampling from an arbitrary node i in the tree, computing the conditional
distribution q∗(zj |zi) from the relevant marginals. To sample categorical latent variables we employ
the Gumbel-Softmax relaxation [46, 47] so that gradients of the expection can be back-propagated
through the samples.

The free energy then takes the following form.

F(ϕ, θ, γ) = Eq∗(z|x,θ,ϕ)[log p(y|z, γ)]− KL[q∗(z|x, θ, ϕ)||p(z, θ)]
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Figure 4: SRVAE framework implemented with tree-structured latent variable model. (a)
generative model (b) inference model, with tree-structured (or a joint factor over all latent variables)
recognition potentials.

Given the tree structure, we can compute the KL-divergence analytically with the singleton and
pairwise beliefs computed with BP.

KL[q(z)||p(z)] =
∑
z

q(z) log q(z)−
∑
z

q(z) log p(z)

=
∑
z

q(z) log

(∏
(i,j) qij(zi, zj)∏
i qi(zi)

(di−1)

)
−
∑
z

q(z) log

(∏
(i,j) pij(zi, zj)∏
i pi(zi)

(di−1)

)
=
∑
i,j

∑
z

q(z) log q(zi, zj)−
∑
i

(di − 1)
∑
z

q(z) log q(zi)

−
∑
i,j

∑
z

q(z) log p(zi, zj) +
∑
i

(di − 1)
∑
z

q(z) log p(zi)

=
∑
i,j

∑
zi,zj

q(zi, zj) log q(zi, zj)−
∑
i

(di − 1)
∑
zi

q(zi) log q(zi)

−
∑
i,j

∑
zi,zj

q(zi, zj) log p(zi, zj) +
∑
i

(di − 1)
∑
zi

q(zi) log p(zi)

=
∑
i,j

KL[q(zi, zj)||p(zi, zj)]−
∑
i

(di − 1)KL[q(zi)||p(zi)]

(24)

We note that it is also possible to use other dependency structures of the amortised factor potentials,
such as a joint factor potential over all latent variables, or to employ latent structure discovery
techniques to infer the latent dependency structure as well as the variational parameters [13].

B.1.1 Gaussian Factors in Tree-Structured Latent PGM

We note that treeSRVAE can also be implemented with continuous latent variables, and here we
provide a simple example with Gaussian-distributed latent variables for illustration (note that the
joint distribution is also Gaussian). When working with continuous latent variables, summation is
replaced with integration in the message passing steps (Eq. 22). Since Gaussian distributions are fully
parametrised by the natural parameters (same holds for other exponential family distributions), we
are able to perform variational message passing by only propagating the messages of the sufficient
statistics [25]. Assume the latent prior distribution specified by a Gaussian MRF has a density
function of the following format.

p(z) =
1

Z
exp

(
−1

2
zTAz+ hT z

)
=

1

Z

∏
i

exp

(
−1

2
A2

iiz
2
i + bizi

)∏
ij

exp

(
−1

2
Aijzizj

)
=

1

Z

∏
i

ψi(zi)
∏
ij

ψij(zi, zj)

(25)
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where A is the precision matrix and h = Aµ, with µ being the mean parameter of the joint Gaussian
distribution. Note that A is also known as the information matrix, which specifies the dependency
structure of the latent distribution. Assume each message at time k is parametrised by a Gaussian
distribution, m(k)

i→j(xj) ∼ N (xj |µ(k)
i→j , (λ

(k)
i→j)

−1). At each iteration k, the message updates are
shown as following.

m
(k)
i→j(zj) =

∫
dziψij(zi, zj)ψi(zi)

∏
k∈N (i)\j

m
(k−1)
k→i (zi) = N (zj ;µ

(k)
i→j , λ

(k)
i→j)

where λ(k)i→j =
A2

ij

λ
(k)
i\j

; µ
(k)
i→j =

Aijµ
(k)
i\j

λ
(k)
i→j

and λ(k)i\j = Aii +
∑

l∈nbr(i)

λ
(k)
l→i; µ

(k)
i\j =

Aiibi +
∑

l∈nbr(i) λ
(k)
l→iµ

(k)
l→i

λ
(k)
i\j

(26)

Then the singleton and pairwise beliefs (used for sampling and computing the KL divergence) can be
computed as following.

b(zi) = ψi(zi)
∏

j∈nbr(i)

mj→i(zi) = N (zi|µi, λi)

where λi = Aii +
∑

j∈nbr(i)

λj→i; µi =
Aiibi +

∑
j∈nbr(i) λj→iµj→i

λi

b(zi, zj) = ψij(zi, zj)ψi(zi)ψj(zj)
∏

u∈nbr(i)

mu→i(xi)
∏

v∈nbr(j)

mv→j(xj) = N ([zi, zj ]
T |mij ,Λij)

where Λij =
[

Aii + λ′i\j
1
2Aij ,

1
2Aji Ajj + λ′j\i

]
, mij =

[
bi + λ′i\jµ

′
i\j

bj + λ′j\iµ
′
j\i

]
,

λ′i\j =
∑

u∈nbr(i)\j

λu→jµ
′
i\j =

∑
u∈nbr(i)\j λu→jµu→j

λ′i\j

(27)

Given the prior tree structure (i.e., the information matrix, A), the recognition network outputs the
sufficient statistics (mean and precision matrix) of a Gaussian distribution with the same structure
as the tree-based prior distribution, N (z|µ′, (A′)−1). Note that instead of parametrising a full-rank
precision matrix, which requires O(D2) outputs (D is the number of latent variables), by constraining
the dependency structure as the prior distribution, the recognition network only need to output 3D− 1
scalars (for each batch), where 2D− 1 contribute towards the non-zero entries in the precision matrix,
and D contribute towards the linear term. Such type of parametrisation is similar to the modelling
of off-diagonal elements in the covariance matrix with low-rank decomposition, but we note that
the off-diagonal entries in the covariance matrix do not convey information about the dependency
structure of the latent variables, hence our framework provides stronger interpretability. Dorta et al.
[48] proposes a direct low-rank parametrisation of the precision matrix in a VAE setting, which again
lacks interpretation in terms of the latent dependency structure. Moreover, we note that they require
the matrix inversion to convert the precision matrix into the covariance matrix for inference and
sampling, which requires O(D3) complexity, whereas we apply the BP, which on tree-structured
PGMs only require O(D) iterations to converge.

B.2 Gaussian Mixture Model Latent PGM

The PGMs for the generative and inference models of SRVAE-GMM is shown in Figure 5.

C Joint Factor Potentials Induced by Non-Linear Likelihood (“Explaining
Away")

Here we show that even a simple non-linear likelihood function can induce non-trivial posterior
correlations that do not exist a priori. Consider a Bernoulli generative likelihood function, with the
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Figure 5: SRVAEframework implemented with tree-structured latent variable model. (a)
generative model (b) inference model, with tree-structured (or a joint factor over all latent variables)
recognition potentials.

logits being an affine transformation of z.

p(y|z, θ) = B(y;σ(Wz + b)) =
∏
i

B(yi;σ(
∑
j

Wijzj + bi)) (28)

where θ = {W, b}.

Given this simple generative model, and the tree-structured latent distribution (Eq. 20), we can derive
the true posterior distribution analytically.

log p(z|x) +c
= log p(z) + log p(y|z, θ)
=
∑
i

logψi(zi) +
∑
i,j

logψi,j(zi, zj)+

∑
j

yj log

(
1

1 + e−
∑

i Wjizi+bj

)
+ (1− yj) log

(
e−

∑
i Wjizi+bj

1 + e−
∑

i Wjizi+bj

)
=
∑
i

logψi(zi) +
∑
i,j

logψi,j(zi, zj)+

∑
j

yj

(∑
i

Wjizi + bj

)
+
∑
j

log

(
e−

∑
i Wjizi+bj

1 + e−
∑

i Wjizi+bj

)
+c
=
∑
i

log ϕi(zi) +
∑
i,j

log ϕi,j(zi, zj) + ϕz(z)

where ϕi(zi) = ψi(zi) exp(zi
∑
j

Wjiyj), ϕij(zi, zj) = ψij(zi, zj),∀i, j,

ϕz(z) =
∑
j

log

(
e−

∑
i Wjizi+bj

1 + e−
∑

i Wjizi+bj

)

(29)

We observe that the true posterior distribution involves the singleton and pairwise potentials that
preserve the structure of the prior distribution, and at the same time the normalising constant of
the conditional likelihood function introduces a joint factor over all latent variables, ϕz(z), which
cannot be captured by the fully factorised amortised potential, but can be partially captured by the
tree-structured potentials.
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D Further Details of SR-nlGPFA

The derivation of the variational free energy objective for svGPFA (and SR-nlGPFA; Eq. 5) is shown
as following Titsias [22].

log p(y)

= log

∫∫
df du1:K p(y, f(·),u1:K)

= log

∫∫
df du1:K p(y|f(·))

∏
k

p(fk(·)|uk)p(uk|zk)

≥
∫∫

df du1:K q(u1:K , f(·)) log
[
p(y|f(·))∏k p(fk(·)|uk)p(uk|zk)

q(u1:K , f)

]
=

∫∫
df du1:K q(u1:K , f(·)) log

[
p(y|f(·))∏k p(fk(·)|uk)p(uk|zk)

[
∏

k p(fk(·)|uk)] q(u)

]
= Eq(h(·)) [log p(y|h(·))]−

∫
du1:K q(u) log

q(u)∏
k p(uk|zk)

= Eq(h(·)) [log p(y|h(·))] +H[q] +
∑
k

Eq(uk)[log p(uk|zk)]

(30)

where H[q] is the entropy of the variational distribution q(u).

E Proof of Proposition 3.1

We re-state the proposition.
Proposition E.1. Consider the following latent structured prior.

p(z; θ0) =
1

Z

∏
c∈C

ψc(zc)

where we assume θ0 is the set of trainable deterministic prior parameter. Consider the free energy
objective.

F [q(z)] = Eq(z)

[
log

p(z|θ0)p(x|z, θ)
q(z)

]
Both the SVAE objective and the AEA-objective take the following expression.

F(θ, ϕ) = Eq∗(z)

[
log

p(z|θ0)p(x|z, θ)
q∗(z)

]
,

For SVAE, q∗(z) is derived through partial optimisation given conjugate amortised inference outputs.

q∗(z) = argmax
q(z)

Eq(z)

[
log

p(z|θ0)∏i lc(zi|x, ϕ)
q(z)

]
,

where
∏

i li(zi|x, ϕ) represents the approximate local evidence potentials (corresponding to the
product of singleton potentials).

For SRVAE, instead of being fully factorised, the recognition network outputs structured factor
potentials, which in principle, could contain factors of arbitrary set of latent variables (e.g., a joint
factor for all latent variables).

q∗(z) = argmax
q(z)

Eq(z)

[
log

p(z|θ0)∏c′∈C∗ rc(zc|x;ϕ)
q(z)

]
,

Then the SRVAE objective function provides tighter lower bound to the free energy than the SVAE
objective function.

max
q(z)

F [q(z)] ≥ max
ϕ

FSRVAE(θ, ϕ) ≥ max
ϕ

FSVAE(θ, ϕ)
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We note that throughout the paper we assume both the SRVAE and SVAE models employ identical
generative models, hence we have the stronger results that the inequality for all θ. For SR-nlGPFA,
despite introducing the additional affine transformation (parametrised by C and d) in the generative
process, the linear operation can be completely subsumed into the neural-network generative model,
hence leading to the identical generative model as SGP-VAE.

Proof. The first inequality is trivial. For the second inequality, it is easy to see that the set of fully
factorised amortised potentials, L = {l(z)|l(z) ∝∏i li(zi|x;ϕ)}, is a strict subset of the set of all
structured amortised potentials, H = {h(z|x;ϕ)|h(z|x;ϕ) ∝∏c∈C∗ rc(zc|x;ϕ)}, where C∗ is the
set of factors in the amortised approximation to the likelihood. Hence for arbitrary p(x|z, θ), we have
that,

argmin
h∈H

KL[h(z|x, ϕ)∥p(x|z, θ)] ≤ argmin
l∈L

KL

[∏
c∈C

lc(zc|x, ϕ)
∥∥∥∥∥p(x|z, θ)

]
with equality if and only if p(x|z, θ) ∈ L. Hence it is trivial to derive that,

max
ϕ

FSRVAE(θ, ϕ) = Eq∗AEA(z)

[
log

p(z|θ0)p(x|z, θ)
q∗(AEAz)

]
≥ Eq∗SVAE(z)

[
log

p(z|θ0)p(x|z, θ)
q∗(SVAEz)

]
= max

ϕ
FSVAE(θ, ϕ),∀θ

with equality if and only if p(x|z, θ) ∈ L.

We note that having a tighter free energy lower bound does not necessarily lead to stronger generative
modelling [49]. However, by exploring an alternative formulation of the free energy objective (relative
to Eq. 1):

F [q] = log p(y)− KL[q(z)∥p(z|y)] ⇒ max
q

F [q] = min
q

KL[q(z)∥p(z|y)] (31)

we see that a tighter free energy bound leads to smaller KL-divergence between the variational
approximation and the ground-truth posterior distribution, hence achieving more accurate posterior
inference. This is indeed reflected in our empirical evaluation of SR-nlGPFA on the spiking dataset
(that the posterior latent processes is significantly more coherent with the underlying behavioural
covariates than that of SGP-VAE [10]), and also reflected by the better generation quality in the bar
dataset (F.1).

F Further Experimental Results

F.1 TreeSRVAE on “Bar" Dataset

We first evaluate tree-structured recognition potential on a synthetic “Bar" dataset, consists of square-
grid observations with horizontal and vertical bars.

p(z|θ) = B(z0|p0)
∏
i>0

B(zi|pa(zi)),

p(y|z,W,b) =
D2∏
d=1

B(yd|σ(Wz+ d)d)

(32)

where pa(z) denote the parent node of node z, σ(·) = 1
1+exp(·) is the sigmoid function, and B(p)

denotes the Bernoulli distribution with rate p. Each binary zi denotes the activation of one bar in the
square-grid (e.g., z1 = 1 indicates the presence of the first horizontal bar). The generative parameters
W and b are defined as

Wij =

{
2× ωi if pixel i is on the bar j
0 otherwise

, bi = −ωi, for i = 1, . . . , D2, (33)

where {ωi}D
2

i=1 are the temperature parameters that control the degree of randomness in the data
generation. Note that in current implementations we set ωi = ω for all i. Exemplary samples from
the “Bar" dataset if shown in Figure 6 (D = 8).
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Figure 6: Samples from the “Bar" dataset.
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Figure 7: Evaluation of TreeSRVAE on the bar test experiment. From Top to Bottom: Bar-test
experiment with (a) sampling temperature of 4; (b) sampling temperature of 10. From left to right:
free energy; reconstruction loss (log-scale); KL-divergence (with respect to the prior distribution).

Note that here we only perform variational inference, instead of variational Bayes optimisation, hence
we assume the parameters of the prior distribution (Eq. 20) to be deterministic quantities (which can
still be optimised via gradient descent, but do not follow any natural-gradient updates).

Given the tree-structured prior distribution (Eq. 32), we have that the singleton and pairwise potentials
take the following expression.

ψi(zi) =

{B(z0|p0) if i = 0;

1 if i > 0;
ψij(zi, zj) =

{
B(zi|pizj ) if j = pa(i);
1 otherwise ;

(34)

We use the Gumbel-Softmax trick for relaxed reparametrised sampling of the discrete latent variables.
However, we can also apply a hard-transformation to the relaxed samples to generate the binary-valued
latent samples as following.

zhard = 0.5× (sign(z − 0.5) + 1) (35)

In practice we find using the hard-sampling trick improves performance for all models considered
(VAE, SVAE, TreeSRVAE) on the “Bar" dataset.

We set the prior distribution to be a "uninformative" prior, where p0 = 0.5 and piij for all (i, j)
(Eq. 34).

In Figure 7 we show the training curves of the free energy (Eq. 7), reconstruction loss (log p(x|z)) and
KL-divergence (with respect to the prior distribution, KL[q∗(z, ϕ)||p(z, θpgm)]) for the “Bar" dataset
generated with varying sampling temperature (ω). , where the observation is over an 8×8 square grid,
hence the latent variables are z ∈ {0, 1}16. We evaluate on three models: i) the latent variable follows
a fully factorised Bernoulli distribution, and the recognition network outputs mean-field inference,
which is equivalent to standard VAE with Bernoulli latents [46]; ii) the latent variable follows a
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Figure 8: Free energy of the TreeSRVAE, SVAE and VAE over the training process on the “side-
dependent" “Bar" dataset (Eq. 36)

distribution characterised by a tree-structured probabilistic graphical model, and the recognition
network outputs fully factorised potentials, which is equivalent to the original SVAE setup with
tree-structured Bernoulli latent [7]; iii) the latent variable follows a distribution characterised by a tree-
structured probabilistic graphical model, and the recognition network outputs tree-structured factor
potentials (containing both the singleton and pairwise factor potentials), which is the TreeSRVAE.
Note that we use the “hard-transformation" trick for all models presented in Figure 7. From Figure 7
we see that TreeSRVAE consistently outperforms both VAE and SVAE on the “Bar" dataset with
varying level of sampling noise, in terms of the overall free energy (both the sample efficiency and
asymptotic performance), hence providing a tighter lower bound to the true likelihood.

What if the underlying latent structure deviates largely from being tree-structured? We consider the
following “side-dependent" prior distribution (p(y|z,W,b) remain the same).

p(z|θ) ∝ Cat(z1:D|p1:D)Cat(zD+1:2×D|pD+1:2×D) (36)

where Cat(p) denotes the categorical distribution with probabilities p. Intuitively, sampling from
such prior distribution means that we will observe one and only one bar on each side of the square.
Clearly, such prior distribution cannot be modelled by any tree-structured distribution.

We apply the same set of models to the data from the new generative model, and the results are shown
in Figure 8. We observe that the performances for all three methods are mostly similar. Hence in
situations where there exists a large mismatch between the structures of the amortised potentials and
the true posterior distribution, the additional structure present in the amortised inference will not
interrupt learning, but instead allow the learning process be at least on the same level of performance
as standard VAE and SVAE in terms of free energy.

Despite having achieved similar free energy through training (Figure 8), we argue that the structured
recognition framework should still be preferred. Namely, we examine the generation quality of the
generated samples.

Firstly, visual inspection of the randomly samples from the three trained models in Figure 9 indi-
cates TreeSRVAE generates more “cross" patterns than SVAE and VAE. The qualitative indicates
TreeSRVAE has learned a better generative model than the other two models.

Now for the quantitative comparison. Given the relatively small latent state space (16 binary latents,
leading to 216 = 65536 possible latent configurations). We exhaustively generate samples from all
possible latent configurations given the three models. For each generated sample, we compute the
most similar “cross" pattern (in terms of squared error) with respect to the sample, and their squared
distance. We then compute the averaged smallest squared error given the generated samples of all
possible 216 latent configurations for the three models. The statistics is reported in Table 2. Namely,
for each z ∈ R16,

ŷ = p(y|z, γ)
y∗ = argmax

y∈Y
||y − ŷ||2

dz = ||y∗ − ŷ||2
(37)

where Y denotes the set of all possible cross patterns (64 different patterns in an 8× 8 square-grid.
Hence we compare d̃ = 1

|Z|
∑

z∈Z dz , where Z is the set of all possible latent configurations.
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(a) (b) (c)

Figure 9: Generation from trained models on the “bar" dataset with “side-depdent" prior.
(a) VAE (mean-field latent prior and mean-field recognition inference); (b) SVAE (tree-structured
latent prior and mean-field recognition inference); (c) TreeSRVAE (tree-structured latent prior and
tree-structured recognition inference). Note that all samples are not cherry-picked.

Hence we have shown that, despite having achieved similar free energy, TreeSRVAE enables stronger
generation both qualitatively and quantitatively.

VAE SVAE TreeSRVAE
d̃ 1.297 0.559 0.351

Table 2: Comparison of d̃ for VAE, SVAE, and TreeSRVAE.

F.1.1 Tree-Structured Latent PGM with Gaussian Factors

We note that the tree-structured recognition network generalises beyond discrete latents. Namely,
we developed a Gaussian-TreeSRVAE model (details in appendix B.1.1) and applied to the MNIST
dataset [50]. Table 3 show that Gaussian-TreeSRVAE outperforms the two baseline models.

VAE SVAE Gaussian-TreeSRVAE
Free energy 89.54± 0.21 91.52± 0.41 88.39 ± 0.55

Table 3: Free energy of VAE, SVAE and Gaussian-TreeSRVAE trained on MNIST dataset (given 100
training epochs).

F.2 SR-nlGPFA

F.3 Full Quantitative Evaluation Comparison

The complete evaluation comparison between SR-nlGPFA and the selected baselines in terms of both
the SMSE and the negative log-likeihood (NLL) is shown in Table 1.

F.3.1 Complexity Analysis of SR-nlGPFA

We note that SR-nlGPFA, despite allowing the inference of full-covariance structure over all latent
processes, does not incur higher-order complexity than standard SVAEs with GP-latents (e.g., SGP-
VAE [10]), hence allowing scalable application. The major difference between SR-nlGPFA and
SGP-VAE lie in the inference step, where SGP-VAE requires only inverting the covariance matrices
for the latent-specific inducing points, and SR-nlGPFA needs to numerically invert the covariance
matrices over all inducing points across latent dimensions. Hence the complexities for such operation
is O(K3M̄3) and O(KM̄3) for SR-nlGPFA and SGP-VAE, respectively. Hence SR-nlGPFA incurs
additional computations by a factor of K2. However, we note that we usually seek a low-dimensional
GPFA latents that characterise the manifold upon which the high-dimensional neural trajectories
lie within, hence K is usually chosen to be small (e.g., K = 4 for the single-cell spiking dataset
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from Section 5.2.2 and K = 2 for the EEG dataset considered in Section 5.2.1). Hence overall
speaking, we expect considerably small increase in computation time. We show the comparison
between the running times with varying latent dimensions and number of inducing points for SR-
nlGPFA and SGP-VAE in Figure 10, which is in accordance with our hypothesis that small additional
computational cost is incurred with SR-nlGPFA.
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Figure 10: Computation time (log-scale) comparison between SR-nlGPFA and SGP-VAE with
varying latent dimension (a) and number of inducing points per latent dimension (b).

F.3.2 Further Analysis of SR-nlGPFA on Neural Population Spiking Dataset

The firing fields of some exemplary neurons on the Z-shaped track in shown in Figure 11. Visual
inspections show that the majority of the recorded cells show spatial modulation, and resembling
the firing patterns of place cells and (potentially) grid cells, amongst the recorded neurons there also
exists ones whose firing patterns resemble that of interneurons (e.g., third neurons from the left on
the third row).
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Figure 11: Firing patterns of selected CA1 and mEC neurons along the Z-shaped track (color
represents firing rate).

Extraction of behavioural-covariate-modulated neurons predicted by the trained SR-nlGPFA
model.
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Given the behavioural covariate of interests, we wish to predict the neurons whose firing pattern
exhibit strongest modulation with respect to the behavioural covariate using the trained SR-nlGPFA
model (in a completely unsupervised fashion).

Specifically, given the projection matrices from the CCA fitting, we could qualitatively identify the
latent processes that are most correlated with the target behavioural covariate. Given the generative
likelihood, we could compute the gradient of the output Poisson rate parameters for each neuron with
respect to the selected latent variable (the Jacobian matrix) using AutoDiff as found in most deep
learning libraries [51]. We define the relevance score of a latent process, f , with respect to the firing
of neuron s, ∆f (s) as the average squared-norm of the gradient of the associated mapping (given the
likelihood function, Eq. 14).

∆f (s) =

∫ T

t=0

dt||∂λNN(f(t))s
∂f

||2 ≈ 1

N

N∑
n=1

||∂λNN(f(xn))s
∂f

||2 (38)

We categorise the top 20% of the neurons with the highest (or lowest if negatively correlated) relevance
score as the model-predicted neurons that are modulated by the target behavioural covariate.

Additional svGP Inference Step with Changed Inducing Locations

We note that since the recognition network outputs local evidence potentials on h, the computation
of q(U) is not constrained to a single set of inducing locations Z, rather we are free to choose the
set of inducing points to work with (13). During training, due to the computational constraints of
stochastic mini-batch training, it is impractical to use a large number of inducing points. However,
the small number of inducing points leads to temporal chunking artifacts in the variational posterior
distribution of the latent processes (q(f)) over the entire sequence. Hence SR-nlGPFA enables an
additional svGP inference step given the trained recognition network and an expanded set of inducing
points, leading to smoother temporal interpolation, hence alleviating the temporal chunking effects.

Quantitative Analysis of SR-nlGPFA across Experimental Sessions

Here we quantitatively evaluate various aspects of the posterior latent GPs given the trained models.
We train independent models of SR-nlGPFA with the same architectures and training procedures (see
appendix G for implementation details) on the single-cell population spiking datasets from each of the
28 experimental sessions considered. Firstly, we examine if full-covariance structure is a necessary
assumption. We compute the ratio between the magnitudes of the off-diagonal entries and that of

all entries in the posterior covariance matrix (Sf
n, for all n, Section 5.2.2),

∑
n

∑
i,j,i̸=j |Sf

n,ij |∑
i,j |Sf

n,ij |
. From

Figure 12a we observe that the posterior latent covariance matrices of all sessions have non-trivial
off-diagonal elements, indicating the existence of posterior correlations induced by “explaining away"
and the necessity of posterior inference with full covariance structure for capturing the induced
correlations.

In order to assess the quality of the learned posterior latents, we perform two-dimensional Canonical
Correlation Analysis (CCA, [42]) on the learned posterior means and the behavioural covariates. In
Figure 12b we observe that the correlations between the extract canonical correlates (CC) of the
posterior means and the behavioural covariates exhibits high correlation over all sessions, hence
indicating the extracted posterior latent dimensions captures large proportion of the information in
the behavioural variables.

We further show the correlations between the CCX{1, 2} (CCs of the latent posterior means) and
each of the behavioural covariates for all sessions in Figure 13. We observe strong correlations
between one or both of the CCXs with the (unfolded) distance along the track quantity, showing
that the extracted latent variables given the population spiking data is strongly indicative of the
spatial location of the rat along the Z-shaped track, and corresponds nicely with prior knowledge
that the majority of the recorded cells are located in the CA1 region of hippocampus and are
well-known to exhibit significant spatial modulation [36]. Moreover, in most sessions we observe
high correlations (in terms of magnitude) between the CCXs and the direction of travelling, again
conforming with experimental evidence that CA1 place cells firing are modulated by direction along
the linear track (the Z-shaped track environment is usually interpreted as a 1D linear track rather
than a 2D environment [36]). We additionally observe that the CCXs of the learned latent variables
in most sessions show strong correlation with respect to speed of travelling, which also has nice
experimental correspondence [38, 40].
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Figure 12: Quantitative analysis of SR-nlGPFA across experimental sessions. (a) Histogram of the
ratio of the magnitude of the off-diagonal entries relative to that of all entries in the covariance matrix
of q(f); (b) Histogram of correlation coefficients between CCX{1, 2} and CCY {1, 2}.

Comparison with SGP-VAE

By applying SGP-VAE to the data from the same session studied in Section 5.2.2, we perform similar
CCA analysis on the learned latent variables of SGP-VAE. We observe that the correlations between
CCX{1, 2} and CCY {1, 2} of SR-nlGPFA are significantly larger than that of SGP-VAE (with
standard t-test, p-values shown in the figure; Figure 14a).

We additionally examine the same session we looked at in Section 5.2.2, and plot the CCX{1, 2} of
the learned latent variables of SGP-VAE against the x- and y-positions. By comparing to the similar
plot with SR-nlGPFA (Figure 3d), we observe that the resulting plot does not show clear clustered
structure with respect to spatial and direction covariates compared to that of SR-nlGPFA, hence
illustrating that SR-nlGPFA learns qualitatively better latent dimensions than SGP-VAE with respect
to the underlying behavioural covariates.

G Implementation Details

“Bar" Dataset

The details of the generation of the “Bar" dataset can be found in appendix F.1. We use the same neural
network architectures for all models considered (VAE, SVAE, TreeSRVAE): both the recognition
and generative networks are MLPs with two hidden layers of 50 hidden units, with ReLU non-linear
activation function, and the latent dimension is 16. All models and sessions are trained with Adam
optimiser with learning rate of 5× 10−4 over 3500 epochs with a batch-size of 256 [52].

Neural Population Spiking Dataset

We use the same neural network architectures for both SR-nlGPFA and SGP-VAE: both the recogni-
tion and generative networks are MLPs with two hidden layers with 256 hidden units, with ReLU
activatieon function. The latent dimensions for both model is 6, which we choose via cross-validation.
Note that the latent dimension of 6 corresponds to the results from other existing unsupervised latent
feature extraction works on CA1 neuron firing patterns (e.g., Nieh et al. [53] reported 5− 7 is optimal
for the latent dimension with their manifold inference model). The dimension of the neurla feature
(h) in the GPFA generative model (Eq. 3) is 20. Both models are trained with Adam optimiser with
learning rate of 1× 10−4 over 400 epochs with a batch-size of 128 [52]. The number of inducing
points for each latent dimension is 64 for both models.

For the additional SVGP inference step after training with SR-nlGPFA (SGP-VAE does not allow the
additional SVGP inference step as discussed in Section 5.2.2), we set the number of inducing points
to be 1000 for all latent dimensions to smooth out the temporal chunking artifacts caused by the small
number of inducing points in training due to scalability concerns with stochastic optimisation.
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Figure 13: Heatmaps of correlation coefficients between CCX{1, 2} of posterior latent mean given
SR-nlGPFA and the behavioural covariates. 28
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Figure 14: Comparison with SGP-VAE. (a) Comparison of corr(CCX1, CCY 1) (left) and
corr(CCX2, CCY 2) (right) between SR-nlGPFA and SGP-VAE; (b) posterior mean of the la-
tent process learned by SGP-VAE against x- and y-location of the rat, color indicating direction of
travelling (yellow: inbound, magenta: outbound).
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